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Preface

This text provides a broad and applications-oriented introduction to electromagnetic
waves and antennas. Current interest in these areas is driven by the growth in wireless
and fiber-optic communications, information technology, and materials science.

Communications, antenna, radar, and microwave engineers must deal with the gen-
eration, transmission, and reception of electromagnetic waves. Device engineers work-
ing on ever-smaller integrated circuits and at ever higher frequencies must take into
account wave propagation effects at the chip and circuit-board levels. Communication
and computer network engineers routinely use waveguiding systems, such as transmis-
sion lines and optical fibers. Novel recent developments in materials, such as photonic
bandgap structures, omnidirectional dielectric mirrors, birefringent multilayer films,
surface plasmons, negative-index metamaterials, slow and fast light, promise a revo-
lution in the control and manipulation of light and other applications. These are just
some examples of topics discussed in this book. The text is organized around three
main topic areas:

e The propagation, reflection, and transmission of plane waves, and the analysis
and design of multilayer films.

e Waveguiding systems, including metallic, dielectric, and surface waveguides, trans-
mission lines, impedance matching, and S-parameters.

e Linear and aperture antennas, scalar and vector diffraction theory, plane-wave
spectrum, Fourier optics, superdirectivity and superresolution concepts, antenna
array design, numerical methods in antennas, and coupled antennas.

The text emphasizes connections to other subjects. For example, the mathematical
techniques for analyzing wave propagation in multilayer structures and the design of
multilayer optical filters are the same as those used in digital signal processing, such
as the lattice structures of linear prediction, the analysis and synthesis of speech, and
geophysical signal processing. Similarly, antenna array design is related to the prob-
lem of spectral analysis of sinusoids and to digital filter design, and Butler beams are
equivalent to the FFT.

Use

The book is appropriate for first-year graduate or senior undergraduate students. There
is enough material in the book for a two-semester course sequence. The book can also
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be used by practicing engineers and scientists who want a quick review that covers most
of the basic concepts and includes many application examples.

The book is based on lecture notes for a first-year graduate course on “Electromag-
netic Waves and Radiation” that I have been teaching at Rutgers for more than twenty
years. The course draws students from a variety of fields, such as solid-state devices,
wireless communications, fiber optics, biomedical engineering, and digital signal and
array processing. Undergraduate seniors have also attended the graduate course suc-
cessfully.

The book requires a prerequisite course on electromagnetics, typically offered at the
junior year. Such introductory course is usually followed by a senior-level elective course
on electromagnetic waves, which covers propagation, reflection, and transmission of
waves, waveguides, transmission lines, and perhaps some antennas. This book may be
used in such elective courses with the appropriate selection of chapters.

At the graduate level, there is usually an introductory course that covers waves,
guides, lines, and antennas, and this is followed by more specialized courses on an-
tenna design, microwave systems and devices, optical fibers, and numerical techniques
in electromagnetics. No single book can possibly cover all of the advanced courses.
This book may be used as a text in the initial course, and as a supplementary text in the
specialized courses.

Contents and Highlights

Chapters 1-8 develop waves concepts and applications, progressing from Maxwell equa-
tions, to uniform plane waves in various media, such as lossless and lossy dielectrics and
conductors, birefringent and chiral media, including negative-index media, to reflection
and transmission problems at normal and oblique incidence, including reflection from
moving boundaries and the Doppler effect, to multilayer structures and polarizers.

Also discussed are pulse propagation in dispersive media, group and front velocities,
causality, group velocity dispersion, spreading and chirping, dispersion compensation,
slow, fast, and negative group velocity, an introduction to chirp radar and pulse com-
pression, as well as, ray tracing and atmospheric refraction, inhomogeneous waves, total
internal reflection, surface plasmon resonance, Snel’s law and perfect lenses in negative-
index media.

Chapters 9-10 deal with metallic waveguides, dielectric waveguides and optical fibers,
and plasmonic surface waveguides, including Sommerfeld and Goubau lines in which
there is renewed interest for THz applications.

Chapters 11-13 are on transmission lines, microstrip and coaxial lines, terminated
lines, standing wave ratio and the Smith chart, and examples of time-domain transient
response of lines, coupled lines and crosstalk, and coupled mode theory and fiber Bragg
gratings, as well impedance matching methods, which include multisection transform-
ers, quarter-wavelength transformers with series or shunt stubs, single, double, and
triple stub tuners, as well as L-section and I1-section reactive matching networks.

Chapter 14 presents an introduction to S-parameters with a discussion of input and
output reflection coefficients, two-port stability conditions, transducer, operating, and
available power gains, power waves, simultaneous conjugate matching, noise figure cir-
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cles, illustrating the concepts with a number of low-noise high-gain microwave amplifier
designs including the design of input and output matching circuits.

Chapters 15-25 deal with radiation and antennas. Chapters 15-16 include general
fundamental antenna concepts, such as radiation intensity, power density, directivity
and gain, beamwidth, effective area, effective length, Friis formula, antenna noise tem-
perature, power budgets in satellite links, and the radar equation.

In Chapter 17, we discuss a number of linear antenna examples, such as Hertzian
and half-wave dipoles, traveling, vee, and rhombic antennas, as well as loop antennas.

Chapters 18-20 are devoted to radiation from apertures and diffraction, Schelku-
noff’s field equivalence principle, magnetic currents and duality, radiation fields from
apertures, vector diffraction theory, including the Kottler, Stratton-Chu, and Franz for-
mulations, extinction theorem, Fresnel diffraction, Fresnel zones, Sommerfeld’s solution
to the knife-edge diffraction problem, and geometrical theory of diffraction.

The equivalence of the plane-wave spectrum point of view of diffraction and its
equivalence to the Rayleigh-Sommerfeld diffraction theory is developed in Chapter 19,
both for scalar and vector fields including Smythe diffraction integrals, apertures in con-
ducting screens, Bethe-Bouwkamp theory of diffraction by small holes, and the Babinet
principle for scalar and electromagnetic fields.

Chapter 20 continues the discussion of diffraction concepts, with emphasis on Fourier
optics concepts, Fresnel approximation, Talbot effect, Fourier transformation properties
of lenses, one- and two-dimensional apodizer design and aperture synthesis for narrow
beamwidths and low sidelobes including Fourier-Bessel and Dini series expansions, re-
alization of apodizers using star-shaped masks, coronagraphs and starshade occulters,
superresolving apertures, and ending with an overview of superdirectivity, superresolu-
tion, and superoscillation concepts based on prolate spheroidal wave functions.

Chapter 21 presents a number of aperture antenna examples, such as open-ended
waveguides, horn antennas, including optimum horn designs, microstrip antennas, pa-
rabolic and dual reflectors, and lens antennas.

Chapters 22-23 discuss antenna arrays. The first introduces basic concepts such
as the multiplicative array pattern, visible region, grating lobes, directivity including its
optimization, array steering, and beamwidth. The other includes several array design
methods, such as by zero placement, Fourier series method with windowing, sector beam
design, Woodward-Lawson method, and several narrow-beam low-sidelobe designs, such
as binomial, Dolph-Chebyshev, Taylor’s one-parameter, Taylor’s 71 distribution, prolate,
and Villeneuve array design. We discuss the analogies with time-domain DSP and digital
filter design methods, such as Butler beams which are equivalent to the FFT.

Chapters 24-25 deal with numerical methods for linear antennas. Chapter 24 de-
velops the Hallén and Pocklington integral equations for determining the current on a
linear antenna, discusses King’s three-term approximations, and then concentrates on
numerical solutions for delta-gap input and arbitrary incident fields. We discuss the
method of moments, implemented with the exact or the approximate thin-wire kernel
and using various bases, such as pulse, triangular, and NEC bases. These methods re-
quire the accurate evaluation of the exact thin-wire kernel, which we approach using
an elliptic function representation. We also discuss coupled antennas, parallel dipoles,
and their mutual impedance matrix, and more generally, the solution of coupled Hallén
equations, including the design of Yagi-Uda antennas.
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The appendix includes summaries of physical constants, electromagnetic frequency
bands, vector identities, integral theorems, Green'’s functions, coordinate systems, Fres-
nel integrals, sine and cosine integrals, stationary-phase approximation, Gauss-Legendre
quadrature, tanh-sinh double-exponential quadrature, an extensive review of prolate
spheroidal wave functions including MATLAB functions for their computation, Lorentz
transformations, and a detailed list of the book’s MATLAB functions.

Finally, there is a large (but inevitably incomplete) list of references, arranged by
topic area, that we hope could serve as a starting point for further study.

MATLAB Toolbox

The text makes extensive use of MATLAB. We have developed an “Electromagnetic Waves
& Antennas” toolbox containing about 200 MATLAB functions for carrying out all of the
computations and simulation examples in the text. Code segments illustrating the usage
of these functions are found throughout the book, and serve as a user manual.

Our MATLAB-based numerical solutions are not meant to replace sophisticated com-
mercial field solvers. The study of numerical methods in electromagnetics is a subject
in itself and our treatment does not do justice to it.

The inclusion of numerical methods was motivated by the desire to provide the
reader with some simple tools for self-study and experimentation. We felt that it would
be useful and fun to be able to quickly carry out the computations illustrating various
waves and antenna applications, and have included enough MATLAB code in each exam-
ple (but skipping all figure annotations) that would enable the reader to reproduce the
results. The functions may be grouped into the following categories:

1. Design and analysis of multilayer film structures, including antireflection coat-
ings, polarizers, omnidirectional mirrors, narrow-band transmission filters, sur-
face plasmon resonance, and birefringent multilayer films.

2. Design of quarter-wavelength impedance transformers and other impedance match-
ing methods, such as Chebyshev transformers, dual-band transformers, stub match-
ing and L-, I1- and T-section reactive matching networks.

3. Design and analysis of transmission lines and waveguides, such as microstrip
lines, dielectric slab guides, plasmonic waveguides, Sommerfeld wire, and Goubau
lines.

4. S-parameter functions for gain computations, Smith chart generation, stability,
gain, and noise-figure circles, simultaneous conjugate matching, and microwave
amplifier design.

5. Functions for the computation of directivities and gain patterns of linear antennas,
such as dipole, vee, rhombic, and traveling-wave antennas, including functions for
the input impedance of dipoles.

6. Aperture antenna functions for open-ended waveguides, and horn antenna design.

7. Functions for diffraction calculations, such as diffraction integrals, and knife-edge
diffraction coefficients, Talbot effect, Bethe-Bouwkamp model.

8. One- and two-dimensional apodizer design for continuous aperture distributions,
optimum prolate apodizers, Taylor's one-parameter and n-bar one-dimensional
distributions, and their two-dimensional versions.
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9. Antenna array design functions for uniform, binomial, Dolph-Chebyshev, Tay-
lor one-parameter, Taylor n distribution, prolate, Villeneuve arrays, sector-beam,
multi-beam, Woodward-Lawson, and Butler beams. Functions for beamwidth and
directivity calculations, and for steering and scanning arrays.

10. Numerical methods for solving the Hallén and Pocklington integral equations for
single and coupled antennas, computing the exact thin-wire kernel, and computing
self and mutual impedances.

11. Several functions for making azimuthal and polar plots of antenna and array gain
patterns.

12. There are also several MATLAB movies showing pulse propagation in dispersive
media illustrating slow, fast, and negative group velocity; the propagation of step
signals and pulses on terminated transmission lines; the propagation on cascaded
lines; step signals getting reflected from reactive terminations; fault location by
TDR; crosstalk signals propagating on coupled lines; and the time-evolution of the
field lines radiated by a Hertzian dipole.

The MATLAB functions as well as other information about the book may be downloaded
from the book’s web page:

http://www.ece.rutgers.edu/~orfanidi/ewa
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1

Maxwell’s Equations

1.1 Maxwell’s Equations

Maxwell’s equations describe all (classical) electromagnetic phenomena:

0B
E=-22
V x 5t
oD
VXxH=J+ ot (Maxwell’s equations) (1.1.1)
V-D=p
V-B=0

The first is Faraday’s law of induction, the second is Ampeére’s law as amended by
Maxwell to include the displacement current 0D/ 0t, the third and fourth are Gauss’ laws
for the electric and magnetic fields.

The displacement current term 0D/ 0t in Ampére’s law is essential in predicting the
existence of propagating electromagnetic waves. Its role in establishing charge conser-
vation is discussed in Sec. 1.7.

Egs. (1.1.1) are in SI units. The quantities E and H are the electric and magnetic
field intensities and are measured in units of [volt/m] and [ampere/m], respectively.
The quantities D and B are the electric and magnetic flux densities and are in units of
[coulomb/m?] and [weber/m?], or [tesla]. D is also called the electric displacement, and
B, the magnetic induction.

The quantities p and J are the volume charge density and electric current density
(charge flux) of any external charges (that is, not including any induced polarization
charges and currents.) They are measured in units of [coulomb/m?3] and [ampere,/m?].
The right-hand side of the fourth equation is zero because there are no magnetic mono-
pole charges. Eqgs. (1.3.17)-(1.3.19) display the induced polarization terms explicitly.

The charge and current densities p, J may be thought of as the sources of the electro-
magnetic fields. For wave propagation problems, these densities are localized in space;
for example, they are restricted to flow on an antenna. The generated electric and mag-
netic fields are radiated away from these sources and can propagate to large distances to
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the receiving antennas. Away from the sources, that is, in source-free regions of space,
Maxwell’s equations take the simpler form:

0B
VXE=—-—
ot
oD
VxH= ot (source-free Maxwell’s equations) (1.1.2)
V-D=0
V-B=0

The qualitative mechanism by which Maxwell’s equations give rise to propagating
electromagnetic fields is shown in the figure below.

For example, a time-varying current J on a linear antenna generates a circulating
and time-varying magnetic field H, which through Faraday’s law generates a circulating
electric field E, which through Ampere’s law generates a magnetic field, and so on. The
cross-linked electric and magnetic fields propagate away from the current source. A
more precise discussion of the fields radiated by alocalized current distribution is given
in Chap. 15.

1.2 Lorentz Force

The force on a charge g moving with velocity v in the presence of an electric and mag-
netic field E, B is called the Lorentz force and is given by:

F=q(E+VvXB) (Lorentz force) (1.2.1)

Newton’s equation of motion is (for non-relativistic speeds):

m%:F:q(E+v><B) (1.2.2)

where m is the mass of the charge. The force F will increase the Kkinetic energy of the
charge at a rate that is equal to the rate of work done by the Lorentz force on the charge,
that is, v - F. Indeed, the time-derivative of the kinetic energy is:

d Wkin

1 dv
Wkin—EmV'V > it —mv-E—v-F—qv-E (1.2.3)

We note that only the electric force contributes to the increase of the kinetic energy—
the magnetic force remains perpendicular to v, that is, v- (v X B)= 0.
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Volume charge and current distributions p,J are also subjected to forces in the

presence of fields. The Lorentz force per unit volume acting on p, J is given by:
f=pE+JXB (Lorentz force per unit volume) (1.2.4)

where f is measured in units of [newton/m3]. If J arises from the motion of charges
within the distribution p, then J = pv (as explained in Sec. 1.6.) In this case,

f=p(E+VvXB) (1.2.5)

By analogy with Eq. (1.2.3), the quantity v- f= pv- E = J - E represents the power
per unit volume of the forces acting on the moving charges, that is, the power expended
by (or lost from) the fields and converted into kinetic energy of the charges, or heat. It
has units of [watts/m?3]. We will denote it by:

dPloss

v =J-E (ohmic power losses per unit volume) (1.2.6)

In Sec. 1.8, we discuss its role in the conservation of energy. We will find that elec-
tromagnetic energy flowing into a region will partially increase the stored energy in that
region and partially dissipate into heat according to Eq. (1.2.6).

1.3 Constitutive Relations
The electric and magnetic flux densities D, B are related to the field intensities E, H via

the so-called constitutive relations, whose precise form depends on the material in which
the fields exist. In vacuum, they take their simplest form:

D = ¢yE
(1.3.1)
B=uoH

where €, Lo are the permittivity and permeability of vacuum, with numerical values:

€o = 8.854 x 107 '? farad/m

(1.3.2)
o = 47T X 1077 henry/m
The units for €y and u are the units of the ratios D/FE and B/H, that is,
coulomb/m? _ coulomb _ farad weber/m? weber  henry

voltym  volt-m m ampere/m ampere-m = m

From the two quantities €, ty, we can define two other physical constants, namely,
the speed of light and the characteristic impedance of vacuum:

Cop =

1
VHo€o

=3x108m/sec, ng= ? =377 ohm (1.3.3)
\ €o
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The next simplest form of the constitutive relations is for simple homogeneous
isotropic dielectric and for magnetic materials:

D =€E
(1.3.4)
B=uH

These are typically valid at low frequencies. The permittivity € and permeability u
are related to the electric and magnetic susceptibilities of the material as follows:

€e=¢€o(l+%x)
(1.3.5)
u=po(l+ xXm)

The susceptibilities x, xm are measures of the electric and magnetic polarization
properties of the material. For example, we have for the electric flux density:

D=€E=€y(1+ X)E=€0E+ €gXE=€yE+ P (1.3.6)

where the quantity P = €gX E represents the dielectric polarization of the material, that
is, the average electric dipole moment per unit volume. In a magnetic material, we have

B=po(H+ M)= po(H+ XmH)= po(1 + Xm)H= puH (1.3.7)

where M = x,H is the magnetization, that is, the average magnetic moment per unit
volume. The speed of light in the material and the characteristic impedance are:

1 _ K
C= \/;TE' n—\/: (1.3.8)

The relative permittivity, permeability and refractive index of a material are defined by:

€
€rel = ?0 =1+X, Hrel = % =1+Xm, n = /€relHrel (1.3.9)

so that n? = €pellirel. Using the definition of Eq. (1.3.8), we may relate the speed of light
and impedance of the material to the corresponding vacuum values:

1 1 Co Co

Ho€oErelHrel €ErelHrel n

VHE
_ [H_ [Ho [Hrea _ o [Hrel _ o Hre _ M
n \/Z €o €rel o €Erel Mo n Mo €rel

For a non-magnetic material, we have u = g, or, ty = 1, and the impedance
becomes simply n = ny/n, a relationship that we will use extensively in this book.

More generally, constitutive relations may be inhomogeneous, anisotropic, nonlin-
ear, frequency dependent (dispersive), or all of the above. In inhomogeneous materials,
the permittivity € depends on the location within the material:

(1.3.10)

D(r,t)= e(r)E(r,t)
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In anisotropic materials, € depends on the X, y, z direction and the constitutive rela-
tions may be written component-wise in matrix (or tensor) form:

DX Exx Exy 6XZ EX
Dy | =] €x €y €, E, (1.3.11)
Dz ezx €Zy 6ZZ EZ

Anisotropy is an inherent property of the atomic/molecular structure of the dielec-
tric. It may also be caused by the application of external fields. For example, conductors
and plasmas in the presence of a constant magnetic field—such as the ionosphere in the
presence of the Earth’s magnetic field—become anisotropic (see for example, Problem
1.10 on the Hall effect.)

In nonlinear materials, € may depend on the magnitude E of the applied electric field
in the form:

D=¢c(E)E, where €(E)=¢+6FE+eE>+--- (1.3.12)

Nonlinear effects are desirable in some applications, such as various types of electro-
optic effects used in light phase modulators and phase retarders for altering polariza-
tion. In other applications, however, they are undesirable. For example, in optical fibers
nonlinear effects become important if the transmitted power is increased beyond a few
milliwatts. A typical consequence of nonlinearity is to cause the generation of higher
harmonics, for example, if E = Ege/®!, then Eq. (1.3.12) gives:

D =€(E)E = €E + 6E? + €3E® + - - - = €Ege/® + €2E2e®! + 3E3e¥®l + . ..

Thus the input frequency w is replaced by w,2w, 3w, and so on. In a multi-
wavelength transmission system, such as a wavelength division multiplexed (WDM) op-
tical fiber system carrying signals at closely-spaced carrier frequencies, such nonlinear-
ities will cause the appearance of new frequencies which may be viewed as crosstalk
among the original channels. For example, if the system carries frequencies wj, i =
1,2,..., then the presence of a cubic nonlinearity E3 will cause the appearance of the
frequencies w; + w; + wy. In particular, the frequencies w; + w; — wy are most likely
to be confused as crosstalk because of the close spacing of the carrier frequencies.

Materials with a frequency-dependent dielectric constant € (w) are referred to as
dispersive. The frequency dependence comes about because when a time-varying elec-
tric field is applied, the polarization response of the material cannot be instantaneous.
Such dynamic response can be described by the convolutional (and causal) constitutive
relationship:

t
D(r,t)=J e(t—tE(rt)dt (1.3.13)

which becomes multiplicative in the frequency domain:

‘D(r,w)=e(w)l:"(r,w) | (1.3.14)

All materials are, in fact, dispersive. However, € (w) typically exhibits strong depen-
dence on w only for certain frequencies. For example, water at optical frequencies has
refractive index n = /€;e = 1.33, but at RF down to dc, it has n = 9.
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In Sections 1.10-1.15, we discuss simple models of € (w) for dielectrics, conductors,
and plasmas, and clarify the nature of Ohm’s law:

(Ohm’s law) (1.3.15)

In Sec. 1.17, we discuss the Kramers-Kronig dispersion relations, which are a direct
consequence of the causality of the time-domain dielectric response function € (t).

One major consequence of material dispersion is pulse spreading, that is, the pro-
gressive widening of a pulse as it propagates through such a material. This effect limits
the data rate at which pulses can be transmitted. There are other types of dispersion,
such as intermodal dispersion in which several modes may propagate simultaneously,
or waveguide dispersion introduced by the confining walls of a waveguide.

There exist materials that are both nonlinear and dispersive that support certain
types of non-linear waves called solitons, in which the spreading effect of dispersion is
exactly canceled by the nonlinearity. Therefore, soliton pulses maintain their shape as
they propagate in such media [1417,919,917].

More complicated forms of constitutive relationships arise in chiral and gyrotropic
media and are discussed in Chap. 4. The more general bi-isotropic and bi-anisotropic
media are discussed in [30,96]; see also [57].

In Egs. (1.1.1), the densities p, J represent the external or free charges and currents
in a material medium. The induced polarization P and magnetization M may be made
explicit in Maxwell’s equations by using the constitutive relations:

D=¢€yE+P, B=py(H+M) (1.3.16)

Inserting these in Eq. (1.1.1), for example, by writing V X B = oV X (H+ M)=
Ho(J+D+V X M) = py(egE+ J+ P+ V x M), we may express Maxwell’s equations in
terms of the fields E and B:

OB
VXEffﬁ
VXB:uoeoa—EJruo[JJra—P+V><M]
ot ot (1.3.17)
V-E:i(p—V-P)
€o
V-B=0

We identify the current and charge densities due to the polarization of the material as:

oP
Joo1 = 3 Ppol = =V - P (polarization densities) (1.3.18)

Similarly, the quantity Jmag = V X M may be identified as the magnetization current
density (note that pmag = 0.) The total current and charge densities are:

oP
Jtot =J+Jpol+.]mag =J+ a* + VXM
t (1.3.19)

Pt =P+ Ppor=p—V-P
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and may be thought of as the sources of the fields in Eq. (1.3.17). In Sec. 15.6, we examine
this interpretation further and show how it leads to the Ewald-Oseen extinction theorem
and to a microscopic explanation of the origin of the refractive index.

1.4 Negative Index Media

Maxwell’s equations do not preclude the possibility that one or both of the quantities
€, U be negative. For example, plasmas below their plasma frequency, and metals up to
optical frequencies, have € < 0 and p > 0, with interesting applications such as surface
plasmons (see Sec. 8.5).

Isotropic media with yu < 0 and € > 0 are more difficult to come by [168], although
examples of such media have been fabricated [396].

Negative-index media, also known as left-handed media, have €, u that are simulta-
neously negative, € < 0 and u < 0. Veselago [391] was the first to study their unusual
electromagnetic properties, such as having a negative index of refraction and the rever-
sal of Snel’s law.

The novel properties of such media and their potential applications have generated
a lot of research interest [391-473]. Examples of such media, termed “metamaterials”,
have been constructed using periodic arrays of wires and split-ring resonators, [397]
and by transmission line elements [430-432,452,465], and have been shown to exhibit
the properties predicted by Veselago.

When €e1 < 0 and pre < 0, the refractive index, n? = €pellirel, must be defined by
the negative square root n = —,/€relHrel. Because then n < 0 and pye < 0 will imply
that the characteristic impedance of the medium n = oL /n will be positive, which
as we will see later implies that the energy flux of a wave is in the same direction as the
direction of propagation. We discuss such media in Sections 2.13, 7.16, and 8.6.

1.5 Boundary Conditions

The boundary conditions for the electromagnetic fields across material boundaries are
given below:

Eyy —Ex =0
Hi; — Hy = JyXn n E; TD H,, TB
21 T i 1n i 1n (151)
Din — Dan = ps 2 E,, TDZn H,, Tan
Bln - BZn =0

where n is a unit vector normal to the boundary pointing from medium-2 into medium-1.
The quantities pg, J¢ are any external surface charge and surface current densities on
the boundary surface and are measured in units of [coulomb/m?] and [ampere/m)].

In words, the tangential components of the E-field are continuous across the inter-
face; the difference of the tangential components of the H-field are equal to the surface
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current density; the difference of the normal components of the flux density D are equal
to the surface charge density; and the normal components of the magnetic flux density
B are continuous.

The D, boundary condition may also be written a form that brings out the depen-
dence on the polarization surface charges:

(€oE1n + P1n) —(€0E2n + P2n) = ps = €o(Ein — E2n) = ps — Pin + Pon = Ps,tot

The total surface charge density will be pg 1ot = Ps+ P15,pol + P2s,po1, Where the surface
charge density of polarization charges accumulating at the surface of a dielectric is seen
to be (@ is the outward normal from the dielectric):

Ps,pol =P,=10-P (1.5.2)

The relative directions of the field vectors are shown in Fig. 1.5.1. Each vector may
be decomposed as the sum of a part tangential to the surface and a part perpendicular
to it, that is, E = E; + E,. Using the vector identity,

E=nx (Exn)+n(n-E)=E + E, (1.5.3)
we identify these two parts as:

E =tx (Exf), En=nt(h-E)=nE,

E

=>

}E,=n(n.E)
.;/""’E, =nx(Exn)

A

Exn

Fig. 1.5.1 Field directions at boundary.

Using these results, we can write the first two boundary conditions in the following
vectorial forms, where the second form is obtained by taking the cross product of the
first with fi and noting that J is purely tangential:

nx (Ep xn)—-nax (E; xn) =0 nx (EL—E)=0
or, (1.5.4)

nx (H xn)—nax (H, xn) = Jg Xn nx (H — H) = Js

The boundary conditions (1.5.1) can be derived from the integrated form of Maxwell’s
equations if we make some additional regularity assumptions about the fields at the
interfaces.



1.6. Currents, Fluxes, and Conservation Laws 9

In many interface problems, there are no externally applied surface charges or cur-
rents on the boundary. In such cases, the boundary conditions may be stated as:

Ey = Ex

Hi: = Hy
(source-free boundary conditions) (1.5.5)

D1y = Doy

Bln = B2n

1.6 Currents, Fluxes, and Conservation Laws

The electric current density J is an example of a flux vector representing the flow of the
electric charge. The concept of flux is more general and applies to any quantity that
flows." It could, for example, apply to energy flux, momentum flux (which translates
into pressure force), mass flux, and so on.

In general, the flux of a quantity Q is defined as the amount of the quantity that
flows (perpendicularly) through a unit surface in unit time. Thus, if the amount AQ
flows through the surface AS in time At, then:

AQ

T= Asar

(definition of flux) (1.6.1)

When the flowing quantity Q is the electric charge, the amount of current through
the surface AS will be AI = AQ/At, and therefore, we can write J = AI/AS, with units
of [ampere/m?].

The flux is a vectorial quantity whose direction points in the direction of flow. There
is a fundamental relationship that relates the flux vector J to the transport velocity v
and the volume density p of the flowing quantity:

(1.6.2)

This can be derived with the help of Fig. 1.6.1. Consider a surface AS oriented per-
pendicularly to the flow velocity. In time At, the entire amount of the quantity contained
in the cylindrical volume of height vAt will manage to flow through AS. This amount is
equal to the density of the material times the cylindrical volume AV = AS(vAt), that
is, AQ = pAV = p AS vAt. Thus, by definition:

J= AQ  pASvAt
T ASAt T ASAt

When J represents electric current density, we will see in Sec. 1.12 that Eq. (1.6.2)

implies Ohm’s law J = o E. When the vector J represents the energy flux of a propagating

electromagnetic wave and p the corresponding energy per unit volume, then because the
speed of propagation is the velocity of light, we expect that Eq. (1.6.2) will take the form:

Jen = CPen (1.6.3)

TIn this sense, the terms electric and magnetic “flux densities” for the quantities D, B are somewhat of a
misnomer because they do not represent anything that flows.
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AS
% <-—); AQ
VAt |

Fig. 1.6.1 Flux of a quantity.

V;V;V

Similarly, when J represents momentum flux, we expect to have Jmom = CPmom-
Momentum flux is defined as Jyom = Ap/ (ASAt)= AF/AS, where p denotes momen-
tum and AF = Ap/At is the rate of change of momentum, or the force, exerted on the
surface AS. Thus, Jmem represents force per unit area, or pressure.

Electromagnetic waves incident on material surfaces exert pressure (known as ra-
diation pressure), which can be calculated from the momentum flux vector. It can be
shown that the momentum flux is numerically equal to the energy density of a wave, that
iS, Jmom = Pen, Which implies that pen = PmomC. This is consistent with the theory of
relativity, which states that the energy-momentum relationship for a photon is E = pc.

1.7 Charge Conservation

Maxwell added the displacement current term to Ampere’s law in order to guarantee
charge conservation. Indeed, taking the divergence of both sides of Ampére’s law and
using Gauss’s law V - D = p, we get:
oD 0 op
V. VXH=V:-J+V:-—=V.J+ -V-D=V . J+
T+V 5 I+ 5 I+ %5
Using the vector identity V - V X H = 0, we obtain the differential form of the charge
conservation law:

%‘) +V-J=0 (charge conservation) (1.7.1)

Integrating both sides over a closed volume V surrounded by the surface S, as
shown in Fig. 1.7.1, and using the divergence theorem, we obtain the integrated form of
Eq. (1.7.1):

d
j(SJ-ds_ —Ejvpdv (1.7.2)

The left-hand side represents the total amount of charge flowing outwards through
the surface S per unit time. The right-hand side represents the amount by which the
charge is decreasing inside the volume V per unit time. In other words, charge does not
disappear into (or created out of) nothingness—it decreases in a region of space only
because it flows into other regions.

Another consequence of Eq. (1.7.1) is that in good conductors, there cannot be any
accumulated volume charge. Any such charge will quickly move to the conductor’s
surface and distribute itself such that to make the surface into an equipotential surface.
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Fig. 1.7.1 Flux outwards through surface.

Assuming that inside the conductor we have D = €FE and J = o E, we obtain

v-j=ov-E=2v.p=%
€ €

EiZp=0 (1.7.3)

with solution:
ot/e

p(rt)=po(re”
where pg (r) is the initial volume charge distribution. The solution shows that the vol-
ume charge disappears from inside and therefore it must accumulate on the surface of
the conductor. The “relaxation” time constant T, = €/0 is extremely short for good
conductors. For example, in copper,

€ 885x10712
Trel = — =

T 1.6 x 10719 sec

By contrast, Ty is of the order of days in a good dielectric. For good conductors, the
above argument is not quite correct because it is based on the steady-state version of
Ohm’s law, J = o E, which must be modified to take into account the transient dynamics
of the conduction charges.

It turns out that the relaxation time T is of the order of the collision time, which
is typically 10714 sec. We discuss this further in Sec. 1.13. See also Refs. [147-150].

1.8 Energy Flux and Energy Conservation

Because energy can be converted into different forms, the corresponding conservation
equation (1.7.1) should have a non-zero term in the right-hand side corresponding to
the rate by which energy is being lost from the fields into other forms, such as heat.
Thus, we expect Eq. (1.7.1) to have the form:

0
% + V + Jen = rate of energy loss (1.8.1)
Assuming the ordinary constitutive relations D = €E and B = uH, the quantities

Pen, Jen describing the energy density and energy flux of the fields are defined as follows,
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where we introduce a change in notation:

1 1
Pen = W = —€|E|> + ~u|H|? = energy per unit volume
2 2 (1.8.2)

Jen = P = E X H = energy flux or Poynting vector

where |E|?2 = E - E. The quantities w and P are measured in units of [joule/m?] and
[watt/m?]. Using the identity V - (Ex H)= H-V X E— E - V x H, we find:

ow OE oOH
§+V?_EEE+IJ§H+V(EXH)
:a—D-E+a—B-H+H-V><EfE-V><H
ot ot
:(a—D—VxH>-E+(a—B+V><E>-H
ot ot

Using Ampere’s and Faraday’s laws, the right-hand side becomes:

aa—‘:/ +V-P=—-J-E (energy conservation) (1.8.3)

As we discussed in Eq. (1.2.6), the quantity J-E represents the ohmic losses, that
is, the power per unit volume lost into heat from the fields. The integrated form of
Eq. (1.8.3) is as follows, relative to the volume and surface of Fig. 1.7.1:

—f?-d5=£JWdV+JJ-EdV (1.8.4)
S dt Jv %

It states that the total power entering a volume V through the surface S goes partially
into increasing the field energy stored inside V and partially is lost into heat.

Example 1.8.1: Energy concepts can be used to derive the usual circuit formulas for capaci-
tance, inductance, and resistance. Consider, for example, an ordinary plate capacitor with
plates of area A separated by a distance [, and filled with a dielectric €. The voltage between
the plates is related to the electric field between the plates via V = EI.

The energy density of the electric field between the plates is w = €E?/2. Multiplying this
by the volume between the plates, A-l, will give the total energy stored in the capacitor.
Equating this to the circuit expression CV?/2, will yield the capacitance C:
1 1 1 A

W= -¢eE?- Al= ~CV? = ~CE*I? C=¢~
2 2 2 - ]
Next, consider a solenoid with n turns wound around a cylindrical iron core of length
I, cross-sectional area A, and permeability y. The current through the solenoid wire is
related to the magnetic field in the core through Ampere’s law HI = nI. It follows that the
stored magnetic energy in the solenoid will be:
1 H 22
27 n?

1 ; 1. .. ., A
W=§uH2-AI=§L12= > L=n1y7

Finally, consider a resistor of length I, cross-sectional area A, and conductivity o. The
voltage drop across the resistor is related to the electric field along it via V = EI. The
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current is assumed to be uniformly distributed over the cross-section A and will have
density J = OE.

The power dissipated into heat per unit volume is JE = oE2. Multiplying this by the
resistor volume Al and equating it to the circuit expression V2/R = RI? will give:

V2 E?P

(J - E) (A= 0E*(AD) = - _1r

N -
R oA

The same circuit expressions can, of course, be derived more directly using Q = CV, the
magnetic flux & = LI, and V = RI. m]

Conservation laws may also be derived for the momentum carried by electromagnetic
fields [41,1293]. It can be shown (see Problem 1.6) that the momentum per unit volume
carried by the fields is given by:

1 1
G=DXB= C—ZE X H= 2 P (momentum density) (1.8.5)

where we set D = €E, B = pH, and ¢ = 1/./ép. The quantity Jpom = ¢G = P/c will
represent momentum flux, or pressure, if the fields are incident on a surface.

1.9 Harmonic Time Dependence

Maxwell’s equations simplify considerably in the case of harmonic time dependence.
Through the inverse Fourier transform, general solutions of Maxwell’s equation can be
built as linear combinations of single-frequency solutions:*

E(rt)= Jw E(r,w)e/®! ‘;—‘1‘; (1.9.1)

Thus, we assume that all fields have a time dependence e/®!:
E(r,t)= E(e/®t, H(rt)= H(r)el®!

where the phasor amplitudes E(r), H(r) are complex-valued. Replacing time derivatives
by 0; — jw, we may rewrite Eq. (1.1.1) in the form:

V XE=—-jwB
VXH=J+ jwD
(Maxwell’s equations) (1.9.2)
V-D=p
V-B=0

In this book, we will consider the solutions of Egs. (1.9.2) in three different contexts:
(a) uniform plane waves propagating in dielectrics, conductors, and birefringent me-
dia, (b) guided waves propagating in hollow waveguides, transmission lines, and optical
fibers, and (c) propagating waves generated by antennas and apertures.

TThe /@t convention is used in the engineering literature, and e~i®’! in the physics literature. One can
pass from one convention to the other by making the formal substitution j — —i in all the equations.
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Next, we review some conventions regarding phasors and time averages. A real-
valued sinusoid has the complex phasor representation:

A(t)=|Alcos(wt+0) < A(t)= Ae/! (1.9.3)

where A = |A|e/?. Thus, we have A (t)=Re[A (t)] = Re[Ae/®t]. The time averages of
the quantities A (t) and A (t) over one period T = 2717/ are zero.

The time average of the product of two harmonic quantities A () = Re[Ae/“?] and
B (t) = Re[ Be/*!] with phasors A, B is given by (see Problem 1.4):

T
A(H)B(t) = %J A(t)B(t) dt = %Re[AB*] (1.9.4)
0
In particular, the mean-square value is given by:
(T 2 1 * Lo
A2(t) = — | A*(t)dt = = Re[AA*]= = |A| (1.9.5)
T Jo 2 2

Some interesting time averages in electromagnetic wave problems are the time av-
erages of the energy density, the Poynting vector (energy flux), and the ohmic power
losses per unit volume. Using the definition (1.8.2) and the result (1.9.4), we have for
these time averages:

1 1 1
w = 7Re[7€E-E* + EuH-H*] (energy density)

2 2

P = % Re[Ex H*] (Poynting vector) (1.9.6)
dPross 1 .
dl‘(;ss - 5 Re [Jtot . E*] (ohmic losses)

where Jio = J+ jwD is the total current in the right-hand side of Ampere’s law and
accounts for both conducting and dielectric losses. The time-averaged version of Poynt-
ing’s theorem is discussed in Problem 1.5.

The expression (1.9.6) for the energy density w was derived under the assumption
that both € and p were constants independent of frequency. In a dispersive medium, €, u
become functions of frequency. In frequency bands where € (w), p(w) are essentially
real-valued, that is, where the medium is lossless, it can be shown [168] that the time-
averaged energy density generalizes to:

1Re[1d(we)E_E* + d(wu)

1
2 2 dw 2 dw

H- H*] (lossless case) (1.9.7)

The derivation of (1.9.7) is as follows. Starting with Maxwell’s equations (1.1.1) and
without assuming any particular constitutive relations, we obtain:

V-ExH=-E-D-H-B-J-E (1.9.8)
As in Eq. (1.8.3), we would like to interpret the first two terms in the right-hand side
as the time derivative of the energy density, that is,

Y . piH-B
dt
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Anticipating a phasor-like representation, we may assume complex-valued fields and
derive also the following relationship from Maxwell’s equations:

1 1 . 1 . 1
V- ERe[Ex H*] = —ERe[E*- D] - ERe[H*- B| - ERe[]*- E] (1.9.9)
from which we may identify a “time-averaged” version of dw/dt,
aw 1 T | .
gr = o Re[E™ D] + - Re[H"- B] (1.9.10)

In a dispersive dielectric, the constitutive relation between D and E can be written
as follows in the time and frequency domains:*

00

D(t)= I e(t—t)E(t)dt! < D(w)=¢e(w)E(w) (1.9.11)
where the Fourier transforms are defined by
e(t)= %J‘ e(w)e®dw o e(w)= I e(t)e 0ldt (1.9.12)

The time-derivative of D(t) is then

D(t)= J E(t—t)E()dt (1.9.13)
where it follows from Eq. (1.9.12) that
E(t)= ij Jjwe(w)e/®tdw (1.9.14)
27T J -

Following [168], we assume a quasi-harmonic representation for the electric field,
E(t)= Eo(t)e/®! where Eq(t) is a slowly-varying function of time. Equivalently, in the
frequency domain we have E(w) = E( (w — wy), assumed to be concentrated in a small
neighborhood of wy, say, |w — wy| < Aw. Because € (w) multiplies the narrowband
function E(w), we may expand we (w) in a Taylor series around wg and keep only the
linear terms, that is, inside the integral (1.9.14), we may replace:

we(w) = ap +bo(w - wy), o= woee(wy), bo= W (1.9.15)

wWo

Inserting this into Eq. (1.9.14), we obtain the approximation
1 (* ;
E(t)= E J [jao + by (](U — jwy) ] e/Cldw = ja06 (t)+bg (0¢ —jwo) o(t) (1.9.16)

where 6 (t) the Dirac delta function. This approximation is justified only insofar as it is
used inside Eq. (1.9.13). Inserting (1.9.16) into Eq. (1.9.13), we find

D(1) = J [jaod (t = ') +bo (0 — jwo) & (t — t') | E(t)dt’ =
= jaoE(t)+bo (0, — jwo) E(t) (1.9.17)
= JjaoEq (1) &/ + bo (3, — jwo) (Eo (1) e/“0")

= [jaoEo (1) +boEq (1) ]e/®ot

TTo unclutter the notation, we are suppressing the dependence on the space coordinates .
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Because we assume that € (w) is real (i.e., lossless) in the vicinity of wy, it follows that:

%Re[E*- D] = %Re[Eo(t)*-(jaoEo(T)-i-boEo(t))] - %boRe[Eo(f)*'Eo(t)], or,

T dt| 4 dw

Dropping the subscript 0, we see that the quantity under the time derivative in the
right-hand side may be interpreted as a time-averaged energy density for the electric
field. A similar argument can be given for the magnetic energy term of Eq. (1.9.7).

We will see in the next section that the energy density (1.9.7) consists of two parts:
one part is the same as that in the vacuum case; the other part arises from the kinetic
and potential energy stored in the polarizable molecules of the dielectric medium.

When Eq. (1.9.7) is applied to a plane wave propagating in a dielectric medium, one
can show that (in the lossless case) the energy velocity coincides with the group velocity.

The generalization of these results to the case of a lossy medium has been studied
extensively [168-182]. Eq. (1.9.7) has also been applied to the case of a “left-handed”
medium in which both € (w) and p(w) are negative over certain frequency ranges. As
argued by Veselago [391], such media must necessarily be dispersive in order to make
Eq. (1.9.7) a positive quantity even though individually € and u are negative.

Analogous expressions to (1.9.7) may also be derived for the momentum density of
a wave in a dispersive medium. In vacuum, the time-averaged momentum density is
given by Eq. (1.8.5), that is,

1 s dfL 2] _d ld[we(w)]() 2
JRe[E* D] = | JbolEo(0)] [ Alwello gy o)) (19.18)

- 1
G= ERG[E()[J()EX H*]

For the dispersive (and lossless) case this generalizes to [391,467]

~_ 1 x ’,‘(E 2, du 2)]
G—ZRe[euExH 5 (G B+ 1 (1.9.19)

1.10 Simple Models of Dielectrics, Conductors, and Plasmas

A simple model for the dielectric properties of a material is obtained by considering the
motion of a bound electron in the presence of an applied electric field. As the electric
field tries to separate the electron from the positively charged nucleus, it creates an
electric dipole moment. Averaging this dipole moment over the volume of the material
gives rise to a macroscopic dipole moment per unit volume.
A simple model for the dynamics of the displacement x of the bound electron is as
follows (with x = dx/dt):
mx = eE — kx — myx (1.10.1)

where we assumed that the electric field is acting in the x-direction and that there is
a spring-like restoring force due to the binding of the electron to the nucleus, and a
friction-type force proportional to the velocity of the electron.

The spring constant k is related to the resonance frequency of the spring via the
relationship wo = vk/m, or, k = mw%. Therefore, we may rewrite Eq. (1.10.1) as

X+ X+ W2x = %E (1.10.2)
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The limit wq = 0 corresponds to unbound electrons and describes the case of good
conductors. The frictional term yx arises from collisions that tend to slow down the
electron. The parameter y is a measure of the rate of collisions per unit time, and
therefore, T = 1/y will represent the mean-time between collisions.

In a typical conductor, T is of the order of 10~!% seconds, for example, for copper,
T =24x%x10"" sec and y = 4.1 X 103 sec™!. The case of a tenuous, collisionless,
plasma can be obtained in the limit y = 0. Thus, the above simple model can describe
the following cases:

a. Dielectrics, wo # 0,y # 0.
b. Conductors, wg = 0,y # 0.
c. Collisionless Plasmas, wy = 0,y = 0.

The basic idea of this model is that the applied electric field tends to separate positive
from negative charges, thus, creating an electric dipole moment. In this sense, the
model contains the basic features of other types of polarization in materials, such as
ionic/molecular polarization arising from the separation of positive and negative ions
by the applied field, or polar materials that have a permanent dipole moment.

1.11 Dielectrics

The applied electric field E (t) in Eq. (1.10.2) can have any time dependence. In particular,
if we assume it is sinusoidal with frequency w, E (t) = Ee/®!, then, Eq. (1.10.2) will have
the solution x (1) = xe/®!, where the phasor x must satisfy:

. e
—w?2X + jowyx + wix = —E
m
which is obtained by replacing time derivatives by 0; — jw. Its solution is:

e
—E
x=—— 1.11.1)
w§ — w? + jwy
The corresponding velocity of the electron will also be sinusoidal v (t) = ve/®t, where
v = X = jwx. Thus, we have:

e
jw-—FE
Jow

VvV =jJwx = (1.11.2)

w3 — w? + jwy

From Egs. (1.11.1) and (1.11.2), we can find the polarization per unit volume P.
We assume that there are N such elementary dipoles per unit volume. The individual
electric dipole moment is p = ex. Therefore, the polarization per unit volume will be:

NZ
LE

P=Np=Nex=—5—" ——— =¢x(w)E (1.11.3)
wj — w? + jwy

18 1. Maxwell’s Equations

The electric flux density will be then:
D=¢€E+P=¢(1+x(w))E=e(w)E
where the effective permittivity € (w) is:
Ne?
e(w)= €y + + (1.11.4)
wj — w? + jwy

This can be written in a more convenient form, as follows:

€ow}
ew=ep+-—F5——> —— (1.11.5)
wj — w? + jwy
where wf, is the so-called plasma frequency of the material defined by:
Ne?

2

= — lasma frequenc 1.11.6
P eom (P q y) ( )

The model defined by (1.11.5) is known as a “Lorentz dielectric.” The corresponding
susceptibility, defined through € (w)= €y (1 + x (w)), is:

2

R e (1.11.7)
wy— w? + jwy

w
X(w)=

For a dielectric, we may assume wq # 0. Then, the low-frequency limit (w = 0) of
Eq. (1.11.5), gives the nominal dielectric constant:

2 2
w N
€(0)=€o+€—L = €0+ ~—y (1.11.8)
w} mw3

The real and imaginary parts of €(w) characterize the refractive and absorptive
properties of the material. By convention, we define the imaginary part with the negative
sign (because we use ¢/®! time dependence):

e(w) =€ (w)—je" (w) (1.11.9)
It follows from Eq. (1.11.5) that:
€ow? (wf — w?) €owiwy

’

€ (w)=¢€y+

€' (w)= (1.11.10)

(wZ—w%)Z-t-yzwz ’ (wz—w5)2+y2w2

Fig. 1.11.1 shows a plot of €’ (w) and € (w). Around the resonant frequency wy,
the real part €' (w) behaves in an anomalous manner, that is, it drops rapidly with
frequency to values less than €, and the material exhibits strong absorption. The term
“normal dispersion” refers to an €’ (w) that is an increasing function of w, as is the
case to the far left and right of the resonant frequency.
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A €(w) anomalous €"(w) high
»~~ dispersion »~ absorption
€
A
normal
dispersion
0 » (0 0 > W

Wy

Fig. 1.11.1 Real and imaginary parts of the effective permittivity € (w).

Real dielectric materials exhibit, of course, several such resonant frequencies cor-
responding to various vibrational modes and polarization mechanisms (e.g., electronic,
ionic, etc.) The permittivity becomes the sum of such terms:

Nie? /mje
e(w)=60+eozw2 i€i /Mico (1.11.11)

T Wi — w? +jwyi

A more correct quantum-mechanical treatment leads essentially to the same formula:

.. P . 2
E(w):€0+€ozfjl(Nl N_])e /meg

2 .
o Wi — w? 4 jwyji

(1.11.12)

where wj; are transition frequencies between energy levels, that is, wj; = (Ej — E;) /h,
and Nj, N; are the populations of the lower, E;, and upper, Ej, energy levels. The quan-
tities fj; are called “oscillator strengths.” For example, for a two-level atom we have:

2
fwy

e (1.11.13)
wh— w2+ jwy

e(w)=€g + €g

where we defined:

Wo = Wo f=f21u 002=(1\]1+7N2)e2
’ N; + N> ’ p mey

Normally, lower energy states are more populated, N; > Nj, and the material behaves
as a classical absorbing dielectric. However, if there is population inversion, N; < Nj,
then the corresponding permittivity term changes sign. This leads to a negative imag-
inary part, €'’ (w), representing a gain. Fig. 1.11.2 shows the real and imaginary parts
of Eq. (1.11.13) for the case of a negative effective oscillator strength f = —1.

The normal and anomalous dispersion bands still correspond to the bands where
the real part €' (w) is an increasing or decreasing, respectively, function of frequency.
But now the normal behavior is only in the neighborhood of the resonant frequency,
whereas far from it, the behavior is anomalous.

Setting n(w) = Ve (w) /€p for the refractive index, Eq. (1.11.11) can be written in the
following form, known as the Sellmeier equation (where the B; are constants):

Biw?
n(w)=1+5 —5 10 (1.11.14)
- w
1

P~ W+ jwyi
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1,

€lwis normal
dispersion\‘
€ A > (0
€(0) anomalous
\——— dispersion
> (0
0 Wy

Fig. 1.11.2 Effective permittivity in a two-level gain medium with f = —1.

In practice, Eq. (1.11.14) is applied in frequency ranges that are far from any reso-
nance so that one can effectively set y; = 0:
Biw? BiA?
2 i i . .
n(w)=1+ > ————— =1+ Sellmeier equation 1.11.15
(w) ;w?—wz ZAZ_AIZ ( quation)  ( )

i

where A, A; denote the corresponding free-space wavelengths (e.g., A = 27rc/w). In
practice, refractive index data are fitted to Eq. (1.11.15) using 2-4 terms over a desired
frequency range. For example, fused silica (SiO) is very accurately represented over the
range 0.2 < A < 3.7 um by the following formula [156], where A and A; are in units of
pm:

1 0.6961663 A° . 0.4079426 A2 . 0.8974794 A2
© T A2 - (0.0684043)2 © A2 — (0.1162414)2 © A2 — (9.896161)2

(1.11.16)

1.12 Conductors

The conductivity properties of a material are described by Ohm’s law, Eq. (1.3.15). To
derive this law from our simple model, we use the relationship J = pv, where the volume
density of the conduction charges is p = Ne. It follows from Eq. (1.11.2) that

Ne?

Jjo——E
J=pV=N€V:72 }2" - EO’((}J)E
wy — w? + jwy

and therefore, we identify the conductivity o (w):

. Ne? ,
Jw— B Jweow?

o(w)= (1.12.1)

w3 — w? +jwy  wd - w?+jwy
We note that o (w)/jw is essentially the electric susceptibility considered above.

Indeed, we have J = Nev = Nejwx = jwP, and thus, P = J/jw = (o(w)/jw)E. It

follows that € (w) —€p = 0 (w) /jw, and

€ow§ o(w)

e(w)=€ + - o =€t — (1.12.2)
Wy — W= + jwy Jw




1.12. Conductors 21

Since in a metal the conduction charges are unbound, we may take wy = 0 in
Eg. (1.12.1). After canceling a common factor of jw , we obtain:

€03
o(w)= —— (1.12.3)
Yy tJjw

The model defined by (1.12.3) is know as the “Drude model.” The nominal conduc-
tivity is obtained at the low-frequency limit, w = 0:

€ow? 2
o= 0 N—e (nominal conductivity) (1.12.4)
Y my

Example 1.12.1: Copper has a mass density of 8.9 X 105 gr/m? and atomic weight of 63.54
(grams per mole.) Using Avogadro’s number of 6 x 10?® atoms per mole, and assuming
one conduction electron per atom, we find for the volume density N:

6 x 1029 Atoms
lect
N = 73;01‘3 (8.9 x 106 L8 ;) e;etcofzn) = 8.4 x 10?8 electrons/m?
63.54
mole

It follows that:

Ne?  (8.4x10%) (1.6 x 10719)2 7
o= my = (9.1 x10-31) (4.1 x 1055) 5.8 X 10’ Siemens/m

where we used ¢ = 1.6 X 10719, m = 9.1 x 10731, y = 4.1 x 10'3. The plasma frequency
of copper can be calculated by
wp _ 1 [Ne?

= — =26x10"H
21T 21T\ mMe€ 6 0 z

fp:

which lies in the ultraviolet range. For frequencies such that w < Yy, the conductivity
(1.12.3) may be considered to be independent of frequency and equal to the dc value of
Eq. (1.12.4). This frequency range covers most present-day RF applications. For example,
assuming w < 0.1y, we find f < 0.1y/27 = 653 GHz. O

So far, we assumed sinusoidal time dependence and worked with the steady-state
responses. Next, we discuss the transient dynamical response of a conductor subject to
an arbitrary time-varying electric field E (t).

Ohm’s law can be expressed either in the frequency-domain or in the time-domain
with the help of the Fourier transform pair of equations:

t
J(w)= 0 (w)E(w) = J(@) = J o(t—-t)E@)dr (1.12.5)
where o (t) is the causal inverse Fourier transform of o (w). For the simple model of

Eq. (1.12.3), we have:
o (t)= eowpe Y u(t) (1.12.6)
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where u (t) is the unit-step function. As an example, suppose the electric field E (t) is a
constant electric field that is suddenly turned on at t = 0, that is, E(t)= Eu(t). Then,
the time response of the current will be:

€ow?
%E(l —e M) =0gE(1-e™)

t
J()= JO eowze Y EA =
where 0 = € wf,/ y is the nominal conductivity of the material.

Thus, the current starts out at zero and builds up to the steady-state value of J = 0E,
which is the conventional form of Ohm’s law. The rise time constantis T = 1/y. We
saw above that T is extremely small—of the order of 1071# sec—for good conductors.

The building up of the current can also be understood in terms of the equation of
motion of the conducting charges. Writing Eq. (1.10.2) in terms of the velocity of the
charge, we have:

V(O +yv(D)= SE()
m

Assuming E (t) = Eu(t), we obtain the convolutional solution:
t n e ’ ’ e
v(t)= J e YD ZE@)dt = —E(1 - e ™)
0 m my

For large t, the velocity reaches the steady-state value v, = (e/my) E, which reflects
the balance between the accelerating electric field force and the retarding frictional force,
thatis, myv. = eE. The quantity e/my is called the mobility of the conduction charges.
The steady-state current density results in the conventional Ohm’s law:

NZ
J=Neve = “S E=0oE
my

A more accurate description of the permittivity properties of metals, especially at
optical and infrared frequencies which are relevant in plasmonic waveguides, requires
the addition of “interband” terms, generalizing the Drude model to the so-called Drude-
Lorentz model of the form,

2 k :
e(w) fow Z fiw (Drude-Lorentz model) (1.12.7)

1+
€0 Jjow (y +Jw) ; — w? +Jw)/1

Rakic, et al. [163] have fitted 11 metals, such as silver, gold, aluminum, copper,
to such an expression with 5-6 terms, covering a wide range of frequencies and wave-
lengths, 25 THz < f < 1500 THz, or, equivalently, 200 nm < A < 12 um." The MATLAB
function, drude, implements the results of [163],

= drude(Tambda,metal) % Drude-Lorentz model for Silver, Gold, Copper, Aluminum
lambda = vector of wavelengths in nanometers
metal =’s’, ’g’, 'c’, ’a’, for silver, gold, copper, aluminum

ep = complex relative permittivity (same size as lambda)

TFor some improved models, see Refs. [164-167].
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1.13 Charge Relaxation in Conductors

Next, we discuss the issue of charge relaxation in good conductors [147-150]. Writing
(1.12.5) three-dimensionally and using (1.12.6), Ohm’s law reads in the time domain:

t
J(r,t)= ng e Ve E(r,t') dt’ (1.13.1)

Taking the divergence of both sides and using charge conservation, V - J+ p = 0,
and Gauss’s law, €yV - E = p, we obtain the following integro-differential equation for
the charge density p(r, t):

t t
-p(r0)=V - J(rt)= ng e VeV - E(r,t')dt’ = ng e Y p(r,t)dt

Differentiating both sides with respect to t, we find that p satisfies the second-order
differential equation:
prt)+yp(rt)+wshp(rt)=0 (1.13.2)

whose solution is easily verified to be a linear combination of:

2

e—yt/Z Cos(wrelaxt> ) e_y[/Z Sin(wrelaxt) ) where Wrelax = wp - Z

Thus, the charge density is an exponentially decaying sinusoid with a relaxation time
constant that is twice the collision time T = 1/y:

2
Trelax = ; = 2T | (relaxation time constant) (1.13.3)

Typically, wy, > y, so that wreax is practically equal to wy. For example, using
the numerical data of Example 1.12.1, we find for copper Trelax = 2T = 5x10714 sec.
We calculate also: frelax = Wrelax/ 277 = 2.6X10 Hz. In the limit y — o, or T — 0,
Eq. (1.13.2) reduces to the naive relaxation equation (1.7.3) (see Problem 1.9).

In addition to charge relaxation, the total relaxation time depends on the time it takes
for the electric and magnetic fields to be extinguished from the inside of the conductor,
as well as the time it takes for the accumulated surface charge densities to settle, the
motion of the surface charges being damped because of ohmic losses. Both of these
times depend on the geometry and size of the conductor [149].

1.14 Power Losses

To describe a material with both dielectric and conductivity properties, we may take the
susceptibility to be the sum of two terms, one describing bound polarized charges and
the other unbound conduction charges. Assuming different parameters {wo, wp, y} for
each term, we obtain the total permittivity:

2
€oWj, €w?,

e(w)=€r+ —

. + - . (1.14.1)
W5y — W2 +jwyy  jw(yc+jw)
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Denoting the first two terms by €4 (w) and the third by o, (w)/jw, we obtain the
total effective permittivity of such a material:

oc(w)

e(w)=€4(w) +J,T (effective permittivity) (1.14.2)

In the low-frequency limit, w = 0, the quantities €4 (0) and o0(0) represent the
nominal dielectric constant and conductivity of the material. We note also that we can
write Eq. (1.14.2) in the form:

Jjwe(w)= oc(w)+jweg(w) (1.14.3)

These two terms characterize the relative importance of the conduction current and
the displacement (polarization) current. The right-hand side in Ampeére’s law gives the
total effective current:

oD . . .
Jwot=J+ a0 " J+jwD = 0 (W)E + jweg (W)E = jwe(w)E

where the term Jgisp = 0D /0t = jwega (w)E represents the displacement current. The
relative strength between conduction and displacement currents is the ratio:

_ loc(w)El o (w)]
= Jwea(W)E| ~ wea(w)] (1144

J cond
.] disp

This ratio is frequency-dependent and establishes a dividing line between a good
conductor and a good dielectric. If the ratio is much larger than unity (typically, greater
than 10), the material behaves as a good conductor at that frequency; if the ratio is much
smaller than one (typically, less than 0.1), then the material behaves as a good dielectric.

Example 1.14.1: This ratio can take a very wide range of values. For example, assuming a
frequency of 1 GHz and using (for illustration purposes) the dc-values of the dielectric
constants and conductivities, we find:

7 o 10°  for copper with o = 5.8x107 S/m and € = ¢
Jeond | @ _ 1 for seawater with o = 4 S/m and € = 72¢,
Jaisp we 107 for a glass with 0 = 107'° S/m and € = 2¢,

Thus, the ratio varies over 18 orders of magnitude! If the frequency is reduced by a factor
of ten to 100 MHz, then all the ratios get multiplied by 10. In this case, seawater acts like
a good conductor. m]

The time-averaged ohmic power losses per unit volume within a lossy material are
given by Eq. (1.9.6). Writing € (w) = €' (w) —j€e”’ (w), we have:

Jiot = jwe(w)E = jwe' (w)E+ we” (w)E

Denoting | E|* = E- E*, it follows that:

dPloss

— l CEX] — 1 ’” 2 .
v - 2Re[Jwt E*] = 5 W€ (w) | E| (ohmic losses) (1.14.5)
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Writing €4 (w) = €; (w) —j€e; (w) and assuming that the conductivity o (w) is real-
valued for the frequency range of interest (as was discussed in Example 1.12.1), we find
by equating real and imaginary parts of Eq. (1.14.2):

oc(w)

e€(w=¢e(w), € (w)=¢€j(w)+ (1.14.6)

Then, the power losses can be written in a form that separates the losses due to
conduction and those due to the polarization properties of the dielectric:

dPioss
av
A convenient way to quantify the losses is by means of the loss tangent defined in
terms of the real and imaginary parts of the effective permittivity:

- %(Uc(w)-t-wet’i’ (w))|E|*  (ohmic losses) (1.14.7)

6// (w)
€ (w)

tan 0 = (loss tangent) (1.14.8)

where 0 is the loss angle. Eq. (1.14.8) may be written as the sum of two loss tangents,
one due to conduction and one due to polarization. Using Eq. (1.14.6), we have:

oc(w)+weg (w) o (w) €4 (w)

; = 7 g =tan 0. + tan 04 (1.14.9)
wey (w) weg(w)  €4(w)

tan @ =

The ohmic loss per unit volume can be expressed in terms of the loss tangent as:
dPpss 1,
ﬁ = Ewed(w)tan0|E | (ohmic losses) (1.14.10)

1.15 Plasmas

To describe a collisionless plasma, such as the ionosphere, the simple model consid-
ered in the previous sections can be specialized by choosing wy = y = 0. Thus, the
conductivity given by Eq. (1.12.3) becomes pure imaginary:

The corresponding effective permittivity of Eq. (1.12.2) becomes purely real:

2
e(w)zeo+w = €o (1—&> (1.15.1)

Jjw w?

The plasma frequency can be calculated from wf, = Ne?/mey. In the ionosphere
the electron density is typically N = 10'2, which gives fp =9 MHz.

We will see in Sec. 2.6 that the propagation wavenumber of an electromagnetic wave
propagating in a dielectric/conducting medium is given in terms of the effective permit-
tivity by:
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k = w+/ue(w)

It follows that for a plasma:

1
k= w\/uoeo(l - wi/w?) = E\/wz - w? (1.15.2)

where we used ¢ = 1/, /Hp€o.

If w > wyp, the electromagnetic wave propagates without attenuation within the
plasma. But if w < wp, the wavenumber k becomes imaginary and the wave gets
attenuated. At such frequencies, a wave incident (normally) on the ionosphere from the
ground cannot penetrate and gets reflected back.

1.16 Energy Density in Lossless Dispersive Dielectrics

The lossless case is obtained from Eq. (1.11.5) by setting y = 0, which is equivalent to
assuming that w is far from the resonance wy. In this case the permittivity is:

wp
ew)=¢€|l+-—H——
w§ — w

from which it follows that:

d w3 (w? + w3)
(W) _ | 14 LI D0) (1.16.1)
dw (w§ — w?)?
Thus, the electric part of the energy density (1.9.7) will be:
1d(we) ., 1 ) w? (w? + wg)
=————"|E|I"= -elEI" |14+ ———— 1.16.2
We= = CIEI = 6lEl PR RY (1.16.2)

This expression can be given a nice interpretation: The first term on the right is the
energy density in vacuum and the second corresponds to the mechanical (kinetic and
potential) energy of the polarization charges [169,192]. Indeed, the displacement x and
velocity v = X of the polarization charges are in this case:

eE/m

w3 - w?’

Vv = jwx

The time-averaged mechanical energy (per unit volume) is obtained by adding the
kinetic and potential energies:

_ 1 1 1 1
Winech = ERe [N (Emlvl2 + Emw%\xF)] = Z}Nm(w2 + w3) |x|?

_ INm(w? + wj)e?|El>/m® 16 |2 w2 (w? + w§)
4 (w3 — w?)?2 4° (W3 - w?)?
where we used the definition (1.11.6) of the plasma frequency. It follows that Eq. (1.16.2)
can be written as the sum:
_ ld(we)

1 _ _ _
We = |E1? = ~€0lE|? + Wmech = Wyac + Wmech (1.16.3)
4 dw 4
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1.17 Kramers-Kronig Dispersion Relations

The convolutional form of Eq. (1.3.13) implies causality, that is, the value of D(r,t) at
the present time t depends only on the past values of E(r,t"), t' < t.

This condition is equivalent to requiring that the dielectric response € (t) be a right-
sided (causal) function of time, that is, €(t)= 0 for t < 0. Then, Eq. (1.3.13) may be
written as ordinary convolution by extending the integration range over all times:

00

t
D(r,t)= J et —-t)E(rt)dt = J et —t)E(r,t')dl
Because D(r,t)= €yE(r,t)+P(r,t), we may define the time-domain susceptibility
function x (t) through:
€(t)=€go (t)+€ox (t) 1.17.1)

where 6 (t) is the Dirac delta function. Therefore, if €(t) is causal, so is x(t). The
polarization is then given by:

t 0
P(r,t)=eoj x(t—t')E(r,t')dt'=60J x({t—-t)E(rt)dt (1.17.2)

In the frequency domain, this becomes multiplicative: P(r,w)= €ox (w)E(r, w).
The Kramers-Kronig relations are the frequency-domain expression of causality and re-
late the real and imaginary parts of the susceptibility function x (w). Here, the functions
Xx (t) and x (w) are Fourier transform pairs:

x(w)—J x (e dldt < x(t 7—J x (w)e/tdw (1.17.3)

The causality condition, x (t) = 0 for t < 0, can be expressed in terms of the unit-step
function u (t) in the equivalent manner:

x(t)=x)u(t), forallt (1.17.4)

Using the property that the Fourier transform of a product of two time functions is
the convolution of their Fourier transforms, it follows that Eq. (1.17.4) can be written in
the equivalent frequency-domain form:

1 « 4 4 4
X(w)= e J_wx(w YU(w — w)dw (1.17.5)

where U (w) is the Fourier transform of the unit-step. Eq. (1.17.5) is essentially the
Kramers-Kronig relation. The function U (w) is given by the well-known expression:

U(w)= lim = P.L + 716 (W) 1.17.6)
e~0+ jw + € Jjw

where P denotes the “principal value.” Inserting (1.17.6) into (1.17.5), we have:

x(w)=fj X (w [ )+‘IT5((U w)]
N Mw)
h ZWjPJ o W — w_w 't x(w)
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Rearranging terms and canceling a factor of 1/2, we obtain the Kramers-Kronig re-
lation in its complex-valued form:*
1 J * x(w)

X(w)zTij IR

-dw’  (Kramers-Kronig) (1.17.7)
The reason for applying this relation to x () instead of € (w) is that x (w) falls off
sufficiently fast for large w to make the integral in (1.17.5) convergent, whereas € (w)
tends to the constant €.
Setting x (w)= xr(w)—jxi(w) and separating (1.17.7) into its real and imaginary
parts, we obtain the conventional form of the Kramers-Kronig dispersion relations:

1 o0 . w/ ,

Xr(w) = —PJ de
T —0 W — W

1 - (@) (Kramers-Kronig relations) (1.17.8)

w ’

Xi(w) =-=P 7XV, dw

T —0 W' — W

Because the time-response x (t) is real-valued, its Fourier transform x (w) will sat-
isfy the Hermitian symmetry property x (—w) = x* (w), which is equivalent to the even
symmetry of its real part, x, (—w) = X, (w), and the odd symmetry of its imaginary part,
Xi(—w)= —x;(w). Taking advantage of these symmetries, the range of integration in
(1.17.8) can be folded in half resulting in:

2 (T wxi(w)
Xr(w) = =P %dw
T 0o wW-e—w
) © (@) (1.17.9)
wxr(w
Xi(w) = —=p| OXE

dw’
m Jo w?—w?

There are several other ways to prove the Kramers-Kronig relations. For example,
a more direct way is to state the causality condition in terms of the signum function
sign(t). Indeed, because u(t)= (1 + sign(t))/2, Eq. (1.17.4) may be written in the
equivalent form x (t)= x (t)sign(t). Then, Eq. (1.17.7) follows by applying the same
frequency-domain convolution argument using the Fourier transform pair:

sign(t) < P,i (1.17.10)
jw

Alternatively, the causality condition can be expressed as u(—t)x (t)= 0. This ap-
proach is explored in Problem 1.12. Another proof is based on the analyticity properties
of x(w). Because of the causality condition, the Fourier integral in (1.17.3) can be re-
stricted to the time range 0 < t < oo:

0

x(w)=J e IOy (t)dt = L) e Oty (t)dt (1.17.11)

— o0

This implies that x (w) can be analytically continued into the lower half w-plane,
so that replacing w by w = w — ja with « > 0 still gives a convergent Fourier integral

TThe right-hand side (without the j) in (1.17.7) is known as a Hilbert transform. Exchanging the roles
of t and w, such transforms, known also as 90° phase shifters, are used widely in signal processing for
generating single-sideband communications signals.
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in Eq. (1.17.11). Any singularities in x (w) lie in the upper-half plane. For example, the
simple model of Eq. (1.11.7) has poles at w = +wq + jy/2, where g = «/w(z) —y2/4.

Next, we consider a clockwise closed contour C = C’ + C consisting of the real axis
C’ and an infinite semicircle C in the lower half-plane. Because x (w) is analytic in the
region enclosed by C, Cauchy’s integral theorem implies that for any point w enclosed
by C, that is, lying in the lower half-plane, we must have:

T

1 xw") dw'

- - (1.17.12)
2Tj Jew —w

xX(w)=

where the overall minus sign arises because C was taken to be clockwise. Assuming that
X (w) falls off sufficiently fast for large w, the contribution of the infinite semicircle
can be ignored, thus leaving only the integral over the real axis. Setting w = w — je and
taking the limit € — 0+, we obtain the identical relationship to Eq. (1.17.5):

. I~ x(w)
= — lim — LSS A
X (w) on 21T Lm w' —w + je

’ 1 i ’ . 1 ’
© T on J—ooX(w )ell%{rj(w —w')+e€ dew

An interesting consequence of the Kramers-Kronig relations is that there cannot
exist a dielectric medium that is purely lossless, that is, such that x; (w)= 0 for all w,
because this would also require that x, (w)= 0 for all w.

However, in all materials, x; (w) is significantly non-zero only in the neighborhoods
of the medium’s resonant frequencies, as for example in Fig. 1.11.1. In the frequency
bands that are sufficiently far from the resonant bands, x; («w) may be assumed to be
essentially zero. Such frequency bands are called transparency bands [168].

1.18 Group Velocity, Energy Velocity

Assuming a nonmagnetic material (u = Ho), a complex-valued refractive index may be

defined by:
n(w)=n,(w)—jn;(w)=+1+ x(w :1/% (1.18.1)

where n,, n; are its real and imaginary parts. Setting x = X, —jX; we have the condition
ny — jn; = 4/1 + X — jXi- Upon squaring, this splits into the two real-valued equations
n2 —n? =1 + x, and 2n,n; = x;, with solutions:

1/2
{\/(1 +Xr) 24X+ (1 +Xr):|
ny =

2

(1.18.2)

2 2n,

1/2
VA +x0)24x7 - (1 +Xr)j| X

n; = sign(xi)[
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This form preserves the sign of x;, that is, n; and x; are both positive for absorbing
media, or both negative for gain media. The following approximate solution is often
used, which can be justified whenever |x| < 1 (for example, in gases):

, 1 1
nr(w) —jny(w)= 1+ x(w) ~1+ % > n=1+ SXrs M= oXi (1.18.3)
We will see in Chap. 2 that a single-frequency uniform plane wave propagating, say,
in the positive z-direction, has a wavenumber k = wn/c = w(n, — jn;)/c = B — j«,
where ¢ is the speed of light in vacuum. Therefore, the wave will have a space-time
dependence:

ej(wt—kz) _ ej(wtf(B*J'a)z) — e—o(zej(wrfﬁz) — efwniz/cejw(rfnyz/c) (1.18.4)

The real part n, defines the phase velocity of the wave, v, = w/B = c/n,, whereas
the imaginary part n;, or & = wn;/c, corresponds to attenuation or gain depending on
the sign of n; or x;.

When several such plane waves are superimposed to form a propagating pulse, we
will see in Sec. 3.5 that the peak of the pulse (i.e., the point on the pulse where all the
individual frequency components add up in phase), propagates with the so-called group
velocity defined by:

dw 1 c c .
Vg = @ = E = d(wny) = - w% = group velocity (1.18.5)
dw dw r dw

A group refractive index may be defined through v4 = ¢/ngy, or, ng = c/vy:

% =n, + wZ’ZL: =n, — 2\% = group refractive index (1.18.6)

g=

where A is the free-space wavelength related to w by A = 27rc/w, and we used the
differentiation property that wd/dw = —Ad/dA.

Within an anomalous dispersion region, n, is decreasing rapidly with w, that is,
dny/dw < 0, as in Fig. 1.11.1. This results in a group velocity vy, given by Eq. (1.18.5),
that may be larger than ¢ or even negative. Such velocities are called “superluminal.”
Light pulses propagating at superluminal group velocities are referred to as “fast light”
and we discuss them further in Sec. 3.9.

Within a normal dispersion region (e.g., to the far left and far right of the resonant
frequency wy in Fig. 1.11.1), n, is an increasing function of w, dn,/dw > 0, which
results in v; < c. In specially engineered materials such as those exhibiting “electro-
magnetically induced transparency,” the slope dn,/dw may be made so steep that the
resulting group velocity v, becomes extremely small, v, < c. This is referred to as
“slow light.”

We close this section by showing that for lossless dispersive media, the energy ve-
locity of a plane wave is equal to the group velocity defined by (1.18.5). This result is
quite general, regardless of the frequency dependence of €(w) and u(w) (as long as
these quantities are real.)
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We will see in the next chapter that a plane wave propagating along the z-direction
has electric and magnetic fields that are transverse to the z-direction and are related by:

1 u
H = ~|El, n=,/%
| HI nll n c

Moreover the time-averaged energy flux (in the z-direction) and energy density are:

|E|? -zld(w€)| E 1d(wu)‘H‘2=1 d(we) 1 d(wp) EJ?
4 dw 4 dw 4 dw n? dw

The energy velocity is defined by Ve, = P,/W. Thus, we have:

oW 1 dlwe)  ld(wp) | 1| [fpd(we) —fed(wy)
e“721_’272”1/1(1) n dowo | 2|Ve dw u dw
It is easily verified that the right-hand side can be expressed in terms of the wave-
number k = w./eu in the form:

o 1| [ud(we) ed(wp) | dwyex) dk
Ven = 2[ ¢ do g do |7 dew dw V9 (1.18.7)

which shows the equality of the energy and group velocities. See Refs. [168-182] for
further discussion on this topic.

Eq. (1.18.7) is also valid for the case of lossless negative-index media and implies that
the group velocity, and hence the group refractive index ny = ¢¢/vy, will be positive,
even though the refractive index n is negative. Writing € = —|€| and u = —|u| in this

case and noting that n = /|u|/|€| and n = —/|eu|/ /€oly, and k = wn/cy, we have:

N [Jﬂld@%) /€tﬂwﬂ-]__[Jﬂldamd) uedamu>]
e €] [u] el [ul

eul) 1 d(wn) dk .

dw co dw dw 9

from which we also obtain the usual relationship ng = d(wn)/dw. The positivity of
v4 and ng follows from the positivity of the derivatives d (we) /dw and d (wu) /dw, as
required to keep Ve, positive in negative-index media [391].

1.19 Problems
1.1 Prove the vector algebra identities:

AX (BXxC)=B(A-C)—C(A-B)
A-(BXC)=B-(CxA)=C- (AXB)
|[Ax B|* + |A- B]* = |A]?|B?
A=NDXAXxn+ (Ah-A)n

(BAC-CAB identity)

(i is any unit vector)

In the last identity, does it a make a difference whether i X A X i is taken to mean fi X (AX 1)
or (i X A) Xn?
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1.2 Prove the vector analysis identities:

V X (V)= 0

(pVY)= pV2Yy + Vo - Vy (Green’s first identity)
V.- (VY — @YV )= ¢V — yV?¢p (Green’s second identity)
V.- (pA)=(VP)-A+dpV-A
V x (pA) = (VP) XA+ PV x A
V- (VXA)=0
V-AXxB=B:- (VXA -A-(VXB)
Vx(VxA)=V(V-A)-V?A

1.3 Consider the infinitesimal volume element AxAyAz shown below, such that its upper half
lies in medium €; and its lower half in medium €,. The axes are oriented such that i = Z.
Applying the integrated form of Ampeére’s law to the infinitesimal face abcd, show that

0Dy

A
ot o

Hay — Hyy = JxAz +

In the limit Az — 0, the second term in the right-hand side may be assumed to go to zero,
whereas the first term will be non-zero and may be set equal to a surface current density,
that is, Jsx = lima,-0(JxAZ). Show that this leads to the boundary condition Hiy, — H», =
—Jsx. Similarly, show that Hix — Hox = J§y, and that these two boundary conditions can be
combined vectorially into Eq. (1.5.4).

° z
4 Ay d "
= A=,
€ -
\ 6 |
Q Yoo o ¢
KAz =y

Next, apply the integrated form of Gauss’s law to the same volume element and show the
boundary condition: Dy, — Dy, = ps = limp,_o (pAZ).

1.4 Show that the time average of the product of two harmonic quantities A (t) = Re[Ae/®!]
and B (t) = Re[Be/®!] with phasors A, B is given by:

- 1 (T 1 N
AM)B(t) = TL A(t)B(t) dt = ERe[AB ]

where T = 21/ w is one period. Then, show that the time-averaged values of the cross
and dot products of two time-harmonic vector quantities A (t)= Re[Ae/®!] and B(t)=
Re[Be/*!] can be expressed in terms of the corresponding phasors as follows:

ADOXBO = %Re[AXB*], A B - %Re[A-B*]

1.5 Assuming that B = pH, show that Maxwell’s equations (1.9.2) imply the following complex-
valued version of Poynting’s theorem:

V- (ExH*)= —jwuH-H* —E- J%, where Jioi = J+ jwD
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1.6

1.7

1.8

1.9

Extracting the real-parts of both sides and integrating over a volume V bounded by a closed
surface S, show the time-averaged form of energy conservation:

—fﬁ L Re[Ex H*]-dS:J L Re[E- 21 av
s2 v 2

which states that the net time-averaged power flowing into a volume is dissipated into heat.
For alossless dielectric, show that the above integrals are zero and provide an interpretation.

Assuming that D = €Eand B = pH, show that Maxwell’s equations (1.1.1) imply the following
relationships:

pEy + (Dx %’)x =V (€EE- % 1eF)

(Jx B>X+(aa—? XB),=V- (uHXH—f(%uHZ)

where the subscript x means the x-component. From these, derive the following relationship
that represents momentum conservation:

fo + =V-T, (1.19.1)

ot

where fy, Gy are the x-components of the vectors f= pE+ JX Band G = D X B, and Ty is
defined to be the vector (equal to Maxwell’s stress tensor acting on the unit vector X):

1, ;
Ty = €ExE + uHyH — X 5 (eE* + uH?)

Write similar equations of the y, z components. The quantity Gy is interpreted as the field
momentum (in the x-direction) per unit volume, that is, the momentum density.

Show that the causal and stable time-domain dielectric response corresponding to Eq. (1.11.5)
is given as follows:

(,()2

€)= b (D) +eox(t), x(t)= w—”e-ﬂ’? sin(@ot) u (t) (1.19.2)
0

where u(t) is the unit-step function and @ = - w% — y2/4, and we must assume that
Yy < 2wy, as is typically the case in practice. Discuss the solution for the case y/2 > wy.

Show that the plasma frequency for electrons can be expressed in the simple numerical form:
fp = 9vN, where f}, is in Hz and N is the electron density in electrons/m?. What is f}, for
the ionosphere if N = 102? [Ans. 9 MHz.]

Show that the relaxation equation (1.13.2) can be written in the following form in terms of
the dc-conductivity o defined by Eq. (1.12.4):

iﬁ(r, 00+ (10 =0

Then, show that it reduces to the naive relaxation equation (1.7.3) in the limit T = 1/y — 0.
Show also that in this limit, Ohm’s law (1.13.1) takes the instantaneous form J = oE, from
which the naive relaxation constant Treax = €0/ 0 was derived.
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1.10 Conductors and plasmas exhibit anisotropic and birefringent behavior when they are in the

presence of an external magnetic field. The equation of motion of conduction electrons in
a constant external magnetic field is mv = e(E + v X B)—myv, with the collisional term
included. Assume the magnetic field is in the z-direction, B = Z B, and that E = XEx + VE),
and v=XVx +7V).

a. Show that in component form, the above equations of motion read:
. e
Vx = EEX + WpVy — YVx

eB
e where wp = e (cyclotron frequency)
vy = aEy — WBVx — YVy

What is the cyclotron frequency in Hz for electrons in the Earth’s magnetic field B =
0.4 gauss = 0.4x107* Tesla? [Ans. 1.12 MHz.]

b. To solve this system, work with the combinations vy * jv,. Assuming harmonic time-
dependence, show that the solution is:

e .

m (Ex = jEy)

Vx £ jVvy, = T——
YEIYE Y (w + wp)

c. Define the induced currents as J = Nev. Show that:

YOo

Jx £jJy = 0+ (w) (Ex = JEy), m

where o.(w)=

Ne?
where 0y = m—y is the dc value of the conductivity.

d. Show that the t-domain version of part (c) is:
t
RO, 0= [ o0 0) (B 2B, ) dt
where 0. (t)= yoge Ye™@sly (1) is the inverse Fourier transform of . (w) and

u(t) is the unit-step function.

e. Rewrite part (d) in component form:
t
S0 = [ [t = OB 40, (= OB ()]

t
I = jo[ayxuf ) Ex (') +0yy (£ — ) Ey () ]dt’

and identify the quantities oxx (1), Oxy (1), Oyx (1), Oy (1).

f. Evaluate part (e) in the special case Ex (t) = Exu(t) and E), (t) = Eyu(t), where Ey, Ey,
are constants, and show that after a long time the steady-state version of part (e) will

be:
Ey + bE,
SR
E, — bE
Jy = 0o —2——X

1+ b2
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where b = wg/Yy. If the conductor has finite extent in the y-direction, as shown above,
then no steady current can flow in this direction, J,, = 0. This implies that if an electric
field is applied in the x-direction, an electric field will develop across the y-ends of the
conductor, Ey, = bEy. The conduction charges will tend to accumulate either on the
right or the left side of the conductor, depending on the sign of b, which depends on
the sign of the electric charge e. This is the Hall effect and is used to determine the
sign of the conduction charges in semiconductors, e.g., positive holes for p-type, or
negative electrons for n-type.

What is the numerical value of b for electrons in copper if Bis 1 gauss? [Ans. 4.3X1077.]
g. For a collisionless plasma (y = 0), show that its dielectric behavior is determined from
Dy + jDy = €.+ (w) (Ex % jE)), where
wZ

R
w(w =+ wpg)

€. (w)=¢€p (1 -

where w), is the plasma frequency. Thus, the plasma exhibits birefringence.

1.11 This problem deals with various properties of the Kramers-Kronig dispersion relations for
the electric susceptibility, given by Eq. (1.17.8).

a. Using the symmetry properties x, (w)= x,(—w) and x;(w)= —x;(—w), show that
(1.17.8) can be written in the folded form of Eq. (1.17.9).

b. Using the definition of principal-value integrals, show the following integral:

© dew'
PJ 29 o (1.19.3)
0 W?— w2
d 1 a+
Hint: You may use the following indefinite integral: J 7X =—In X .
a?z—-x* 2a a-x

c. Using Eq. (1.19.3), show that the relations (1.17.9) may be rewritten as ordinary inte-
grals (without the P instruction) as follows:

_2 “w ’
Xr(w)—_n_J dw

w’? — w?
(1.19.4)

Xi(w) = J wxr(w) tzjzmw) dw’

Hint: You will need to argue that the integrands have no singularity at w’ = (.
d. For a simple oscillator model of dielectric polarization, the susceptibility is given by:

2
p

w3 — w? +jyw

w
X(w) = xr(w)—jxi(w)=

Y , , (1.19.5)
w; (Wi — w?) . yww?

T (W - w?) 2+ y?w? J (W? — w2)2+y2w?

Show that for this model the quantities x, (w) and x; (w) satisfy the modified Kramers-
Kronig relationships (1.19.4). Hint: You may use the following definite integrals, for
which you may assume that 0 < y < 2wy

EJ dx ! 2J X2dx 1
mJo (w5 -x2)2+y2x?  ywg’ (W —x)2+y2x2  y
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Indeed, show that these integrals may be reduced to the following ones, which can be
found in standard tables of integrals:

2 dy 73J°° y*dy _ 1
mlo 1-2y2cos0+y* 1o

1-2y2cos0+y*  2(1-cos0)

where sin(0/2)= y/(2wy).

e. Consider the limit of Eq. (1.19.5) as y — 0. Show that in this case the functions x,, Xi
are given as follows, and that they still satisfy the Kramers-Kronig relations:

B w3 w3 N mTw}
xr(w)fpiwo_w +P7wo+w, Xilw)= -5~ [6(w = wo) =6 (w + wo) ]

Derive the Kramers-Kronig relationship of Eq. (1.17.7) by starting with the causality condi-
tion x (t)u(—t)= 0 and translating it to the frequency domain, that is, expressing it as the
convolution of the Fourier transforms of x (t) and u(—t).

Anisotropic homogeneous lossless dielectric medium is moving with uniform velocity vwith
respect to a fixed coordinate frame S. In the frame S’ moving with dielectric, the constitutive
relations are assumed to be the usual ones, thatis, D’ = €E" and B’ = yuH'. Using the Lorentz
transformations given in Eq. (K.30) of Appendix K, show that the constitutive relations take
the following form in the fixed frame S:

EH — €oHo

D=€E+avx(H—evXxXE), B=uH—-avx(E+uvxH), a=
1—euv?
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Uniform Plane Waves

2.1 Uniform Plane Waves in Lossless Media

The simplest electromagnetic waves are uniform plane waves propagating along some
fixed direction, say the z-direction, in a lossless medium {€, u}.

The assumption of uniformity means that the fields have no dependence on the
transverse coordinates x,y and are functions only of z,t. Thus, we look for solutions
of Maxwell’s equations of the form: E(x,y,z,t)= E(z,t) and H(x,y,z,t)= H(z,t).

Because there is no dependence on x, y, we set the partial derivativest 0y = 0 and
0y = 0. Then, the gradient, divergence, and curl operations take the simplified forms:
0 _ OE, OE _ _O0E, _ OE

V-E VXE=%ZXx =

VZZE' 0z’ oz Yoz +‘/az

Assuming that D = €E and B = puH, the source-free Maxwell’s equations become:

vxE:_uaai—I aZ_ uat
; t L OH _ _OE
E OH _ _OE
VxH=eZ- oz ot @2.1.1)
o,
V-E=0 oz
V-H=0 0H,
=0
0z

An immediate consequence of uniformity is that E and H do not have components
along the z-direction, that is, E, = H, = 0. Taking the dot-product of Ampere’s law
with the unit vector z, and using the identity Z - (zZ X A) = 0, we have:

( 8H>:A8E7 OF; _

Z- ZXE Z-E—O => ot

0
TThe shorthand notation dy stands for >
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Because also 0,E, = 0, it follows that E; must be a constant, independent of z, t.
Excluding static solutions, we may take this constant to be zero. Similarly, we have
H; = 0. Thus, the fields have components only along the X, y directions:

E(z,t) = XEx(z,t) +V Ey (2,1)
(transverse fields) 2.1.2)
H(z,t) = XHx(z,t)+yHy(z,1)

These fields must satisfy Faraday’s and Ampere’s laws in Egs. (2.1.1). We rewrite

these equations in a more convenient form by replacing € and u by:

1 n 1 u
€= —, =1 h c=——, =./= 2.1.3
ne M c where e n c ( )

Thus, ¢, n are the speed of light and characteristic impedance of the propagation
medium. Then, the first two of Egs. (2.1.1) may be written in the equivalent forms:

L OE_ 1 oH
oz Mot
(2.1.4)
oH _ 10

5 5 OH _
nz dz ¢ ot
The first may be solved for 0,E by crossing it with Z. Using the BAC-CAB rule, and
noting that E has no z-component, we have:
(ixa—E> XZ= a—E(i 2)—2(2 871:") _ O
0z T oz oz) oz
where we used Z - 0,E = 0,E, = 0 and Z - Z = 1. It follows that Egs. (2.1.4) may be
replaced by the equivalent system:

OE 10 .
& = —E &(TIHX Z)
3 | 3E (2.1.5)
&(TIHX Z): *Ea

Now all the terms have the same dimension. Egs. (2.1.5) imply that both E and H
satisfy the one-dimensional wave equation. Indeed, differentiating the first equation
with respect to z and using the second, we have:

BE_ 100 o 1 2E
0722~ cotoz" T2 o ’
a—z L a—z E(z,t)=0 (wave equation) (2.1.6)
028~ & or? = d o

and similarly for H. Rather than solving the wave equation, we prefer to work directly
with the coupled system (2.1.5). The system can be decoupled by introducing the so-
called forward and backward electric fields defined as the linear combinations:

E.

1
§(E+nH><2)

1 (forward and backward fields) (2.1.7)
E_ = E(E_ nHX z)
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Component-wise, these are:
1 1 _
Ey. = 5 (Ex+nHy), Ey.= > (Ey ¥ nHy) (2.1.8)

We show next that E, (z,t) corresponds to a forward-moving wave, that is, moving
towards the positive z-direction, and E- (z,t), to a backward-moving wave. Egs. (2.1.7)
can be inverted to express E, H in terms of E,, E_. Adding and subtracting them, and
using the BAC-CAB rule and the orthogonality conditions Z - E. = 0, we obtain:

E(z,t) =E.(z,t)+E_(z,1)

1 (2.1.9)
H(z,t) = Ei X [E4(z,t) —E-(z,1)]

In terms of the forward and backward fields E., the system of Egs. (2.1.5) decouples
into two separate equations:

OE. 1 JE,
0z ¢ ot
(2.1.10)
e _ 10E
0z ¢ ot

Indeed, using Egs. (2.1.5), we verify:

0 e L0 e LOE_ 10
E(Eionz)— Cat(onz)+C =F

Egs. (2.1.10) can be solved by noting that the forward field E; (z,t) must depend
on z,t only through the combination z — ct (for a proof, see Problem 2.1.) If we set
E. (z,t)= F(z — ct), where F(C) is an arbitrary function of its argument ¢ = z — ct,
then we will have:

0E, _ 0 QCOF(X) _ OF(X)

oz Tt m0= 5, %5 T o 0E. 1 0E.
. _ 1

OE, 0 _OCOF(L) _ _ OF(L) 0z ¢ ot

ot "ot o= 55 T o

Vectorially, F must have only X,y components, F = XFy + yF,, that is, it must be
transverse to the propagation direction, Z - F = 0.

Similarly, we find from the second of Egs. (2.1.10) that E_ (z, t) must depend on z, t
through the combination z + ct, so that E_ (z,t) = G(z + ct), where G(&) is an arbitrary
(transverse) function of &€ = z + ct. In conclusion, the most general solutions for the
forward and backward fields of Egs. (2.1.10) are:

E.(z,t) = F(z—ct)
(2.1.11)
E_(z,t) = G(z + ct)

with arbitrary functions F and G, suchthatz- F=2Z- G= 0.
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Inserting these into the inverse formula (2.1.9), we obtain the most general solution
of (2.1.5), expressed as a linear combination of forward and backward waves:

E(z,t) = F(z—ct)+G(z + ct)

(2.1.12)

H(z,t) = =2 X [F(z—-ct)-G(z +ct) ]

=

The term E. (z,t)= F(z — ct) represents a wave propagating with speed c in the
positive z-direction, while E_ (z,t) = G(z+ct) represents a wave traveling in the negative
z-direction.

To see this, consider the forward field at a later time ¢ + At. During the time interval
At, the wave moves in the positive z-direction by a distance Az = cAt. Indeed, we have:

Ei(z,t + At) = F(z — c(t + At)) = F(z — cAt — ct)
=> E, (z,t+At)=E. (z— Az,1t)
E.(z—Az,t) = F((z - Az) —ct) = F(z — cAt — ct)

This states that the forward field at time t + At is the same as the field at time t,
but translated to the right along the z-axis by a distance Az = cAt. Equivalently, the
field at location z + Az at time t is the same as the field at location z at the earlier time
t— At =t - Az/c, thatis,

E.(z+ Az, t)=E,. (z,t — At)

Similarly, we find that E_(z,t + At)= E_ (z + Az, t), which states that the backward
field at time t + At is the same as the field at time ¢, translated to the left by a distance
Az. Fig. 2.1.1 depicts these two cases.

% ¢ AErAn=EG-220

» 7
Az = cAt
E (z,t+A1) = E_(z4+ Az 1) £, c E (z,0)
J’ ‘s~ = Z

Az = cAt
Fig. 2.1.1 Forward and backward waves.

The two special cases corresponding to forward waves only (G = 0), or to backward
ones (F = 0), are of particular interest. For the forward case, we have:

E(z,t) = F(z — ct) Ea

| .. (2.1.13)

H&J)=%ZXF@—CU= 2 x E(z,1) -

= =
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This solution has the following properties: (a) The field vectors E and H are perpen-
dicular to each other, E - H = 0, while they are transverse to the z-direction, (b) The
three vectors {E, H,Z} form a right-handed vector system as shown in the figure, in the
sense that E X H points in the direction of 2, (c) The ratio of E to H X 2 is independent
of z,t and equals the characteristic impedance n of the propagation medium; indeed:

H(z,t)=%2x£(z,t) = E(z,t)=nH(z,t)Xz (2.1.14)

The electromagnetic energy of such forward wave flows in the positive z-direction.
With the help of the BAC-CAB rule, we find for the Poynting vector:

1, .
T=E><H=ZE\F|Z=C2€|F\2 (2.1.15)
where we denoted |F|?> = F- F and replaced 1/n = ce. The electric and magnetic energy

densities (per unit volume) turn out to be equal to each other. Because Z and F are
mutually orthogonal, we have for the cross product |Z X F| = |Z||F| = |F|. Then,

1 1

= —€|E|®> = —¢|FJ?
We = S €|E|" = S€lF|

1 , 11, 1
Wm:Eu\H\ :EIJ?'ZXH :§€|F| =W,

where we replaced p/n? = €. Thus, the total energy density of the forward wave will be:
W =We + Wm =2W, = €|F|? (2.1.16)

In accordance with the flux/density relationship of Eq. (1.6.2), the transport velocity
of the electromagnetic energy is found to be:
P czelF|? .
V= "—=—"——=CZ
w c|F|?
As expected, the energy of the forward-moving wave is being transported at a speed
c along the positive z-direction. Similar results can be derived for the backward-moving
solution that has F = 0 and G # 0. The fields are now:

E(z,t) = G(z + ct)

E
»H (2.1.17)
-Z

The Poynting vector becomes P = EX H = —c2€|G|? and points in the negative
z-direction, that is, the propagation direction. The energy transport velocity is v = —c 2.
Now, the vectors {E, H, —Z} form a right-handed system, as shown. The ratio of E to H
is still equal to n, provided we replace Z with —2:

1 1
H(z,t) = —EixG(z-rct): —EixE(z,t)

H(z,t)=%(—i)><£(z,t) = E(z,t)=nH(z,t)x(-%)
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In the general case of Eq. (2.1.12), the E/H ratio does not remain constant. The
Poynting vector and energy density consist of a part due to the forward wave and a part
due to the backward one:

P=ExH=cz(e|lF|> -—€|G|?)
1 1 (2.1.18)
w= §€|E|2 + 5;1|H|2 =€|F|?> +€|G|?

Example 2.1.1: A source located at z = 0 generates an electric field E(0,t) = XEy u(t), where
u (t) is the unit-step function, and E, a constant. The field is launched towards the positive
z-direction. Determine expressions for E(z, t) and H(z,t).

Solution: For a forward-moving wave, we have E(z,t)= F(z — ct)= F(0 — ¢(t — z/c)), which
implies that E(z,t) is completely determined by E(z, 0), or alternatively, by E(0, t):

E(z,t)= E(z — ct,0)= E(0,t — z/c)

Using this property, we find for the electric and magnetic fields:

E(z,t) = E(0,t —z/c)=%XEou(t—z/c) 4 'fg’_t_)‘ E(z,t+At)
H(z,t):lixE(z,t):ir&u(t—z/c) 463 z
n n ct  c(t+Ar) '

Because of the unit-step, the non-zero values of the fields are restricted tot — z/c > 0, or,
z < ct, that is, at time t the wavefront has propagated only up to position z = ct. The
figure shows the expanding wavefronts at time t and t + At. m]

Example 2.1.2: Consider the following three examples of electric fields specified at t = 0, and

describing forward or backward fields as indicated:
E(z,0)=XEjcos(kz)
E(z,0)=yEycos(kz)

E(z,0)=XE; cos(kyz)+y E>cos(kxz) (forward-moving)

(forward-moving)

(backward-moving)

where k, k1, k, are given wavenumbers (measured in units of radians/m.) Determine the
corresponding fields E(z,t) and H(z,t).

Solution: For the forward-moving cases, we replace z by z — ct, and for the backward-moving
case, by z + ct. We find in the three cases:

E(z,t) =%XEpcos(k(z—ct)) = XEycos(wt — kz)
E(z,t) =V Eocos(k(z+ ct)) = yEqcos(wt + kz)
E(z,t) = XE,cos(wit —ky1z)+y E> cos(wot — kyz)
where w = k¢, and w; = kj¢, w, = kzc. The corresponding magnetic fields are:

1 E
H(z,t) = 0 2XE(z,t)=¥ ;0 cos(wt —kz)  (forward)

H(z,t) = ——Z X E(z,t)= i{% cos(wt + kz) (backward)

S|

H(z,t) = —2Z X E(z, t):ir% cos(wltfklz)fi(% cos(wot — kp2)

==
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The first two cases are single-frequency waves, and are discussed in more detail in the
next section. The third case is a linear superposition of two waves with two different
frequencies and polarizations. m]

2.2 Monochromatic Waves

Uniform, single-frequency, plane waves propagating in a lossless medium are obtained
as a special case of the previous section by assuming the harmonic time-dependence:

E(x,y,z,t) = E(z)e/®!
, 2.2.1)
H(x,y,z,t) = H(z)e/®!

where E(z) and H(z) are transverse with respect to the z-direction.

Maxwell’s equations (2.1.5), or those of the decoupled system (2.1.10), may be solved
very easily by replacing time derivatives by 0; — jw. Then, Egs. (2.1.10) become the
first-order differential equations (see also Problem 2.3):

aEgz(Z) = $jkE.(z), where k= % = w. /e (2.2.2)
with solutions: )
E.(2) = Ey,e /%2 (forward)
(2.2.3)

E_(z) = Ey_e/** (backward)

where Ey. are arbitrary (complex-valued) constant vectors such that Z - Ey. = 0. The
corresponding magnetic fields are:

H.(2) = ~2X E. (2)= ~ (2 X Fy,)e % — Hy, e 2
1 1 1 1 . ' (2.2.4)
H (z) = ——2xE (z2)= —— (2 x Ey_) e/} = Hy_e/**
n n
where we defined the constant amplitudes of the magnetic fields:
Hy. = il Z X Ey+ (2.2.5)

Inserting (2.2.3) into (2.1.9), we obtain the general solution for single-frequency
waves, expressed as a superposition of forward and backward components:

E(z) = Ey,e X2 1 Fy_e/kz

(forward + backward waves) (2.2.6)

H(z) = =~ 2 X [Eyr e /% — Ey_e/¥]

= =

Setting Ep~ = XA+ +Vy B, and noting that ZXEy. = ZX (XA++yB+)=VA.—XB.,
we may rewrite (2.2.6) in terms of its cartesian components:
Ex(z)= A e Jkz 4 A_plkz Ey(z)= B,e X% + B_elk?

1 (2.2.7)

Hy(2)= %[meﬂ'kz —A_ &), Hylz)= " [Bre ks — B_e/k?]
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Wavefronts are defined, in general, to be the surfaces of constant phase. A forward
moving wave E(z) = Eye /¥ corresponds to the time-varying field:

E(z,t) = Eye/®@t=/kz = Eie=i®zD  where @(z,t)=kz— wt

A surface of constant phase is obtained by setting @ (z, t) = const. Denoting this
constant by ¢po = kzo and using the property ¢ = w/k, we obtain the condition:

pz,t) =@y = kz—-wt=kzy = z=ct+2z

Thus, the wavefront is the xy-plane intersecting the z-axis at the point z = ct + zo,
moving forward with velocity c. This justifies the term “plane wave.”

A backward-moving wave will have planar wavefronts parametrized by z = —ct + zo,
that is, moving backwards. A wave that is a linear combination of forward and backward
components, may be thought of as having two planar wavefronts, one moving forward,
and the other backward.

The relationships (2.2.5) imply that the vectors {Ey;, Hy+,Z} and {Ey_, Hy—, —z} will
form right-handed orthogonal systems. The magnetic field Hy. is perpendicular to the
electric field Ey. and the cross-product Ey. X Hy. points towards the direction of prop-
agation, that is, +z. Fig. 2.2.1 depicts the case of a forward propagating wave.

P S

SN AN
W\ W

by

H

Fig. 2.2.1 Forward uniform plane wave.

The wavelength A is the distance by which the phase of the sinusoidal wave changes
by 27t radians. Since the propagation factor e /%7 accumulates a phase of k radians per
meter, we have by definition that kA = 27r. The wavelength A can be expressed via the
frequency of the wave in Hertz, f = w /21, as follows:

(2.2.8)

If the propagation medium is free space, we use the vacuum values of the parame-
ters {€, U,c,n}, that is, {€g, Uo, o, No}. The free-space wavelength and corresponding

wavenumber are: )

T Co w
_A G g @ 2.2.9)
ko f Co

In a lossless but non-magnetic (u = pg) dielectric with refractive index n = /€/¢€o,
the speed of light ¢, wavelength A, and characteristic impedance n are all reduced by a

Ao
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scale factor n compared to the free-space values, whereas the wavenumber k is increased
by a factor of n. Indeed, using the definitions ¢ = 1/./Ho€ and n = +/uo/€, we have:

c=—, n=—, A:%, k = nky (2.2.10)

Example 2.2.1: A microwave transmitter operating at the carrier frequency of 6 GHz is pro-
tected by a Plexiglas radome whose permittivity is € = 3¢.

The refractive index of the radome is n = \/e/€y = /3 = 1.73. The free-space wavelength
and the wavelength inside the radome material are:
Co 3 x 108 Ao 5

AO:?:GXmg:O.OSm:Scm, A:?:m:2.9cm

We will see later that if the radome is to be transparent to the wave, its thickness must be
chosen to be equal to one-half wavelength, I = A/2. Thus, I = 2.9/2 = 1.45 cm. m]

Example 2.2.2: The nominal speed of light in vacuum is ¢y = 3x108 m/s. Because of the rela-
tionship ¢y = Af, it may be expressed in the following suggestive units that are appropriate
in different application contexts:

Co = 5000 km X 60 Hz
300 m X 1 MHz
40 m X 7.5 MHz
3m X 100 MHz FM radio, TV)
30 cm X 1 GHz cell phones)

(power systems)
(
(
(
(
10 cm X 3 GHz (waveguides, radar)
(
(
(
(
(

AM radio)
amateur radio)

3 cm X 10 GHz radar, satellites)
0.3 mm X 1 THz biotech, security, spectroscopy)
1.5 ym X 200 THz optical fibers, THz applications)
500 nm X 600 THz visible spectrum)
100 nm x 3000 THz Uv)

Similarly, in terms of length/time of propagation:

co = 36000 km/120 msec (geosynchronous satellites)
300 km/msec (power lines)
300 m/usec (transmission lines)
30 cm/nsec (circuit boards)
300 um/psec (nanocircuits)

The typical half-wave monopole antenna (half of a half-wave dipole over a ground plane)
has length A/4 and is used in many applications, such as AM, FM, and cell phones. Thus,
one can predict that the lengths of AM radio, FM radio, and cell phone antennas will be of
the order of 75 m, 0.75 m, and 7.5 cm, respectively.

A more detailed list of electromagnetic frequency bands is given in Appendix B. The precise
value of ¢y and the values of other physical constants are given in Appendix A. m]

Wave propagation effects become important, and cannot be ignored, whenever the
physical length of propagation is comparable to the wavelength A. It follows from
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Egs. (2.2.2) that the incremental change of a forward-moving electric field in propagating
from z to z + Az is:
IAE] _ jay = om A7 (2.2.11)
|E. | A
Thus, the change in the electric field can be ignored only if Az < A, otherwise, propa-
gation effects must be taken into account.
For example, for an integrated circuit operating at 10 GHz, we have A = 3 cm, which
is comparable to the physical dimensions of the circuit.
Similarly, a cellular base station antenna is connected to the transmitter circuits by
several meters of coaxial cable. For a 1-GHz system, the wavelength is 0.3 m, which
implies that a 30-meter cable will be equivalent to 100 wavelengths.

2.3 Energy Density and Flux

The time-averaged energy density and flux of a uniform plane wave can be determined
by Eq. (1.9.6). As in the previous section, the energy is shared equally by the electric
and magnetic fields (in the forward or backward cases.) This is a general result for most
wave propagation and waveguide problems.

The energy flux will be in the direction of propagation. For either a forward- or a
backward-moving wave, we have from Egs. (1.9.6) and (2.2.5):

1.1 1o [1 _j j 1
We = 5 Re [EeEi (z)-E;‘(z)] = ERe[EeEoie .. Eo*ieﬂ‘z] = 4 €lEo. |?

1 1 1 11 . 1
Wi = 5 Re [EuHi (z)-Hif(Z)] = ZIH‘HOtlz = Zu;lszoﬂz = ZE\Eoilz = We

Thus, the electric and magnetic energy densities are equal and the total density is:
W= We + W = 2W, = %e|£01|2 (2.3.1)
For the time-averaged Poynting vector, we have similarly:
P = %Re[Ei(z)xHi’f (z)] = % Re[ Eo- X (22 X Ef.) ]
Using the BAC-CAB rule and the orthogonality property Z - Ey. = 0, we find:

1 , 1
P=x+7——|E:|?=+cz-€|lE:|? (2.3.2)
2n 2

Thus, the energy flux is in the direction of propagation, that is, +Z. The correspond-
ing energy velocity is, as in the previous section:

V= P =*cZ (2.3.3)
w

In the more general case of forward and backward waves, we find:
1 1 1
w = ZRe[eE(z) -E*(z)+uH(z)-H*(2)] = EG\E(HIZ + EEIEO,I2
(2.3.4)

_1 % _5( L 2_ 1 2
P = 2Re[E(z)><H (Z)]_Z(ZWIE(Hl 2nIEQ,I )



2.4. Wave Impedance 47

Thus, the total energy is the sum of the energies of the forward and backward com-
ponents, whereas the net energy flux (to the right) is the difference between the forward
and backward fluxes.

2.4 Wave Impedance

For forward or backward fields, the ratio of E(z) to H(z) XZ is constant and equal to
the characteristic impedance of the medium. Indeed, it follows from Eq. (2.2.4) that

E.(z)= +nH. (z)XZ

However, this property is not true for the more general solution given by Egs. (2.2.6).
In general, the ratio of E(z) to H(z)xZ is called the wave impedance. Because of the
vectorial character of the fields, we must define the ratio in terms of the corresponding
Xx- and y-components:

[E(2)]y,  Ex(2)

22 = [H()xz], = Hy(2)

(wave impedances) (2.4.1)
[E(2)],  E(2)

Zy(2) = [H(z)xz], = Hy(2)

Using the cartesian expressions of Eq. (2.2.7), we find:

7z = E@ _ Aje Rz 4 A ek
T Hy(z) T ALeike — A_oikz

) . (wave impedances) (2.4.2)
7,(2) = _Ey(z)  Bie k24 B eik
YT Hy(z) "B eikz B eikz

Thus, the wave impedances are nontrivial functions of z. For forward waves (that is,
with A_ = B_ = 0), we have Zy(z) = Zy, (z) = n. For backward waves (A, = B, = 0), we
have Zx(z)= Z,(z) = —n.

The wave impedance is a very useful concept in the subject of multiple dielectric
interfaces and the matching of transmission lines. We will explore its use later on.

2.5 Polarization

Consider a forward-moving wave and let Ey = XA, + y B be its complex-valued pha-
sor amplitude, so that E(z)= Egje 7k = (XA, + yB,)e /¥, The time-varying field is
obtained by restoring the factor e/®:

E(z,0)= (XA; +¥B.)e/

The polarization of a plane wave is defined to be the direction of the electric field.
For example, if B, = 0, the E-field is along the x-direction and the wave will be linearly
polarized.
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More precisely, polarization is the direction of the time-varying real-valued field
E(z,t)= Re[E(z,t)]. At any fixed point z, the vector E(z,t) may be along a fixed
linear direction or it may be rotating as a function of t, tracing a circle or an ellipse.

The polarization properties of the plane wave are determined by the relative magni-
tudes and phases of the complex-valued constants A, B;. Writing them in their polar
forms A, = Ae/®a and B, = Be/®», where A, B are positive magnitudes, we obtain:

E(z,t)= (X Ae/Pa 4 y Be/Pr) o/ Wi=kz = g pApi(Wi=kz+da) 4 ¢ pol(wi-kzdp) (35 1)

Extracting real parts and setting E(z,t)= Re[E(z,t)] = X Ex(z,) +V Ey (2, 1), we
find the corresponding real-valued x, y components:

Ex(z,t) = Acos(wt —kz + ¢py)
(2.5.2)
Ey(z,t) = Bcos(wt —kz + ¢p)

For a backward moving field, we replace k by —k in the same expression. To deter-
mine the polarization of the wave, we consider the time-dependence of these fields at
some fixed point along the z-axis, say at z = 0:

Ex(t) = Acos(wt + ¢pg)
(2.5.3)
Ey (t) = Bcos(wt + ¢p)

The electric field vector E (t)= X Ex(t) +y E, (t) will be rotating on the xy-plane
with angular frequency w, with its tip tracing, in general, an ellipse. To see this, we
expand Eq. (2.5.3) using a trigonometric identity:

Ty (t) = A[cos wt cos g — sin wt sin P, |
Ey (t) = B[cos wt cos ¢p — sin wt sin ¢y |

Solving for cos wt and sin wt in terms of Eyx (), Ey (t), we find:

Ey(t

coswtsing = yB( ) sin ¢, — f’jq(t) sin ¢bp
Ey(t

sin wtsin¢ = % cospg — TXT(I) cos ¢p

where we defined the relative phase angle ¢ = ¢4 — ¢bp.

Forming the sum of the squares of the two equations and using the trigonometric
identity sin® wt + cos? wt = 1, we obtain a quadratic equation for the components Ey
and T, which describes an ellipse on the Ey, Z), plane:

£ . 2 F ; 2
( yB(t) sing, — fA(t) sind)b) + (7)/3(0 cos ¢, — TA(t) cos¢b> = sin® ¢

This simplifies into:

5.5 EEy _ o NN
el + B 2cos P g - Sin ¢ (polarization ellipse) (2.5.4)
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Depending on the values of the three quantities {A, B, ¢} this polarization ellipse
may be an ellipse, a circle, or a straight line. The electric field is accordingly called
elliptically, circularly, or linearly polarized.

To get linear polarization, we set ¢p = 0 or ¢p = 11, corresponding to ¢, = ¢pp = 0,
or ¢5 = 0, ¢p = —1, so that the phasor amplitudes are Ey = X A =y B. Then, Eq. (2.5.4)
degenerates into:

i EL__EJE Ex _ Ey\?
A T Tl <02 (A*?) =0

representing the straight lines:

., 4 slope B/A N

Fy =+

slope —B/A
The fields (2.5.2) take the forms, in the two cases ¢ = 0 and ¢ = 1=

Ey(t)= Acos wt
Ey (t)= Bcos wt

Ex(t)= Acos wt

and Ey (t)= Bcos(wt — 1) = —B cos wt

To get circular polarization, we set A = B and ¢ = +77/2. In this case, the polariza-
tion ellipse becomes the equation of a circle:

2T
.5
A2 A?

=1

The sense of rotation, in conjunction with the direction of propagation, defines left-
circular versus right-circular polarization. For the case, ¢, = 0 and ¢, = —77/2, we
have ¢ = ¢p,; — ¢p = /2 and complex amplitude Ey = A (X — jy). Then,

-

Ey(t) = Acoswt Ey(1) (ot

Ey(t) = Acos(wt —1m/2)= Asin wt \\@

Thus, the tip of the electric field vector rotates counterclockwise on the xy-plane.
To decide whether this represents right or left circular polarization, we use the IEEE
convention|[115], which is as follows.

Curl the fingers of your left and right hands into a fist and point both thumbs towards
the direction of propagation. If the fingers of your right (left) hand are curling in the
direction of rotation of the electric field, then the polarization is right (left) polarized.t

Thus, in the present example, because we had a forward-moving field and the field is
turning counterclockwise, the polarization will be right-circular. If the field were moving

TMost engineering texts use the IEEE convention and most physics texts, the opposite convention.
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backwards, then it would be left-circular. For the case, ¢ = —71/2, arising from ¢, = 0
and ¢y = 11/2, we have complex amplitude Ey = A (X + jy). Then, Eq. (2.5.3) becomes:

Ex(t) = Acos wt /%

] L wt
Ey (t) = Acos(wt + 1/2)= —Asin wt (1)

The tip of the electric field vector rotates clockwise on the xy-plane. Since the wave
is moving forward, this will represent left-circular polarization. Fig. 2.5.1 depicts the
four cases of left/right polarization with forward/backward waves.

X right-polarized X left-polarized
forward-moving forward-moving
E@) YAU)
» 7 »Z
y y
X left-polarized X right-polarized
backward-moving backward-moving
(@) YAU)
-7 —i -7 —t
y y

Fig. 2.5.1 Left and right circular polarizations.

To summarize, the electric field of a circularly polarized uniform plane wave will be,
in its phasor form:
E(z)= A& - j§) ek
E(z)= AR+ jy) ek
E(z)= A(X - jy)e/k
E(z)= AR+ jy) e/

(right-polarized, forward-moving)
(left-polarized, forward-moving)
(left-polarized, backward-moving)

(right-polarized, backward-moving)

If A # B, but the phase difference is still ¢ = +71/2, we get an ellipse with major
and minor axes oriented along the X,y directions. Eq. (2.5.4) will be now:

I
f)% Z'Z fy(t)

A2+Bz \Qy
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Finally, if A # B and ¢ is arbitrary, then the major/minor axes of the ellipse (2.5.4)
will be rotated relative to the X,y directions. Fig. 2.5.2 illustrates the general case.

\Z‘): A fy f);
B
v
D ,
B’ 0 ?x
—A 0 A
-B

Fig. 2.5.2 General polarization ellipse.

It can be shown (see Problem 2.15) that the tilt angle 0 is given by:

2AB
tan20 = m COS¢ (255)

The ellipse semi-axes A’, B, that is, the lengths OC and OD, are given by:

A= J% (A% + BZ)+%\/(A2 — B2)244A2B2 cos? b
(2.5.6)

B = J% (A2 +BZ)—%\/(A2 — B?)2+4A2B2 cos? ¢p

where s = sign(A — B). These results are obtained by defining the rotated coordinate
system of the ellipse axes:
Ey =ExcosO + E,sin0

(2.5.7)
E, =Eycos @ — Eysinb
and showing that Eq. (2.5.4) transforms into the standardized form:
flz I‘;}Z
it =1 (2.5.8)

The polarization ellipse is bounded by the rectangle with sides at the end-points
+A, £B, as shown in the figure. To decide whether the elliptic polarization is left- or
right-handed, we may use the same rules depicted in Fig. 2.5.1.

The angle x subtended by the major to minor ellipse axes shown in Fig. 2.5.2 is given
as follows and is discussed further in Problem 2.15:

. 2AB .
sm2x:m|sm¢|, <x=

T
2 (2.5.9)

that is, it can be shown that tanx = B'/A’ or A’/B’, whichever is less than one.
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Example 2.5.1: Determine the real-valued electric and magnetic field components and the po-
larization of the following fields specified in their phasor form (given in units of V/m):

E(z)= —3j%e/kz

E(z)= (3% +4Y)e*/ks

E(z)= (-4%+39)e/k*

E(z)= (3e/™3% 4+ 3y)e*kz
E(z)= (4% + 3e /™4 ) e ks
E(z)= (e85 1 40/m/8 ) e tikz
E(z)= (4e/™4% + 3e /T2 y)e~Jkz
E(z)= (3e7™2% 4 4e/m/4 y) e tikz

F@ e a0 oo

Solution: Restoring the e/®! factor and taking real-parts, we find the X,y electric field compo-
nents, according to Eq. (2.5.2):

Ex(z,t)=3cos(wt —kz—-1/2), E,(z,t)=0

Ex(z,t)= 3 cos(wt + kz), Ey(z,t) = 4cos(wt + kz)
Ex(z,t)=4cos(wt — kz + 1), Ey(z,t)= 3 cos(wt — kz)
Ex(z,t)=3cos(wt +kz +1/3), Ey(z,t)=3cos(wt +kz)
Ex(z,t)=4cos(wt —kz), Ey(z,t)= 3 cos(wt —kz —T11/4)
Ex(z,t)=3cos(wt +kz —1/8), Ey(z,t)=4cos(wt+kz+1/8)
Ex(z,t)=4cos(wt —kz+1/4), Ey(z,t)=3cos(wt—kz—T11/2)
Ex(z,t)=3cos(wt +kz —1/2), Ey(z,t)=4cos(wt+kz+1/4)

Fw e o oop

Since these are either forward or backward waves, the corresponding magnetic fields are
obtained by using the formula # (z,t) = + Z X E (z,t) /n. This gives the x, y components:

(cases a, , e, g): J{X(z,t):f%l'y(z,t), Hy(z,t)= %TX(Z,t)

(casesb, d, f,h:  Hy(z,t)= %Ty(z,t), }[y(Z,t)=—%fx(Z,l‘)

To determine the polarization vectors, we evaluate the electric fields at z = 0:

Ex(t)=3cos(wt —1/2), L ({t)=0

Ex(t)= 3 cos(wt), Ey (t)= 4 cos(wt)
Ex(t)=4cos(wt + 1), Ey (t)= 3 cos(wt)
Ex(t)=3cos(wt +1/3), E,(t)=3cos(wt)
Ex(t)=4cos(wt), Ey (t)= 3 cos(wt — 11/4)
Ex(t)=3cos(wt —T1/8), Iy (t)=4cos(wt+ 17/8)
Ex(t)=4cos(wt +T1/4), Iy (t)=3cos(wt—T1/2)
Ex(t)=3cos(wt —1/2), Ey(t)=4cos(wt+ 11/4)

5w om0 oo

The polarization ellipse parameters A, B, and ¢ = ¢, — ¢p, as well as the computed
semi-major axes A’, B, tilt angle 0, sense of rotation of the electric field, and polarization
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type are given below:

case A B ¢ A’ B’ 0 rotation polarization

a. 3 0 —-90° 3 0 0° — linear/forward

b. 3 4 0° 0 5 —36.87° 4 linear/backward

C. 4 3 180° 5 0 —36.87° N linear/forward

d. 3 3 60° 3.674 2.121 45° @) left/backward

e. 4 3 45° 4.656 1.822  33.79° @) right/forward

f. 3 4 —45° 1.822 4.656 -—33.79° O right/backward

g. 4 3 135° 4.656 1.822 —33.79° @) right/forward

h. 3 4 -135° 1.822 4.656 33.79° O right/backward

In the linear case (b), the polarization ellipse collapses along its A’-axis (A" = 0) and

becomes a straight line along its B’-axis. The tilt angle O still measures the angle of the A’-
axis from the x-axis. The actual direction of the electric field will be 90° — 36.87° = 53.13°,
which is equal to the slope angle, atan(B/A) = atan(4/3)= 53.13°.

In case (c), the ellipse collapses along its B’-axis. Therefore, 0 coincides with the angle of
the slope of the electric field vector, that is, atan(—B/A) = atan(—3/4)= —36.87°. m}

With the understanding that 6 always represents the slope of the A’-axis (whether
collapsed or not, major or minor), Egs. (2.5.5) and (2.5.6) correctly calculate all the special
cases, except when A = B, which has tilt angle and semi-axes:

0=45°, A" =A\1+cos¢, B =A1-cos¢ (2.5.10)

The MATLAB function e111pse.m calculates the ellipse semi-axes and tilt angle, A’,

B’, 0, given the parameters A, B, ¢. It has usage:
[a,b,th] = ellipse(A,B,phi)

% polarization ellipse parameters

For example, the function will return the values of the A’, B, 0 columns of the pre-
vious example, if it is called with the inputs:

A =13, 3, 4,3, 4, 3, 4, 3]";
B =1[0, 4, 3, 3, 3, 4, 3, 4]";
phi = [-90, 0, 180, 60, 45, -45, 135, -135]’;

To determine quickly the sense of rotation around the polarization ellipse, we use
the rule that the rotation will be counterclockwise if the phase difference ¢ = ¢, — Ppp
is such that sin ¢ > 0, and clockwise, if sin ¢p < 0. This can be seen by considering the
electric field at time t = 0 and at a neighboring time t. Using Eq. (2.5.3), we have:

E(0) =%xAcos¢, +yBcosy E@®  F0) E(0)

E(t) = XA cos(wt + ¢pg)+y B cos(wt + ¢pp) E(r)

The sense of rotation may be determined from the cross-product E(0) X E(t). If
the rotation is counterclockwise, this vector will point towards the positive z-direction,
and otherwise, it will point towards the negative z-direction. It follows easily that:

E(0)XE(t)= Z ABsin ¢ sin wt (2.5.11)
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Thus, for t small and positive (such that sin wt > 0), the direction of the vector
E(0) X E (t) is determined by the sign of sin ¢.

2.6 Uniform Plane Waves in Lossy Media

We saw in Sec. 1.14 that power losses may arise because of conduction and/or material
polarization. A wave propagating in a lossy medium will set up a conduction current
Jeona = OE and a displacement (polarization) current Jysp = jwD = jwegE. Both
currents will cause ohmic losses. The total current is the sum:

Jwot = Jeond + Juisp = (0 + jweg) E = jweE
where €. is the effective complex dielectric constant introduced in Eq. (1.14.2):
. . o
JWE =0 +jJwe€g = € =€3—] © (2.6.1)

The quantities g, €; may be complex-valued and frequency-dependent. However, we
will assume that over the desired frequency band of interest, the conductivity o is real-
valued; the permittivity of the dielectric may be assumed to be complex, €5 = 5;1 - je:i'.
Thus, the effective €, has real and imaginary parts:

ce=¢ —je' =€ —j (e;,’ + %) (2.6.2)

Power losses arise from the non-zero imaginary part €'’. We recall from Eq. (1.14.5)
that the time-averaged ohmic power losses per unit volume are given by:

dP) 1 1 7
d“;“ = ERe[Jmt -E*] = S We | E

Uniform plane waves propagating in such lossy medium will satisfy Maxwell’s equa-
tions (1.9.2), with the right-hand side of Ampeére’s law given by Jiot = J+jwD = jwecE.

The assumption of uniformity (0x = 0, = 0), will imply again that the fields E, H are
transverse to the direction Z. Then, Faraday’s and Ampeére’s equations become:

| 2

= %(0+we[’;)|5}2 (2.6.3)

V XE=—-jwuH ZX 0,E=—jwuH

N (2.6.4)

V X H=jweE Z X 0zH = jwecE

These may be written in a more convenient form by introducing the complex wave-
number k. and complex characteristic impedance n. defined by:

ke = w\UE:, nc = 'eﬂ (2.6.5)
c

They correspond to the usual definitions k = w/c = w+/ue and n = /u/e with
the replacement € — €.. Noting that wu = kcn. and we; = k:/n¢, Egs. (2.6.4) may
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be written in the following form (using the orthogonality property Z - E = 0 and the
BAC-CAB rule on the first equation):

0 E _ 0 —jkc E
E[ncHxi]*[fjkc 0 anHxi] (2.6.6)

To decouple them, we introduce the forward and backward electric fields:

E.

— N | =

(E+ ncHX 2) E=E, + E-
S 1 (2.6.7)
H= —2x|[E, —E_]

c

E_.=-(E-ncHX2)

no

Then, Egs. (2.6.6) may be replaced by the equivalent system:
O | Ex | _| —Jke O E,
sle )=l wlE ]

E.(z)= Ey.e™kZ — where 7-Ey. =0 (2.6.9)

with solutions:

Thus, the propagating electric and magnetic fields are linear combinations of forward
and backward components:

E(z) = Ey,e k% 4 E,_elkez

1 . , (2.6.10)
H(z) = e 7 X [Ey ek — Ey_elke?]

c

In particular, for a forward-moving wave we have:
. . 1
E(z)= Ege /%, H(z)= Hje/*?, with 2-Ey=0, Hy= —2xE (2.6.11)
Cc

Egs. (2.6.10) are the same as in the lossless case but with the replacements k — k.
and n — n¢. The lossless case is obtained in the limit of a purely real-valued €.

Because k. is complex-valued, we define the phase and attenuation constants 8 and
« as the real and imaginary parts of k., that is,

ke =B —Jjo = w\ule —je’) (2.6.12)

We may also define a complex refractive index n. = k./ko that measures k. relative
to its free-space value kg = w/cy = w./lp€y. For a non-magnetic medium, we have:

k 7 i 1’
ne== Seo €Iy in (2.6.13)
k() €o €

where n,, n; are the real and imaginary parts of n.. The quantity n; is called the ex-
tinction coefficient and ny, the refractive index. Another commonly used notation is the
propagation constant y defined by:

y = jke = &+ jB (2.6.14)
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It follows from y = « + jB = jkc = jkonc = jko(n, — jn;) that B = kon, and
o = kon;. The nomenclature about phase and attenuation constants has its origins in
the propagation factor e /¥, We can write it in the alternative forms:

e kez = o7VZ = g=0Zp=jBz — p—komizp—jkonrz (2.6.15)

Thus, the wave amplitudes attenuate exponentially with the factor e~ %%, and oscillate
with the phase factor e /A2, The energy of the wave attenuates by the factor e 2%, as
can be seen by computing the Poynting vector. Because e “X<Z is no longer a pure phase
factor and n. is not real, we have for the forward-moving wave of Eq. (2.6.11):

1 1 1 ; ;
P(z) = ERe[};(z)xH* ()] = 5 Re [n—*fo X (2 % Egk)e’“‘*fﬁ)ze’“"”ﬁ)z}
Cc

Re(n:t) [Eol2e 2% = 2P (0)e 2% = 2P (2)

N | =

Thus, the power per unit area flowing past the point z in the forward z-direction will be:

P(z)=P(0)e 2% (2.6.16)

The quantity 2 (0) is the power per unit area flowing past the point z = 0. Denoting
the real and imaginary parts of n. by n’,n”, so that, n. = n’ + jn”, and noting that
|Eg| = IncHy X zZ| = |nc||Hyl|, we may express P (0) in the equivalent forms:

1 1,
P(0)= ERe(n;l) |Ey|? = 5N |Hy|? (2.6.17)

The attenuation coefficient « is measured in nepers per meter. However, a more
practical way of expressing the power attenuation is in dB per meter. Taking logs of
Eq. (2.6.16), we have for the dB attenuation at z, relative to z = 0:

P(z)
Agp(z)= —10log;, P(0) = 20log;y(e) xz = 8.686 xz (2.6.18)
where we used the numerical value 201og;, e = 8.686. Thus, the quantity &gz = 8.686 &
is the attenuation in dB per meter:

xgp = 8.686 (dB/m) (2.6.19)

Another way of expressing the power attenuation is by means of the so-called pen-
etration or skin depth defined as the inverse of «:

o= (skin depth) (2.6.20)

1
x

Then, Eq. (2.6.18) can be rewritten in the form:

Az (2) = 8.686 g (attenuation in dB) (2.6.21)
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This gives rise to the so-called “9-dB per delta” rule, that is, every time z is increased
by a distance ¢, the attenuation increases by 8.686 ~ 9 dB.

A useful way to represent Eq. (2.6.16) in practice is to consider its infinitesimal ver-
sion obtained by differentiating it with respect to z and solving for «:

_ P’ (z)
P'(z)= —2aP(0)e 2% = _2xP x=-
(2) (0) (z) = 2P (2)
The quantity P |, = —P ' represents the power lost from the wave per unit length

(in the propagation direction.) Thus, the attenuation coefficient is the ratio of the power
loss per unit length to twice the power transmitted:

Pl ..
= —_loss (attenuation coefficient) (2.6.22)
2P transm

If there are several physical mechanisms for the power loss, then & becomes the
sum over all possible cases. For example, in a waveguide or a coaxial cable filled with a
slightly lossy dielectric, power will be lost because of the small conduction/polarization
currents set up within the dielectric and also because of the ohmic losses in the walls
of the guiding conductors, so that the total & will be @ = Kgie] + Kwalls-

Next, we verify that the exponential loss of power from the propagating wave is due
to ohmic heat losses. In Fig. 2.6.1, we consider a volume dV = [dA of area dA and
length I along the z-direction.

O
\‘\\E(Z) — EO e—yz
oo Eo NG
] ¢ dA
. . E
—»|P(0) —»| P(])
dA
T 2= z=

Fig. 2.6.1 Power flow in lossy dielectric.

From the definition of P (z) as power flow per unit area, it follows that the power
entering the area dA at z = 0 will be dP;, = P (0)dA, and the power leaving that area
atz = I, dPoyt = P (I)dA. The difference dPiyss = dPin — dPout = [P (0) =P (1) |dA will
be the power lost from the wave within the volume I dA. Because 2 (I)= P (0) e 2% we
have for the power loss per unit area:

dp loss

1 .
JA =P0)-P()=P(0)(1—e %) =ERe(n;1)|E0|2(l—e’Z°") (2.6.23)
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On the other hand, according to Eq. (2.6.3), the ohmic power loss per unit volume
will be we”’|E(z)|?/2. Integrating this quantity from z = 0 to z = I will give the total
ohmic losses within the volume I dA of Fig. 2.6.1. Thus, we have:

1 oL
dPohmic = 5 We J |E(z)|>dzdA = 5 We [I IEolze‘z"‘Zdz] dA, or,
0 0

dp ohmic
dA
Are the two expressions in Egs. (2.6.23) and (2.6.24) equal? The answer is yes, as
follows from the following relationship among the quantities n¢, €', & (see Problem
2.17):

(1)6” . .
vy |Eo|? (1 — e~2%) (2.6.24)

"

we
2

Re(n;') = (2.6.25)

Thus, the power lost from the wave is entirely accounted for by the ohmic losses
within the propagation medium. The equality of (2.6.23) and (2.6.24) is an example of
the more general relationship proved in Problem 1.5.

In the limit I — oo, we have P (I) — 0, so that dPynmic/dA = P (0), which states that
all the power that enters at z = 0 will be dissipated into heat inside the semi-infinite
medium. Using Eq. (2.6.17), we summarize this case:

dp ohmic
dA

1 1, .
= ERe(ngl) |Eo|? = 5N |Hy|? (ohmic losses) (2.6.26)

This result will be used later on to calculate ohmic losses of waves incident on lossy
dielectric or conductor surfaces, as well as conductor losses in waveguide and transmis-
sion line problems.

Example 2.6.1: The absorption coefficient & of water reaches a minimum over the visible
spectrum—a fact undoubtedly responsible for why the visible spectrum is visible.

Recent measurements [145] of the absorption coefficient show that it starts at about 0.01
nepers/m at 380 nm (violet), decreases to a minimum value of 0.0044 nepers/m at 418
nm (blue), and then increases steadily reaching the value of 0.5 nepers/m at 600 nm (red).
Determine the penetration depth ¢ in meters, for each of the three wavelengths.

Determine the depth in meters at which the light intensity has decreased to 1/10th its
value at the surface of the water. Repeat, if the intensity is decreased to 1/100th its value.

Solution: The penetration depths § = 1/« are:
6 =100, 227.3, 2m for « =0.01, 0.0044, 0.5 nepers/m

Using Eq. (2.6.21), we may solve for the depth z = (A/8.686) 6. Since a decrease of the light
intensity (power) by a factor of 10 is equivalent to A = 10 dB, we find z = (10/8.686)6 =
1.128 §, which gives: z = 112.8, 256.3, 2.3 m. A decrease by a factor of 100 = 1020/10
corresponds to A = 20 dB, effectively doubling the above depths. |
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Example 2.6.2: A microwave oven operating at 2.45 GHz is used to defrost a frozen food having
complex permittivity €. = (4 — j) €y farad/m. Determine the strength of the electric field
at a depth of 1 cm and express it in dB and as a percentage of its value at the surface.
Repeat if €. = (45 — 15j) €y farad/m.

Solution: The free-space wavenumber is kg = w./Ho€o = 277f /o = 271(2.45%10°) / (3x108) =
51.31 rad/m. Using k. = w./Ho€; = Ko~/€c/ €, we calculate the wavenumbers:

ke = B—jo = 51314 —j = 51.31(2.02 — 0.25j) = 103.41 — 12.73j m"!
ke = B—jo = 51.314/45 — 15j = 51.31(6.80 — 1.10j) = 348.84 — 56.61j m~!

The corresponding attenuation constants and penetration depths are:

(04
(04

12.73 nepers/m, 6 =7.86 cm
56.61 nepers/m, 6 =1.77cm

It follows that the attenuations at 1 cm will be in dB and in absolute units:

A =86862/5=1.1dB, 1074720 = 0.88
A =8.6862z/5 = 4.9 dB, 1074/20 = 0,57

Thus, the fields at a depth of 1 cm are 88% and 57% of their values at the surface. The
complex permittivities of some foods may be found in [146]. m]

A convenient way to characterize the degree of ohmic losses is by means of the loss
tangent, originally defined in Eq. (1.14.8). Here, we set:

€’ o+ wey;

T=tanf = — = . (2.6.27)
€ we,

’

Then, €. = € — je"" = €' (1 — jT)= €,(1 — jT). Therefore, k¢, N may be written as:

= /ﬂ, (1 —j7)~12 (2.6.28)
€4

The quantities ¢4 = 1/4/u€; and na = \/u/€; would be the speed of light and
characteristic impedance of an equivalent lossless dielectric with permittivity 6:1.

In terms of the loss tangent, we may characterize weakly lossy media versus strongly
lossy ones by the conditions T < 1versus T > 1, respectively. These conditions depend
on the operating frequency w:

ke = wyJuey (1-jo)2,

o+ wey 0+ wey
— <1 versus ————
ed wey

The expressions (2.6.28) may be simplified considerably in these two limits. Using
the small-x Taylor series expansion (1 +x)1/2~ 1+ x/2, we find in the weakly lossy case
(1 -j7)"2= 1~ j7/2, and similarly, (1 —jT) /2= 1+ jT/2.

On the other hand, if T >> 1, we may approximate (1—jT) /2~ (—j1)1/2= e=Jm/471/2

where we wrote (—j) /2= (e /™/2)1/2= ¢=J™/4  Similarly, (1 — jT) /2= e/™4171/2,
Thus, we summarize the two limits:
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o 1-j%, if T<1
(1-jo)t? = e _ (1 _j)\/; £ el (2.6.29)
1 +Jg, if T«1
172 _
== e T2 = (1 +j)\/g, if T>1 (2630

2.7 Propagation in Weakly Lossy Dielectrics

In the weakly lossy case, the propagation parameters k., j. become:

o (1 0+ wey
HE, Jind

A H ( .T) u 0+ wey
=n+ = S (1+j=)= |5 1+j—FF2
=N +Jn €, 75 e&( J 2we,

Thus, the phase and attenuation constants are:

B = w/ueE, —Cg / (a'+wed *rld(0+we£{) (2.7.2)

For a slightly conducting dielectric with €;; = 0 and a small conductivity o, Eq. (2.7.2)
implies that the attenuation coefficient « is frequency-independent in this limit.

ke=B-ja=w ue:i(l—jg) =w
(2.7.1)

Example 2.7.1: Seawater has 0 = 4 Siemens/m and €4 = 81¢ (so that €; = 81l€y, € = 0.)
Then, ng = \/eg/€p = 9, and cq = ¢o/ng = 0.33 X 108 m/sec and ng = no/ng = 377/9 =
41.89 Q. The attenuation coefficient (2.7.2) will be:

X = %nda = %41.89 X 4 = 83.78 nepers/m = g = 8.686 x = 728 dB/m

The corresponding skin depth is 6 = 1/ = 1.19 cm. This result assumes that o0 < wey,
which can be written in the form w > o/€g, or f > fo, where fy = 0/ (21T€4). Here, we
have f, = 888 MHz. For frequencies f < fj, we must use the exact equations (2.6.28). For
example, we find:

f =1KkHz, gz = 1.09 dB/m, 6 =7.96m
f =1MHz, ®gp = 34.49 dB/m, 0 =25.18cm
f =1 GHz, Xgp = 672.69 dB/m, 6 =1.29cm

Such extremely large attenuations explain why communication with submarines is impos-
sible at high RF frequencies. O
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2.8 Propagation in Good Conductors
A conductor is characterized by a large value of its conductivity o, while its dielectric

constant may be assumed to be real-valued €45 = € (typically equal to €y.) Thus, its
complex permittivity and loss tangent will be:

eczefj%:e(lfji» =7 2.8.1)

A good conductor corresponds to the limit T > 1, or, 0 > we. Using the approxi-
mations of Egs. (2.6.29) and (2.6.30), we find for the propagation parameters K, n:

kC=B—ja=w\/ﬁ\/§(l—1)= g(l_j)

N [ I R [
Ne=n +Jjn —\/; 2_r(l'*'J)— 20_(1+J)

Thus, the parameters 8, «, 6 are:

_ v _ [WHO _ _i_ /2 _ 1
Bfo(f\/jfx/rrfua 5= &=\ oo = Tofic (2.83)

where we replaced w = 21rf. The complex characteristic impedance n. can be written
in the form . = Rs(1 + j), where Rj is called the surface resistance and is given by the
equivalent forms (where n = \/u/€):

_, [we _ Jop o« 1
Re=n\'se “Noo “ 0~ oo (2.8.4)

Example 2.8.1: For copper we have ¢ = 5.8 X 107 Siemens/m. The skin depth at frequency f
is:

(2.8.2)

1 1
Tfuo 4w 10-7 - 5.8 - 107

f~'%=0.0661f""* (finHz)

We find at frequencies of 1 kHz, 1 MHz, and 1 GHz:

f=1kHz, 6 =2.09 mm
f=1MHz, & =0.07mm
f=1GHz, & =2.09pum

Thus, the skin depth is extremely small for good conductors at RF. m]

Because O is so small, the fields will attenuate rapidly within the conductor, de-
pending on distance like e Y% = e~ 2 JBz = ¢=2/85-JBz The factor e %/ effectively
confines the fields to within a distance ¢ from the surface of the conductor.

This allows us to define equivalent “surface” quantities, such as surface current and
surface impedance. With reference to Fig. 2.6.1, we define the surface current density by
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integrating the density J(z)= 0E(z)= oEye Y% over the top-side of the volume [dA,
and taking the limit [ — co:

Js = J J(z)dz = J OEye Y4dz = gI:‘O, or,
0 0 Y

1
= —E 2.8.
Js 7, Bo (2.8.5)

where we defined the surface impedance Zs = y/o. In the good-conductor limit, Z; is
equal to n.. Indeed, it follows from Egs. (2.8.3) and (2.8.4) that:
Yy _«+jB _

Zy=< =

X . .
e - E(HJ)—RS(HJ)—nc

Because Hy X Z = Ey/n., it follows that the surface current will be related to the
magnetic field intensity at the surface of the conductor by:

Jo=HyXxZ= n x Hy (2.8.6)

where n = —2 is the outward normal to the conductor. The meaning of J is that it
represents the current flowing in the direction of Ej per unit length measured along the
perpendicular direction to Ej, that is, the Hy-direction. It has units of A/m.

The total amount of ohmic losses per unit surface area of the conductor may be
calculated from Eq. (2.6.26), which reads in this case:

dP ohmic
dA

1 5 1 5
= ERSIHO\2 = QRSIJSIZ (ohmic loss per unit conductor area)  (2.8.7)

2.9 Skin Effect in Cylindrical Wires

Ay
v
S S =)
A A= ﬁﬁ
ECEL S v
\ g

Fig. 2.9.1 Current distribution in cylindrical wire.

2.10 Propagation in Oblique Directions

So far we considered waves propagating towards the z-direction. For single-frequency
uniform plane waves propagating in some arbitrary direction in a lossless medium, the
propagation factor is obtained by the substitution:
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e—jkz R e—jk-r

where k = kk, with k = w /i€ = w/c and k is a unit vector in the direction of propa-
gation. The fields take the form:

E(r,t)= Ege/“t k" £ \/;\g

oo (2.10.1)
H(r,t) = Hye/®! Ik Y

where Ey, Hj are constant vectors transverse to k, thatis, k - Ey = k- Hp = 0, such that:

1 1~
Hy= —kXEy=—KkXE (2.10.2)
wp n

where n = /u/€. Thus, {E, H,k} form a right-handed orthogonal system.

The solutions (2.10.1) can be derived from Maxwell’s equations in a straightforward
fashion. When the gradient operator acts on the above fields, it can be simplified into
V — —jk. This follows from:

V(e IkT) = —jk (e

After canceling the common factor e/“=/k7 Maxwell’s equations (2.1.1) take the form:

—jk)( Ey = —jwuHo k x Ey = wuH,
—ij H, =jweE0 k X Hy = —wE€E,
= (2.10.3)
k-Ey=0 k-Ey=0
k-Hy=0 k-Hy=0

The last two imply that Ey, Hy are transverse to k. The other two can be decoupled
by taking the cross product of the first equation with k and using the second equation:

kx (kx Ey)= wukx Hy = —w?ue E (2.10.4)

The left-hand side can be simplified using the BAC-CAB rule and k - Ey = 0, that is,
kx (kX Ey)= k(k- Ey)—Ey(k - k)= — (k- k) Ey. Thus, Eq. (2.10.4) becomes:

—(k-K)Ey = —w?ueEy

Thus, we obtain the consistency condition:

k-k=w’ue (2.10.5)

Defining k = vk - k = | k|, we have k = w./u€. Using the relationship wu = kn and
defining the unit vector k = k/|k| = k/k, the magnetic field is obtained from:

k X E k X E 1+
:ﬂzﬂzﬁkxﬂ)

0 wu kn
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The constant-phase (and constant-amplitude) wavefronts are the planes k - ¥ =
constant, or, k - ¥ = constant. They are the planes perpendicular to the propagation
direction k.

As an example, consider a rotated coordinate system {x’,)’,z’} in which the z'x’
axes are rotated by angle 0 relative to the original zx axes, as shown in Fig. 2.10.1. Thus,

the new coordinates and corresponding unit vectors will be:

, AX , AX
o A7 & Ak
k; - k; "
H E/ o "
yry' y
Fig. 2.10.1 TM and TE waves.
7' =zcosO +xsin0, 2’ =2cosf +Xsinf
X =xcos@ —zsin#, % =%cos@ —2sin0 (2.10.6)
Y =y, v =y

We choose the propagation direction to be the new z-axis, that is, k = 2/, so that the
wave vector k = kk = k2" will have components k, = kcos 0 and ky = ksin0:

k=kk =k(zcos 0 +%sin0) =2k, + Xky
The propagation phase factor becomes:
—jkz’

e—jk-r — e—j(kzz+kxx) _ e—jk(zcosOersinO) —e

Because {Ej, Hy, k} form a right-handed vector system, the electric field may have
components along the new transverse (with respect to z’) axes, that is, along x" and y.
Thus, we may resolve Ej into the orthogonal directions:

Ey=%A+9VB= (Xcos0 —2sin0)A +yB (2.10.7)

The corresponding magnetic field will be Hy = kx Ey/n = 2’ X (¥ A+¥B) /n. Using
the relationships 2’ XX =y and 2’ x y = —%X’, we find:

1 , 1. . -
Hy = E[?A—)ZB] = E[YA_ (Xcos 0 — zsin 0) B] (2.10.8)
The complete expressions for the fields are then:
E(r,t) = [(RcosO —zsin0)A + § B]e/®!-jk(zcos0+xsin0)
1 (2.10.9)

H(r,t) = 0 [ A — (Xcos @ — Zsin 0) B]e/«wt-jk(zcosO:+xsin0)
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Written with respect to the rotated coordinate system {x’,)’,z’}, the solutions be-
come identical to those of Sec. 2.2:

E(r,t) = [R A+ 9y Ble/®t=7k7

1., o ot—iks' (2.10.10)
H(r,t) = E[y A — %' B]e/wtikz

They are uniform in the sense that they do not depend on the new transverse coor-
dinates x’, ). The constant-phase planes are z’ = 2’ - ¥ = zZcos @ + xsin 0 = const.

The polarization properties of the wave depend on the relative phases and ampli-
tudes of the complex constants A, B, with the polarization ellipse lying on the X"y’ plane.

The A- and B-components of E; are referred to as transverse magnetic (TM) and
transverse electric (TE), respectively, where “transverse” is meant here with respect to
the z-axis. The TE case has an electric field transverse to z; the TM case has a magnetic
field transverse to z. Fig. 2.10.1 depicts these two cases separately.

This nomenclature arises in the context of plane waves incident obliquely on inter-
faces, where the xz plane is the plane of incidence and the interface is the xy plane. The
TE and TM cases are also referred to as having “perpendicular” and “parallel” polariza-
tion vectors with respect to the plane of incidence, that is, the E-field is perpendicular
or parallel to the xz plane.

We may define the concept of transverse impedance as the ratio of the transverse
(with respect to z) components of the electric and magnetic fields. In particular, by
analogy with the definitions of Sec. 2.4, we have:

Ex AcosO
nTM:H7= 1 =ncos6

Yy ZA

n
(2.10.11)
n E, B n
R s B
Hy EBCOSQ cos 0

Such transverse impedances play an important role in describing the transfer matri-
ces of dielectric slabs at oblique incidence. We discuss them further in Chap. 7.

2.11 Complex or Inhomogeneous Waves

The steps leading to the wave solution (2.10.1) do not preclude a complex-valued wavevec-
tor k. For example, if the medium is lossy, we must replace {n,k} by {nc, kc}, where
ke = B — j«, resulting from a complex effective permittivity €.. If the propagation
direction is defined by the unit vector k, chosen to be a rotated version of Z, then the
wavevector will be defined by k = k.k = (8—jo)k. Because k. = w+/u€; and k-k = 1,
the vector k satisfies the consistency condition (2.10.5):

k-k=k>=w?ue, (2.11.1)
The propagation factor will be:

e ikr e—jkcl"(-r _ e*((XJrjﬁ)f(-r _ e—al}-re—jﬁf(-r
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The wave is still a uniform plane wave in the sense that the constant-amplitude
planes, k-r= const., and the constant-phase planes, BR - ¥ = const., coincide with
each other—being the planes perpendicular to the propagation direction. For example,
the rotated solution (2.10.10) becomes in the lossy case:

E(rt) = [R A+ 9 B]e/@t=7k? — [ A + ¢ B]e/wi-(x+iB)Z
1 o 1 ) Ny (2.11.2)
H(r,t) = — [y A — & Ble/®l=/k? = — [¢'A — %' B]e/w!-(+iB)z
Ne c

In this solution, the real and imaginary parts of the wavevector k = B — j& are
collinear, that is, B = Bk and & = k.

More generally, there exist solutions having a complex wavevector k = 8 — j& such
that B, & are not collinear. The propagation factor becomes now:

e Tkr = o (4B _ p-trpjBer (2.11.3)

If ¢, B are not collinear, such a wave will not be a uniform plane wave because the
constant-amplitude planes, & - ¥ = const., and the constant-phase planes, B - ¥ = const.,
will be different. The consistency condition k - k = k3 = (B — jo)? splits into the
following two conditions obtained by equating real and imaginary parts:

B-jo-(B-jo)=(B-jx)* < g: (2.11.4)

With E, chosen to satisfy k- Ey = (B —j&) -Ey = 0, the magnetic field is computed from
Eq. (2.10.2), Hy = kX Ey/wu = (B — jo) XEy/ wp.
Let us look at an explicit construction. We choose B, @ to lie on the xz plane of
Fig. 2.10.1, and resolve them as B = Z8; + X Bx and & = Z &, + X ®. Thus,
k=B-ja=z(B;—jo)+X(Bx—jox) =2k, +Xky
Then, the propagation factor (2.11.3) and conditions (2.11.4) read explicitly:
e Jkr — o= (Xzz+0xX) o—j (Bz2+PBxX)
B2+ B2— 2 — o =p>-«> (2.11.5)

BZO(Z + Bx‘xx = B‘X

Because k is orthogonal to both y and ¥ X k, we construct the electric field E, as the
following linear combination of TM and TE terms:

ST . r_ k B-j«
Ey= (yxXK)A+VB, h k=—="—"— 2.11.6
o= (y ) y where ke = B j ( )
This satisfies k - Ey = 0. Then, the magnetic field becomes:
k X Ey 1. N ~
_ = —[yA—- (¥§xKk)B (2.11.7)
0= on = e [y ¥y ]
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The vector Kk is complex-valued and satisfies k-k = 1. These expressions reduce to
Eq. 2.11.2),if k = 2.

Waves with a complex k are known as complex waves, or inhomogeneous waves. In
applications, they always appear in connection with some interface between two media.
The interface serves either as a reflecting/transmitting surface, or as a guiding surface.

For example, when plane waves are incident obliquely from a lossless dielectric onto
a planar interface with a lossy medium, the waves transmitted into the lossy medium
are of such complex type. Taking the interface to be the xy-plane and the lossy medium
to be the region z > 0, it turns out that the transmitted waves are characterized by
attenuation only in the z-direction. Therefore, Egs. (2.11.5) apply with &, > 0 and
ox = 0. The parameter By is fixed by Snel’s law, so that Egs. (2.11.5) provide a system
of two equations in the two unknowns S, and o,. We discuss this further in Chap. 7.

Wave solutions with complex k = B — jo are possible even when the propagation
medium is lossless so that €. = € isreal, and B = w./u€ and « = 0. Then, Egs. (2.11.4)
become B-B— o - & = B and B - & = 0. Thus, the constant-amplitude and constant-
phase planes are orthogonal to each other.

Examples of such waves are the evanescent waves in total internal reflection, various
guided-wave problems, such as surface waves, leaky waves, and traveling-wave antennas.
The most famous of these is the Zenneck wave, which is a surface wave propagating
along a lossy ground, decaying exponentially with distance above and along the ground.

Another example of current interest is surface plasmons [593-631], which are sur-
face waves propagating along the interface between a metal, such as silver, and a dielec-
tric, such as air, with the fields decaying exponentially perpendicularly to the interface
both in the air and the metal. We discuss them further in Sections 7.11 and 8.5.

For a classification of various types of complex waves and a review of several ap-
plications, including the Zenneck wave, see Refs. [902-909]. We will encounter some of
these in Section 7.7.

The table below illustrates the vectorial directions and relative signs of some possible
types, assuming that &, B lie on the xz plane with the yz plane being the interface plane.

‘ o B | x; x| B; Bx|complexwave type
0 N[O 0 | + — | oblique incidence
1 0 + + 0 | evanescent surface wave
7 N | + 4+ | + — | Zenneck surface wave
N /7| - 4+ |+ + |leaky wave

2.12 Doppler Effect

The Doppler effect is the frequency shift perceived by an observer whenever the source
of the waves and the observer are in relative motion.

Besides the familiar Doppler effect for sound waves, such as the increase in pitch
of the sound of an approaching car, ambulance, or train, the Doppler effect has several
other applications, such as Doppler radar for aircraft tracking, weather radar, ground
imaging, and police radar; several medical ultrasound applications, such as monitoring
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blood flow or imaging internal organs and fetuses; and astrophysical applications, such
as measuring the red shift of light emitted by receding galaxies.

In the classical treatment of the Doppler effect, one assumes that the waves prop-
agate in some medium (e.g., sound waves in air). If ¢ is the wave propagation speed in
the medium, the classical expression for the Doppler effect is given by:

_ Sy 7 Sp i
fo=fas Y0 | e Zadl (2.12.1)

C—Vq S Va vb

where f,; and f} are the frequencies measured in the rest frames of the source S, and
observer S, and v, and vy, are the velocities of S, and S, with respect to the propagation
medium, projected along their line of sight.

The algebraic sign of v, is positive if S, is moving toward Sj from the left, and the
sign of vy, is positive if S, is moving away from S,. Thus, there is a frequency increase
whenever the source and the observer are approaching each other (v; > 0 or v; < 0),
and a frequency decrease if they are receding from each other (v; < 0 or v, > 0).

Eg. (2.12.1) can be derived by considering the two cases of a moving source and a sta-
tionary observer, or a stationary source and a moving observer, as shown in Fig. 2.12.1.

moving source stationary observer

// v

stationary source moving observer

Fig. 2.12.1 Classical Doppler effect.

In the first case, the spacing of the successive crests of the wave (the wavelength) is
decreased in front of the source because during the time interval between crests, that
is, during one period T; = 1/f;, the source has moved by a distance v, T, bringing two
successive crests closer together by that amount. Thus, the wavelength perceived by
the observer willbe A, = A; — v;T4 = (¢ — V,) /fa, which gives:

c c

fo=5"="fa

Ab C— Vg

(moving source) (2.12.2)

In the second case, because the source is stationary, the wavelength A, will not
change, but now the effective speed of the wave in the rest frame of the observer is
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(¢ —vp). Therefore, the frequency perceived by the observer will be:

C—Vp C—Vp
fo="t =fa "

(moving observer) (2.12.3)
Ag c

The combination of these two cases leads to Eq. (2.12.1). We have assumed in
Egs. (2.12.1)-(2.12.3) that v,, v}, are less than ¢ so that supersonic effects are not consid-
ered. A counter-intuitive aspect of the classical Doppler formula (2.12.1) is that it does
not depend on the relative velocity (v, — v,;) of the observer and source. Therefore,
it makes a difference whether the source or the observer is moving. Indeed, when the
observer is moving with v, = v away from a stationary source, or when the source is

moving with v, = —v away from a stationary observer, then Eq. (2.12.1) gives:
fo=fa(l=vic), fp= fa (2.12.4)
1+v/c

These two expressions are equivalent to first-order in v/c. This follows from the
Taylor series approximation (1 +x) ~!= 1 —x, which is valid for |x| < 1. More generally,
to first order in v,/c and vy /c, Eq. (2.12.1) does depend only on the relative velocity. In
this case the Doppler shift Af = ) — f, is given approximately by:

Af  va-vp
fa c
For Doppler radar this doubles to Af/f, = 2(v4 — Vi) /¢ because the wave suffers
two Doppler shifts, one for the transmitted and one for the reflected wave. This is
further discussed in Sec. 5.8.
For electromagnetic waves, the correct Doppler formula depends only on the rela-
tive velocity between observer and source and is given by the relativistic generalization
of Eq. (2.12.1):

[c=Vy C+Vg c—Vv N
= — = relativistic Doppler effect 2.12.6
fo="fa c+vy C—v, fa c+v ( PP ) ( )

where v is the velocity of the observer relative to the source, which according to the
Einstein addition theorem for velocities is given through the equivalent expressions:

(2.12.5)

Vb — Va N Vg +V
- b~ ¥a p= — 24—~
1 —Vvpva/c? 1+vav/c?

C—-V _Cc-Vp C+Vg

= (2.12.7)
c+Vv c+Vvy Cc—Vq

Using the first-order Taylor series expansion (1 + x)*!/2= 1 + x/2, one can show
that Eq. (2.12.6) can be written approximately as Eq. (2.12.5).

Next, we present a more precise discussion of the Doppler effect based on Lorentz
transformations. Our discussion follows that of Einstein’s 1905 paper on special rela-
tivity [474]. Fig. 2.12.2 shows a uniform plane wave propagating in vacuum as viewed
from the vantage point of two coordinate frames: a fixed frame S and a frame S’ moving
towards the z-direction with velocity v. We assume that the wavevector kin S lies in the
xz-plane and forms an angle 0 with the z-axis as shown.

TThe question of the existence of a medium (the ether) required for the propagation of electromagnetic
waves precipitated the development of the special relativity theory.
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. ' .
X stationary frame X" moving frame

S’ k;
Fig. 2.12.2 Plane wave viewed from stationary and moving frames.

As discussed in Appendix K, the transformation of the frequency-wavenumber four-
vector (w/c, k) between the frames S and S’ is given by the Lorentz transformation of
Eq. (K.14). Because kj, = 0 and the transverse components of k do not change, we will
have kj, = k), = 0, that is, the wavevector k’ will still lie in the xz-plane of the S’ frame.
The frequency and the other components of k transform as follows:

w' =y(w — Bckz)

K=y Loy | 8-
K., = ky

Y= (2.12.8)

v 1
c

Setting k, = kcos @, ky = ksin, with k = w/c, and similarly in the S’ frame,
k, =k’ cos 0, ky = k’sin @', withk’ = w'/c, Egs. (2.12.8) may be rewritten in the form:

w’ = wy(1—BcosO)
w’' cosf’ = wy(cosO — B) (2.12.9)
w’sinf’ = wsin 0

The first equation is the relativistic Doppler formula, relating the frequency of the
wave as it is measured by an observer in the moving frame S’ to the frequency of a
source in the fixed frame S:

1-Bcos®
1P

The last two equations in (2.12.9) relate the apparent propagation angles 0, 0’ in the
two frames. Eliminating w, w’, we obtain the following equivalent expressions:

f=fy(1—PBcosO)=f (2.12.10)

p_CosO0-B g sin0
cos 0 < sinf’ = y (1 Beos0)

" 1-PBcosb
where to obtain the last one we used the identity tan(¢/2)= sin¢/ (1 + cos ¢). The
difference in the propagation angles 0, 0’ is referred to as the aberration of light due
to motion. Using Egs. (2.12.11), the Doppler equation (2.12.10) may be written in the
alternative forms:

;o B I 1-BcosO
fr=fy(=BeosO)= g =\ 15 Beos 0’ (2.12.12)

tan(0'/2) 1+ B
tan(0/2)  \1-p

(2.12.11)
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If the wave is propagating in the z-direction (8 = 0°), Eq. (2.12.10) gives:

1-8
1+ B
and, if it is propagating in the x-direction (6 = 90°), we obtain the so-called transverse
Doppler effect: f = fy. The relativistic Doppler effect, including the transverse one,
has been observed experimentally.

To derive Eq. (2.12.6), we consider two reference frames S;, S, moving along the
z-direction with velocities v, v, with respect to our fixed frame S, and we assume that
0 = 0° in the frame S. Let f,, fp be the frequencies of the wave as measured in the
frames S;, Sp. Then, the separate application of Eq. (2.12.13) to S; and S}, gives:

1-Ba 1-Bp 1-Bp 1+Pa
= = = . 2.12.14
fa=f 15 B, v f‘/1+Bb = fp="fa " ( )
where B, = v /c and By = vp/c. This is equivalent to Eq. (2.12.6). The case when the
wave is propagating in an arbitrary direction 6 is given in Problem 2.27.
Next, we consider the transformation of the electromagnetic field components be-
tween the two frames. The electric field has the following form in S and S”:

f'=f (2.12.13)

E= Eoej(wt—kxx—kzz) , E = E(;ej(w’t’—k;x/—k;z/) (2.12.15)

As we discussed in Appendix K, the propagation phase factors remain invariant in

the two frames, that is, wt — kxyX — k;z = w't’ — kix" — k,z'. Assuming a TE wave

and using Eq. (2.10.9), the electric and magnetic field amplitudes will have the following
form in the two frames:

Ey = Eyy, CB():I'[()HO=lA(XE0=E0(—f(COSQ+ZSin9)
y (2.12.16)
Ey=E)y, cB,=noHy=k XE;=E)(-%Xcos0 +2sin0")

Applying the Lorentz transformation properties of Eq. (K.31) to the above field com-
ponents, we find:

E), = y(Ey + BcBy) E{ = Eoy(1 — Bcos )
cBy=y(cBx+BEy) = —Ejcos@ =—Eyy(cosb —p) (2.12.17)
cB, =cB, E{sin6’ = Eysin0

The first equation gives the desired relationship between Ey and E{). The last two
equations imply the same angle relationships as Eq. (2.12.11). The same relationship
between Ej, E;, holds also for a TM wave defined by Ey = Eq (Xcos 6 — Zsin0).

2.13 Propagation in Negative-Index Media

In media with simultaneously negative permittivity and permeability, € < 0 and u < 0,
the refractive index must be negative [391]. To see this, we consider a uniform plane
wave propagating in a lossless medium:

Ex(z,t)= Eg&°U7%*  H,(z,t)= Hy e/t Ik
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Then, Maxwell’s equations require the following relationships, which are equivalent
to Faraday’s and Ampére’s laws, respectively:

kEy = wuHy, kHy= weE,, or,

Ey wup k 5 2
- =0 _ ¥ _ k¢ = w?e 2.13.1
Hy k we i H ( )
Because the medium is lossless, k and n will be real and the time-averaged Poynting
vector, which points in the z-direction, will be:

n

1

’PZ=2

1 1
Re[EoH} 1= —|Eol? = = nlHol? 2.13.2
e[EoH{ ] 2n\o| 21’I| ol ( )
If we require that the energy flux be towards the positive z-direction, that is, 77, > 0,
then we must have n > 0. Because u and € are negative, Eq. (2.13.1) implies that k must
be negative, k < 0, in order for the ratio n = wu/k to be positive. Thus, in solving
k? = w?pue, we must choose the negative square root:

k = —w./HE (2.13.3)

The refractive index n may be defined through k = kon, where kg = w./lo€y is
the free-space wavenumber. Thus, we have n = k/kg = —UE/Uo€y = —./HralEral,
expressed in terms of the relative permittivity and permeability. Writing € = —|€| and
u = —|ul, we have for the medium impedance:

Wi —w|u| [1ul \/ﬁ
- _ == _ J=B_ JF 2.13.4
n k —wn/|uel le] € ( )

which can be written also as follows, where ng = +/to/€o:

u €ohn
n=no ton No c (2.13.5)

Thus, in negative-index media, the wave vector k and the phase velocity vy = w/k =
co/n will be negative, pointing in opposite direction than the Poynting vector. As we saw
in Sec. 1.18, for lossless negative-index media the energy transport velocity Ve,, which
is in the direction of the Poynting vector, coincides with the group velocity v4. Thus,
Vg = Ven > 0, while vpp < 0.

Two consequences of the negative refractive index, n < 0, are the reversal of Snel’s
law discussed in Sec. 7.16 and the possibility of a perfect lens discussed in Sec. 8.6. These
and other consequences of n < 0, such as the reversal of the Doppler and Cherenkov
effects and the reversal of the field momentum, have been discussed by Veselago [391].

If the propagation is along an arbitrary direction defined by a unit-vector § (i.e.,
a rotated version of z), then we may define the wavevector by k = kS, with k to be
determined, and look for solutions of Maxwell’s equations of the form:

E(rt)= Eyelwt-ikr £ s
H(r,t)= Hye/ot-ikr v (2130
) o e B
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Gauss’s laws require that the constant vectors Ey, Hy be transverse to k, or S, that
is, § - Ep = § - Hy = 0. Then, Faraday’s and Ampere’s laws require that:

1. wu k 2 »
Hy=— (SXE), =——=— = k°=wUe 2.13.7
=1 ( 0), N K we M ( )
with a Poynting vector:
1 L1
T:ERe[onHS‘] :sﬁum2 (2.13.8)

Thus, if P is assumed to be in the direction of §, then we must have n > 0, and
therefore, k must be negative as in Eq. (2.13.3). It follows that the wavevector k = k§
will be in the opposite direction of § and 2. Eq. (2.13.7) implies that the triplet { Ey, Hy, S}
is still a right-handed vector system, but {Ey, Hy, k} will be a left-handed system. This
is the reason why Veselago [391] named such media left-handed media.*

In a lossy negative-index medium, the permittivity and permeability will be complex-
valued, € = €, — je; and u = u, — ju;, with negative real parts €,, 4, < 0, and positive
imaginary parts €;, 4; > 0. Eq. (2.13.1) remains the same and will imply that k and n will
be complex-valued. Letting k = 8 — j«, the fields will be attenuating as they propagate:

Ex(z,1)= Ege~%7e/®=0B2  H (z,t)= Hye™ *7e/®=iBz

and the Poynting vector will be given by:

Po =y RelEx@H} ()] = jRe( ) Eol?e ™™ = | Re(m)|HoPe % (213.9)

The refractive index is complex-valued, n = n, — jn;, and is related to k through
k = kon, or, B — jot = ko (n, — jn;), or, B = kon, and & = kon;. Thus, the conditions of
negative phase velocity (8 < 0), field attenuation (x > 0), and positive power flow can
be stated equivalently as follows:

n, <0, n;>0, Re(n)>0 (2.13.10)

Next, we look at the necessary and sufficient conditions for a medium to satisfy these
conditions. If we express €, i in their polar forms, € = |€|e /% and u = |u|e /%, then,
regardless of the signs of €,, 1,, the assumption that the medium is lossy, €;, y; > 0,
requires that sin @ > 0 and sin 8, > 0, and these are equivalent to the restrictions:

0<fc=<m, 0<Oy=<Tm (2.13.11)
To guarantee « > 0, the wavenumber k must be computed by taking the positive
square root of k2 = w?2ue = w?|pel2e@+0u that is,

0+ 0y

> (2.13.12)

k=B-jo=wluele’?, 0,
Indeed, the restrictions (2.13.11) imply the same for 0., thatis, 0 < 0, < T, or,
equivalently, sin 6, > 0, and hence « > 0. Similarly, the quantities n, n are given by:
0 — 0,
2

TThe term negative-index media is preferred in order to avoid confusion with chiral media.

n=|nled?, np=|nled?, 0_= (2.13.13)
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where |n| = /|ue|/up€g and [n| = +/[ul/l€|. It follows that n; = |n|sin @, > 0. Since
n, = |n|cos @, and Re(n)= |n|cos_, the conditions n, < 0 and Re(n)> 0 will be
equivalent to

cosO, = cos(@) <0, cosO_= cos(@) >0 (2.13.14)

Using some trigonometric identities, these conditions become equivalently:
cos(Be/2)cos(0,/2)—sin(0¢/2)sin(0,/2) <0
cos(0e/2)cos(0,/2)+sin(0¢/2)sin(0,/2) >0

which combine into

—sin(0¢/2)sin(0,/2) < cos(0e¢/2)cos(0,/2) < sin(0¢/2)sin(0,/2)

Because 0 < 0./2 < 11/2, we have cos(0¢/2)= 0 and sin(0./2) = 0, and similarly
for 0,,/2. Thus, the above conditions can be replaced by the single equivalent inequality:

tan(0¢/2)tan(0,/2)> 1 (2.13.15)

A number of equivalent conditions have been given in the literature [412,440] for a
medium to have negative phase velocity and positive power:

(lel =€) (Iul — pr) > €ipti
€rlpul + prlel <0 (2.13.16)
€rli + Hr€; <0
They are all equivalent to condition (2.13.15). This can be seen by writing them
in terms of the angles 6, 6, and then using simple trigonometric identities, such as
tan(0/2)= (1 — cos @)/ sin 8, to show their equivalence to (2.13.15):
(1 —cosO¢) (1 —cosOy)>sinbcsinby,
cos B¢ +cos O, <0 (2.13.17)
cotf¢ +cotfy, <0

If the medium has negative real parts, €, < 0 and u, < 0, then the conditions
(2.13.16) are obviously satisfied.

2.14 Problems

2.1 A function E(z,t) may be thought of as a function E(T, &) of the independent variables
C =z —ctand & = z + ct. Show that the wave equation (2.1.6) and the forward-backward
equations (2.1.10) become in these variables:

0°E OE, O0E_

ocor = e T o T

Thus, E; may depend only on € and E- only on &.

0
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2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

A source located at z = 0 generates an electromagnetic pulse of duration of T sec, given by
E(0,t)= XE [u(t)—u(t — T)], where u(t) is the unit step function and Ey is a constant.
The pulse is launched towards the positive z-direction. Determine expressions for E(z,t)
and H(z,t) and sketch them versus z at any given t.

Show that for a single-frequency wave propagating along the z-direction the corresponding
transverse fields E(z), H(z) satisfy the system of equations:

Kl E B 0 —jwu E
oz | Hx2 | | —jwe 0 Hx2z

where the matrix equation is meant to apply individually to the x,y components of the
vector entries. Show that the following similarity transformation diagonalizes the transition
matrix, and discuss its role in decoupling and solving the above system in terms of forward
and backward waves:

1 n 0 —jop|[1 n]" [-jk o

1 -n —jwe 0 1 -n 1 o0 jk
where k = w/c, ¢ =1/, /u€,and n = /u/e.
The visible spectrum has the wavelength range 380-780 nm. What is this range in THz? In
particular, determine the frequencies of red, orange, yellow, green, blue, and violet having
the nominal wavelengths of 700, 610, 590, 530, 470, and 420 nm.

What is the frequency in THz of a typical CO, laser (used in laser surgery) having the far
infrared wavelength of 20 ym?

What is the wavelength in meters or cm of a wave with the frequencies of 10 kHz, 10 MHz,
and 10 GHz?

What is the frequency in GHz of the 21-cm hydrogen line observed in the cosmos?

What is the wavelength in cm of the typical microwave oven frequency of 2.45 GHz?

Suppose you start with E(z,t)= X Eoe/®'7%Z but you do not yet know the relationship
between k and w (you may assume they are both positive.) By inserting E(z, t) into Maxwell’s
equations, determine the k- relationship as a consequence of these equations. Determine
also the magnetic field H(z,t) and verify that all of Maxwell’s equations are satisfied.
Repeat the problem if E(z,t)= X Ege/®!*kz and if E(z,t) =y Ege/®t-Jkz,

Determine the polarization types of the following waves, and indicate the direction, if linear,
and the sense of rotation, if circular or elliptic:
a. E=E)(X+¥)e/k
b. E=E (& - /39)e
E=Ey(jk+¥)e/k
d. E=Ey(x-2jy)e /X

E=Eg(X—y)e s
E=Ey(V3x-§)e ks
E=E (jX—y)el
E=Eo(X+2jy)e/k?

o
5 0 oo

A uniform plane wave, propagating in the z-direction in vacuum, has the following electric
field:
E(t,z)= 2% cos(wt — kz)+4y sin(wt — kz)
a. Determine the vector phasor representing E (t, z) in the complex form E = Eye/®t=/kz,

b. Determine the polarization of this electric field (linear, circular, elliptic, left-handed,
right-handed?)
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c. Determine the magnetic field H (t, z) in its real-valued form.

2.10 A uniform plane wave propagating in vacuum along the z direction has real-valued electric

2.14

2.15

{—sin@

field components:

Ex(z,t)=cos(wt —kz), &, (z,t)=2sin(wt - kz)

a. Its phasor form has the form E = (A% + B¥)e*/*2. Determine the numerical values of
the complex-valued coefficients A, B and the correct sign of the exponent.

b. Determine the polarization of this wave (left, right, linear, etc.). Explain your reasoning.

Consider the two electric fields, one given in its real-valued form, and the other, in its phasor

form:
a. E(t,z)=xsin(wt + kz)+2ycos(wt + kz)

b. E@)=[Q+)&x- (1 -j)y]e

For both cases, determine the polarization of the wave (linear, circular, left, right, etc.) and
the direction of propagation.

For case (a), determine the field in its phasor form. For case (b), determine the field in its
real-valued form as a function of t, z.

A uniform plane wave propagating in the z-direction has the following real-valued electric
field:
E(t,z)=xcos(wt —kz —1/4)+ycos(wt — kz + 11/4)
a. Determine the complex-phasor form of this electric field.
b. Determine the corresponding magnetic field 2 (t,z) given in its real-valued form.
c. Determine the polarization type (left, right, linear, etc.) of this wave.
Determine the polarization type (left, right, linear, etc.) and the direction of propagation of
the following electric fields given in their phasor forms:
a. E(z)=[(1+jV/3)%+2y]et*z
b. E(z)=[Q+j)%x— (1—j)y]e
¢ E(2)=[%x-2z+jJ/2y]e ka2

Consider a forward-moving wave in its real-valued form:
E(t,z)=%XAcos(wt —kz + ¢g)+yBcos(wt —kz + ¢p)
Show that:
E(t+At,z+Az)XE(t,z)= ZABsin(¢p, — ¢p)sin(wAt — kAz)

In this problem we explore the properties of the polarization ellipse. Let us assume initially
that A # B. Show that in order for the polarization ellipse of Eq. (2.5.4) to be equivalent
to the rotated one of Eq. (2.5.8), we must determine the tilt angle 0 to satisfy the following
matrix condition:

1 cos ¢ 1 .
cos@ sin@ A2~ AB |[cos® -sm0] ., | a2
cos 0 ] cos 1 [ sin@  cos@ } =sin" ¢ o L (2.14.1)

AB B2 B2
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From this condition, show that 6 must satisfy Eq. (2.5.5). However, this equation does not
determine 6 uniquely. To see this, let T = tan 0 and use a standard trigonometric identity
to write (2.5.5) in the form:

2T 2AB

tan20 = ﬁ = m COSd) (2.14.2)

Show that the two possible solutions for T are given by:
B> - A2 +sD
Tg=—7——, ==x1
2ABcos ¢
where
D= \/(AZ — B2)2+4A2B2cos? ¢p = \/(A2 + B2)2-4A2B2?sin’ ¢

Show also that T4T_g = —1. Thus one or the other of the T’s must have magnitude less than

unity. To determine which one, show the relationship:

Lo S(A2-BY[D —s5(A? - BY)]

1-—T¢ . -
$ 2A2B2 cos? ¢

Show that the quantity D — s (A2 — B2) is always positive. If we select s = sign(A — B), then
S(A? — B?)=|A? — B?|, and therefore, 1 — T2 > 0, or |Ts| < 1. This is the proper choice of
T, and corresponding tilt angle 6. We note parenthetically, that if Eq. (2.14.2) is solved by
taking arc tangents of both sides,

1

0= 7atan[ﬂ cosd)}

> o (2.14.3)

then, because MATLAB constrains the returned angle from the arctan function to lie in the
interval —71/2 < 20 < 11/2, it follows that 6 will lie in —71/4 < 6 < /4, which always
results in a tangent with | tan 0| < 1. Thus, (2.14.3) generates the proper 6 corresponding
to Ts with s = sign(A — B). In fact, our function e111pse uses (2.14.3) internally. The above
results can be related to the eigenvalue properties of the matrix,

1 _cos¢

A? AB
Q= _cos¢ 1

AB B2

defined by the quadratic form of the polarization ellipse (2.5.4). Show that Eq. (2.14.1) is
equivalent to the eigenvalue decomposition of Q, with the diagonal matrix on the right-
hand side representing the two eigenvalues, and [cos 0,sin@]7 and [—sin 0, cos 0]7, the
corresponding eigenvectors. By solving the characteristic equation det(Q — AI)= 0, show
that the two eigenvalues of Q are given by:

A A2+ B’+sD B
s = 2714232 , §==1

Thus, it follows from (2.14.1) that sin® ¢/ A’? and sin? ¢p/B’?> must be identified with one or
the other of the two eigenvalues Ag, A _;. From Eq. (2.14.1) show the relationships:

sin® ¢ 1 cos¢

1 cos
Ts=Ag, -5+ ABd)TS:

Ados="ogr 0 a2 7 aB B?

Ag
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With the choice s = sign(A — B), show that the ellipse semi-axes are given by the following
equivalent expressions:

. . A2 -B%T2 1. . . .-
A = A% + T,ABcos b = 17; = 5 [A%+ B2+ sD] = A%BA,
- S
B2 - A272 1 ‘ (2149
B? =B’ -~ T;ABcos §p = 17#‘ =5 [A%2 + B> —sD] = A’B’A
- S

with the right-most expressions being equivalent to Egs. (2.5.6). Show also the following:
A% +B? =A% +B%, A'B' = AB|sing|

Using these relationships and the definition (2.5.9) for the angle x, show that tan x is equal
to the minor-to-major axis ratio B’/A’ or A’/B’, whichever is less than one.

Finally, for the special case A = B, by directly manipulating the polarization ellipse (2.5.4),
show that @ = 11/4 and that A’, B" are given by Eq. (2.5.10). Since T = 1 in this case, the
left-most equations in (2.14.4) generate the same A’,B’. Show that one can also choose
0 = —1r/4 or T = —1, with A’, B’ reversing roles, but with the polarization ellipse remaining
the same.

Show the cross-product equation (2.5.11). Then, prove the more general relationship:
E(t;)XE(tr)=2ABsin¢sin(w (t — t1))

Discuss how linear polarization can be explained with the help of this result.

Using the properties kcne = wp and k2 = w?pe. for the complex-valued quantities ke, ne
of Eq. (2.6.5), show the following relationships, where €. = €’ — je"” and k. = 8 — j«:

7

_ we B
R ny - = -
e =50 = w m
Show that for a lossy medium the complex-valued quantities k. and n. may be expressed as
follows, in terms of the loss angle @ defined in Eq. (2.6.27):

ke =B —jo = wype, <cosg —jsing) (cos @) ~1/2

- e .. 0 .
ne=n"+jn" = le%(cos§+13m5)(cose)”z

Itis desired to reheat frozen mashed potatoes and frozen cooked carrots in a microwave oven
operating at 2.45 GHz. Determine the penetration depth and assess the effectiveness of this
heating method. Moreover, determine the attenuation of the electric field (in dB and absolute
units) at a depth of 1 cm from the surface of the food. The complex dielectric constants of
the mashed potatoes and carrots are (see [146]) €. = (65 — j25)€p and €. = (75 — j25) €.

We wish to shield a piece of equipment from RF interference over the frequency range from
10 kHz to 1 GHz by enclosing it in a copper enclosure. The RF interference inside the
enclosure is required to be at least 50 dB down compared to its value outside. What is the
minimum thickness of the copper shield in mm?

In order to protect a piece of equipment from RF interference, we construct an enclosure
made of aluminum foil (you may assume a reasonable value for its thickness.) The conduc-
tivity of aluminum is 3.5x107 S/m. Over what frequency range can this shield protect our
equipment assuming the same 50-dB attenuation requirement of the previous problem?
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2.22 A uniform plane wave propagating towards the positive z-direction in empty space has an
electric field at z = 0 that is a linear superposition of two components of frequencies w;
and w>:

E(0,t) = % (E,e/®1t 4 E,e/w2t)

Determine the fields E(z,t) and H(z,t) at any point z.

2.23 An electromagnetic wave propagating in a lossless dielectric is described by the electric and
magnetic fields, E(z) = XE(z) and H(z) = y H(z), consisting of the forward and backward
components:

E(z) =E,e/* + E_e/k*
H(z) = %(aeﬂ'kz —E_e/*?)

a. Verify that these expressions satisfy all of Maxwell’s equations.

b. Show that the time-averaged energy flux in the z-direction is independent of z and is
given by:

_1 * _ 1 2 2
P, =y Re[E(2)H (Z)]—2n(|E+\ |E_1?)

c. Assuming u = o and € = ne, so that n is the refractive index of the dielectric, show
that the fields at two different z-locations, say at z = z; and z = z, are related by the
matrix equation:

E(zy) | coskl  jn~'sinkl E(zy)
noH(zy) | | jnsinkl cos ki noH (z2)
where [ = z; — z;, and we multiplied the magnetic field by no = +/Ho/€o in order to

give it the same dimensions as the electric field.

d. Let Z(z)= _E@) and Y (z)= L be the normalized wave impedance and admit-
noH (2) Z(z)

tance at location z. Show the relationships at at the locations z; and z; :

Z(z)+jn~! tankl
1+ jnZ(zp)tankl’

Y (z,)+jntankl

Z(z)= L+jn1Y (z:)tankl

Y(z1)=
What would be these relationships if had we normalized to the medium impedance,
thatis, Z(z)= E(z)/nH(z)?

2.24 Show that the time-averaged energy density and Poynting vector of the obliquely moving
wave of Eq. (2.10.10) are given by

1.1 L1 1 ) 2
= = = . + = . = =
w 2Re[ZeE E 2uH H*] 2e(lAI +|B|%)

1 , 1 N o 1
P=_Re[ExH"]=2 — (JA|> + |B|*)= (2cos @ + &sin @) — (|A|? + |B|?)
2 2n 2n
where 2’ = 2 cos 0 + X sin 0 is the unit vector in the direction of propagation. Show that the
energy transport velocity is v=P/w = c2.
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2.25 A uniform plane wave propagating in empty space has electric field:

E(x,7,t)= ?Eoejwre—jk<x+z)/ﬁ, k = Cﬂ
0

a. Inserting E(x, z,t) into Maxwell’s equations, work out an expression for the corre-
sponding magnetic field H(x, z, t).
b. What is the direction of propagation and its unit vector k?

c. Working with Maxwell’s equations, determine the electric field E(x, z, t) and propaga-
tion direction Kk, if we started with a magnetic field given by:

H(x,z,t)= ?Hoejwte—jk(v@zfx)/z
2.26 A linearly polarized light wave with electric field E, at angle 6 with respect to the x-axis

is incident on a polarizing filter, followed by an identical polarizer (the analyzer) whose
primary axes are rotated by an angle ¢ relative to the axes of the first polarizer, as shown

in Fig. 2.14.1.
y
analyzer ‘ ig

polarizer

Fig. 2.14.1 Polarizer-analyzer filter combination.

Assume that the amplitude attenuations through the first polarizer are a;, a, with respect
to the x- and y-directions. The polarizer transmits primarily the x-polarization, so that
a, < aj. The analyzer is rotated by an angle ¢ so that the same gains a;, a; now refer to
the x’- and y’-directions.

a. Ignoring the phase retardance introduced by each polarizer, show that the polarization
vectors at the input, and after the first and second polarizers, are:

Ey =%cos 0 +ysin0
E, =Xa, cos0 + ya,sin 0

E; = % (a%cos ¢ cos 0 + aa, sin ¢ sin 0) +¥' (a3 cos ¢p sin @ — a,a, sin ¢ cos 0)

where {X,V'} are related to {%X,V} as in Problem 4.7.

b. Explain the meaning and usefulness of the matrix operations:
a O cos¢ sing a O cos 0 d
0 ax —sin¢g cos¢ 0 a» sin 0 an

cos¢p —sing a 0 cos¢p sing a 0 cos 0
sin ¢ cos ¢ 0 a» —sin¢g cos¢ 0 a» sin
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c. Show that the output light intensity is proportional to the quantity:
I =(aj cos? 0 + aj sin® 0) cos® ¢ + a%as sin® ¢ +
+2aya; (a2 — a3)cos ¢ sin ¢ cos 0 sin O

d. If the input light were unpolarized, that is, incoherent, show that the average of the
intensity of part (c) over all angles 0 < 6 < 27t, will be given by the generalized Malus’s
law:

- 1, , .
I= (a} + a3)cos? ¢ + aja’ sin® ¢
The case a, = 0, represents the usual Malus’ law.

2.27 First, prove the equivalence of the three relationships given in Eq. (2.12.11). Then, prove the
following identity between the angles 0, 0’:

(1-—BcosB)(1+PcosO’)=(1+PcosO)(1—pPcosh)=1-f>

Using this identity, prove the alternative Doppler formulas (2.12.12).

2.28 In proving the relativistic Doppler formula (2.12.14), it was assumed that the plane wave
was propagating in the z-direction in all three reference frames S, S;, Sp. If in the frame S
the wave is propagating along the 0-direction shown in Fig. 2.12.2, show that the Doppler
formula may be written in the following equivalent forms:

¥y (1 — Bpcos0)

_ 3 _ fa B [1—BcosO,
ya(1 = BacosO) = fay(1 = Bcos0a) = y(1+ BcosBy) =la 1+ BcosBy

fo =f

where

Vi v 1 1 1

Ba=-"0 Bo="", B="_, )’a:\/T—B%, Yb:m! Y=o p

and Vv is the relative velocity of the observer and source given by Eq. (2.12.7), and 64, 0)
are the propagation directions in the frames S,, S,. Moreover, show the following relations
among these angles:

cos 0 — Ba
1—Bycos0’

cos 0 — By
1-Bpcosf’

cosO, — B

0, = —_—
€08 Ua 1 - BcosO,

cos Oy = cos Oy =
2.29 Ground-penetrating radar operating at 900 MHz is used to detect underground objects, as
shown in the figure below for a buried pipe. Assume that the earth has conductivity o =
1073 S/m, permittivity € = 9¢y, and permeability 4 = po. You may use the “weakly lossy

dielectric” approximation.
antenna h

d
buried pipe

a. Determine the numerical value of the wavenumber k = B — jx in meters~!, and the
penetration depth § = 1/« in meters.

b. Determine the value of the complex refractive index n. = n, — jn; of the ground at
900 MHz.
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c. With reference to the above figure, explain why the electric field returning back to the

radar antenna after getting reflected by the buried pipe is given by

‘ Eret |2 4V/h? + d?
Eret |° _ ogp | -2V 4
E() 6

where Ej is the transmitted signal, d is the depth of the pipe, and h is the horizontal
displacement of the antenna from the pipe. You may ignore the angular response of
the radar antenna and assume it emits isotropically in all directions into the ground.

. The depth d may be determined by measuring the roundtrip time t (h) of the trans-

mitted signal at successive horizontal distances h. Show that t (h) is given by:

th)= 2" J@2 1 n2

Co

where n, is the real part of the complex refractive index nc.

. Suppose t(h) is measured over the range —2 < h < 2 meters over the pipe and its

minimum recorded value is tyi, = 0.2 usec. What is the depth d in meters?
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Pulse Propagation in Dispersive Media

In this chapter, we examine some aspects of pulse propagation in dispersive media and
the role played by various wave velocity definitions, such as phase, group, and front ve-
locities. We discuss group velocity dispersion, pulse spreading, chirping, and dispersion
compensation, and look at some slow, fast, and negative group velocity examples. We
also present a short introduction to chirp radar and pulse compression, elaborating on
the similarities to dispersion compensation. The similarities to Fresnel diffraction and
Fourier optics are discussed in Sec. 20.1. The chapter ends with a guide to the literature
on these diverse topics.

3.1 Propagation Filter

As we saw in the previous chapter, a monochromatic plane wave moving forward along
the z-direction has an electric field E (z) = E (0) e /%2, where E (z) stands for either the x
or the y component. We assume a homogeneous isotropic non-magnetic medium (u =
o) with an effective permittivity € (w); therefore, k is the frequency-dependent and
possibly complex-valued wavenumber defined by k(w)= w-+/e(w)ug. To emphasize
the dependence on the frequency w, we rewrite the propagated field as:*

E(z,w)= e *E(0,w) (3.1.1)
Its complete space-time dependence will be:

elOE (7, ) = e/ (@WK £ (0, ) (3.1.2)

A wave packet or pulse can be made up by adding different frequency components,
that is, by the inverse Fourier transform:

E(z,t)= %J e/ W=k F (0 w)dw (3.1.3)

Twhere the hat denotes Fourier transformation.
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Setting z = 0, we recognize E (0, w) to be the Fourier transform of the initial wave-
form E (0, t), that is,

00

E(o,r):%f eIOUE (0, w)dw < E(O,w)=J e JOUE (0, t) dt (3.1.4)

—

The multiplicative form of Eq. (3.1.1) allows us to think of the propagated field as
the output of a linear system, the propagation filter, whose frequency response is

H(z,w)=e /kwz (3.1.5)

Indeed, for a linear time-invariant system with impulse response h(t) and corre-
sponding frequency response H (w), the input/output relationship can be expressed
multiplicatively in the frequency domain or convolutionally in the time domain:

Eou (W)= H(w) Ein (W) . N
Ein(w) H((L)) Eout(w)

Eou (0) = '[jo h(t- t,)Em(t,)dt,

For the propagator frequency response H(z,w)= e /(@) we obtain the corre-
sponding impulse response:

h(z,t)= %J eIOH (2, w)dw = %J el (wt=k2) g ¢y (3.1.6)

Alternatively, Eq. (3.1.6) follows from (3.1.3) by setting E (0, w) = 1, corresponding
to an impulsive input E(0,t)= 6(t). Thus, Eq. (3.1.3) may be expressed in the time
domain in the convolutional form:

E(0, 1) E(z, 1) ® , N
h(z, 1) E(z,t)= J h(z,t —t')E(0,t)dt (3.1.7)

Example 3.1.1: For propagation in a dispersionless medium with frequency-independent per-
mittivity, such as the vacuum, we have k = w/c, where ¢ = 1/./u€. Therefore,

H(z,w)= e k@72 _ pmjwzlc _ pyre delay by z/c

h(z,t)= LJ el (@W=k2) doy = LJ e/ t=219gquw = §(t — z/c)
2T J - 27T J -0

and Eq. (3.1.7) gives E(z,t)= E(0,t — z/c), in agreement with the results of Sec. 2.1. 0O

The reality of h(z, t) implies the hermitian property, H (z, —w)*= H(z, w), for the
frequency response, which is equivalent to the anti-hermitian property for the wave-
number, k (—w)*= —k(w).
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3.2 Front Velocity and Causality

For a general linear system H (w)= |H (w) |e/¢(®) one has the standard concepts of
phase delay, group delay, and signal-front delay [193] defined in terms of the system’s
phase-delay response, that is, the negative of its phase response, ¢ (w)= —Arg H (w):

(w) de (w) - P(w)
”‘quw' tgz%, tfz(m%v

(3.2.1)

The significance of the signal-front delay ty for the causality of a linear system is
that the impulse response vanishes, h (t) = 0, for ¢ < tr, which implies that if the input
begins at time t = ¢, then the output will begin at t = to + ts:

Ein(t)=0 for t <ty = Eou(t)=0 for t<ty+ tf (3.2.2)

To apply these concepts to the propagator filter, we write k () in terms of its real
and imaginary parts, k (w) = B(w)—jx(w), so that

H(z,w)= e K7 _ g=x(@zp=jBw)z o ()= B(w)z (3.2.3)

Then, the definitions (3.2.1) lead naturally to the concepts of phase velocity, group
velocity, and signal-front velocity, defined through:

ty=—, tg=—, tf=— (3.2.4)

For example, t; = d¢p/dw = (dB/dw)z = z/vy, and similarly for the other ones,
resulting in the definitions:

w dw

Vp = m, Vg = ﬁ, (3.2.5)

ve = lim @
F7 o= B(w)
The expressions for the phase and group velocities agree with those of Sec. 1.18.
Under the reasonable assumption that €(w)— €y as w — oo, which is justified on
the basis of the permittivity model of Eq. (1.11.11), we have k(w)= w-+/€(w)uy —
w./€gly = w/c, where c is the speed of light in vacuum. Therefore, the signal front
velocity and front delay are:

vp = c = rf=§ (3.2.6)

lim S lim —— =
w=-o B(w) w-ow/c

Thus, we expect that the impulse response h (z, t) of the propagation medium would
satisfy the causality condition:

h(z,0)=0, for t<t = f (3.2.7)

We show this below. More generally, if the input pulse at z = 0 vanishes for t < ¢y,
the propagated pulse to distance z will vanish for t < ty + z/c. This is the statement
of relativistic causality, that is, if the input signal has a sharp, discontinuous, front at
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| ty=zlc |
b ty=2/v, 4»\/ shifted peak
Ve

pulse peak —__

EO,0)—__

signal front

to fo+1¢

fe—— t;=2/c ———|
Fig. 3.2.1 Causal pulse propagation, but with superluminal group velocity (v4 > ).

some time t(, then that front cannot move faster than the speed of light in vacuum and
cannot reach the point z faster than z/c seconds later. Mathematically,

E0,t)=0 for t<ty = E(z,t)=0 for t<t0+§ (3.2.8)

Fig. 3.2.1 depicts this property. Sommerfeld and Brillouin [192,1287] originally
showed this property for a causal sinusoidal input, that is, E (0, t) = e/®oly (¢).

Group velocity describes the speed of the peak of the envelope of a signal and is a
concept that applies only to narrow-band pulses. As mentioned in Sec. 1.18, it is possi-
ble that if this narrow frequency band is concentrated in the vicinity of an anomalous
dispersion region, that is, near an absorption peak, the corresponding group velocity
will exceed the speed of light in vacuum, v, > ¢, or even become negative depending on
the value of the negative slope of the refractive index dn, /dw < 0.

Conventional wisdom has it that the condition v; > ¢ is not at odds with relativity
theory because the strong absorption near the resonance peak causes severe distortion
and attenuation of the signal peak and the group velocity loses its meaning. However, in
recent years it has been shown theoretically and experimentally [266,267,285] that the
group velocity can retain its meaning as representing the speed of the peak even if v, is
superluminal or negative. Yet, relativistic causality is preserved because the signal front
travels with the speed of light. It is the sharp discontinuous front of a signal that may
convey information, not necessarily its peak. Because the pulse undergoes continuous
reshaping as it propagates, the front cannot be overtaken by the faster moving peak.

This is explained pictorially in Fig. 3.2.1 which depicts such a case where v4 > ¢,
and therefore, t; < tr. For comparison, the actual field E(z, t) is shown together with
the input pulse as if the latter had been traveling in vacuum, E (0, t — z/c), reaching the
point z with a delay of ty = z/c. The peak of the pulse, traveling with speed v, gets
delayed by the group delay t; when it arrives at distance z. Because t4 < tr, the peak of
E(z,t) shifts forward in time and occurs earlier than it would if the pulse were traveling
in vacuum. Such peak shifting is a consequence of the “filtering” or “rephasing” taking
place due to the propagator filter’s frequency response e Jk(w)z,

The causality conditions (3.2.7) and (3.2.8) imply that the value of the propagated
field E(z,t) at some time instant t > ty + z/c is determined only by those values of
the input pulse E (0, t") that are z/c seconds earlier, that is, for to < t’ <t — z/c. This
follows from the convolutional equation (3.1.7): the factor h(z,t — t’) requires that
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t—t' = z/c, the factor E(0,t") requires t’' > ty, yielding to <t' <t — z/c. Thus,
t-z/c
E(z,t)= j h(z,t —t)E(0,t")dt’, for t>ty+z/c (3.2.9)
to
For example, the value of E(z,t) att = t; + ty = t1 + z/c is given by:
t
E(z,ti +tr)= | h(z,t; +tr—t')E(0,t")dt’
to
Thus, as shown in Fig. 3.2.2, the shaded portion of the input E(0,t") over the time
interval typ < t' < t; determines causally the shaded portion of the propagated signal
E(z,t) over the interval to + tr < t < {; + tr. The peaks, on the other hand, are not

causally related. Indeed, the interval [to,t;] of the input does not include the peak,
whereas the interval [ty + tf, t1 + t¢] of the output does include the (shifted) peak.

lg=2/vy - EGn+t)

EO.0)— E@1)—
signal front

To+1; Li+10
}<7 ty=zlc ———+]
O — tf=Z/C —

Fig. 3.2.2 Shaded areas show causally related portions of input and propagated signals.

Next, we provide a justification of Eq. (3.2.8). The condition E (0,t)= 0 for t < ty,
implies that its Fourier transform is:

00

E0,w)= J e JOIE (0, t)dt

to

- efwromo,w):j eTUE (0, + to)dt  (3.2.10)
0

where the latter equation was obtained by the change of integration variable from t to
t+ to. It follows now that e/®%E (0, w) is analytically continuable into the lower-half co-
plane. Indeed, the replacement e /@ by e~/ (W=JDT = p=0Te=j0l with g > 0 and t > 0,
improves the convergence of the time integral in (3.2.10). We may write now Eq. (3.1.3)
in the following form:

E(z,t)= — e J

and assume that t < to+z/c. A consequence of the permittivity model (1.11.11) is that
the wavenumber k (w) has singularities only in the upper-half w-plane and is analytic
in the lower half. For example, for the single-resonance case, we have:

J(wt—wty—kz) eJUUfoE(O w)dw (3.2.11)

Iy, w2 + _r
w? zeros = w§ + 4
e(w)=€ |1+ —H———— >
w§ — w2 + jwy Jy
poles = 5 x + /w3 -
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Thus, the integrand of Eq. (3.2.11) is analytic in the lower-half w-plane and we
may replace the integration path along the real axis by the lower semi-circular counter-
clockwise path Cg at a very large radius R, as shown below:

E(z,1) = J J(wt-wto=ka) gt (0, ) dw Creal
27T 0
R
“lim [ ellwt-wtk2) e/ E (0, w)dw ™
R—o0 27T J g Cr

But for large w, we may replace k (w) = w/c. Thus,

E(z,t)= lim L[ gwt—ti-zio) el®Wh E(0, w)dw
R—o00 2TT Jy
Because t — ty — z/c < 0, and under the mild assumption that e/®t E (0, w) — 0 for
|| = R — oo in the lower-half plane, it follows from the Jordan lemma that the above
integral will be zero. Therefore, E(z,t)= 0 fort < ty + z/c.
As an example, consider the signal E (0,t) = e~ @(t=t0) g/wo(t=to) 33 (¢ — ¢4), that is, a
delayed exponentially decaying (a > 0) causal sinusoid. Its Fourier transform is

v
J(w —wo — ja)
which is analytic in the lower half-plane and converges to zero for |w| — oco.

The proof of Eq. (3.2.7) is similar. Because of the analyticity of k (w), the integration
path in Eq. (3.1.6) can again be replaced by Cg, and k (w) replaced by w/c:

. e—jwto . .
EO,w)=—"—— = @YOE@O,w)=
Jlw —wo —ja)

1 :
h(z,t)= llm o e eJ“’(t’Z/C)da), for t < z/c
This integral can be done exactly,T and leads to a standard representation of the

delta function:
sin(R(t —z/c))

mw(t—2z/c)

which vanishes since we assumed that t < z/c. For t > z/c, the contour in (3.1.6) can be
closed in the upper half-plane, but its evaluation requires knowledge of the particular
singularities of k (w).

h(z,t):lgim =0(t—-2z/c)

3.3 Exact Impulse Response Examples

Some exactly solvable examples are given in [199]. They are all based on the following
Fourier transform pair, which can be found in [194]:¥

H(Z,w)= eﬁjk(w)z — e—rfw/jw+a+b1/jw+a—lo

L(brr - ¢2) (3:3.1)

h(z,t)=8(t —tp)e " + — = by e My (t—ty)
-t

f

Tset w = Re/?, dw = jRe/?d0, and integrate over —11 < < 0
*see the pair 863.1 on p. 110 of [194].
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where I, (x) is the modified Bessel function of the first kind of order one, and tr = z/c
is the front delay. The unit step u (¢ — tr) enforces the causality condition (3.2.7). From
the expression of H (z, w), we identify the corresponding wavenumber:

k(w):%]\/jw+a+b\/jw+afb (3.3.2)

The following physical examples are described by appropriate choices of the param-
eters a, b, c in Eq. (3.3.2):

1. a=0, b=0 — propagation in vacuum or dielectric
2. a>0, b=0 — weakly conducting dielectric

3. a=b>0 — medium with finite conductivity

4. a=0, b=jwp — lossless plasma

5. a=0, b=jw, — hollow metallic waveguide

6. a+b=R'/L", a—b=G'/C'" - lossytransmission line

The anti-hermitian property k(—w)*= —k(w) is satisfied in two cases: when the
parameters a, b are both real, or, when a is real and b imaginary.

Incase 1, wehave k = w/cand h(z,t)= 6(t —tf)= 6(t —z/c). Settinga = cx > 0
and b = 0, we find for case 2:

—Jjx (3.3.3)

which corresponds to a medium with a constant attenuation coefficient « = a/c and
a propagation constant § = w/c, as was the case of a weakly conducting dielectric of
Sec. 2.7. In this case c is the speed of light in the dielectric, i.e. ¢ = 1/,/u€ and a is
related to the conductivity o by a = cx = 0/2€. The medium impulse response is:

h(z,t)=06(t—tp)e % =5(t —z/c)e **

Eq. (3.1.7) then implies that an input signal will travel at speed ¢ while attenuating
with distance:
E(z,t)=e **E(0,t — z/c)

Case 3 describes a medium with frequency-independent permittivity and conductiv-
ity €, o with the parameters a = b = o/2€ and ¢ = 1/.,/Hp€. Eq. (3.3.2) becomes:

k=% 1-; < (3.3.4)
C we

Ii(ayt? — (z/c)?
h(z,t)=8(t—z/c)e ™/ + Q az e yu(t—z/c) (3.3.5)

Vt2 —(z/c)? c

A plot of h(z,t) for t > tr is shown below.

and the impulse response is:
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h(z,1)

1302

L]

0 s

For large t, h(z,t) is not exponentially decaying, but falls like 1/t3/2. Using the
large-x asymptotic form I (x) — e*/+/27Tx, and setting ,/t2 — t,% — t for t > ty, we find

—at

h(z,t)— t>tr

e = A
tvomat T T t/2mat’

Case 4 has parameters a = 0 and b = jw), and describes propagation in a plasma,
where w), is the plasma frequency. Eq. (3.3.2) reduces to Eq. (1.15.2):

k = %\/wz - w}

To include evanescent waves (having w < wyp), Eq. (3.3.2) may be written in the more
precise form that satisfies the required anti-hermitian property k (—w)*= —k(w):

. 2 .
1 | sign(w)yw? —wp, if |wl=w,
k(w)= = ' (3.3.6)
¢ —jyJw? — w?, if |wl| < wp
When |w]| < wy, the wave is evanescent in the sense that it attenuates exponentially
with distance:
eIkz — pmzjwp-w?/c

For numerical evaluation using MATLAB, it proves convenient to leave k (w) in the
form of Eq. (3.3.2), that is,

_ T o —
k(w)= C\/J(w+w,,)\/J(w wp)

which evaluates correctly according to Eq. (3.3.6) using MATLAB’s rules for computing
square roots (e.g., \/£j = e*//4),

Because b is imaginary, we can use the property I (jx) = jJ; (x), where J; (x) is the
ordinary Bessel function. Thus, setting a = 0 and b = jw),, in Eq. (3.3.1), we find:

5 i)

2 _ 2
t tf

h(z,t)= 5(t—tf)— wptru(t —tr) 3.3.7)

Aplotof h(z,t) for t > tr is shown below.
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A
12
0 VAN -7
h(z,1)

The propagated output E(z,t) due to a causal input, E(0,t)= E(0,t)u(t), is ob-
tained by convolution, where we must impose the conditions t’ > tf and t —t' = 0:

E(z,t):ro h(z,t')E(0,t —t')dt’

which for t > ¢y leads to:

t Ji(wp t2 —t2
E(Z,t)=E(0,t—tf)—J Mw,{,tﬂs(o,t—t’)dt’ (3.3.8)
ty 2 —tf

We shall use Eqg. (3.3.8) in the next section to illustrate the transient and steady-
state response of a propagation medium such as a plasma or a waveguide. The large-t
behavior of h(z,t) is obtained from the asymptotic form:

Jl(x)ﬂ,/icos(xfir), x> 1
X 4

2wy te 3
h(Z, t)— —W CcoSs (U)pt — 7) , > tf (3.3.9)

Case 5 is the same as case 4, but describes propagation in an air-filled hollow metallic
waveguide with cutoff frequency w.. We will see in Chap. 9 that the dispersion relation-
ship (3.3.6) is a consequence of the boundary conditions on the waveguide walls, and
therefore, it is referred to as waveguide dispersion, as opposed to material dispersion
arising from a frequency-dependent permittivity € (w).

Case 6 describes a lossy transmission line (see Sec. 11.6) with distributed (that is, per
unit length) inductance L', capacitance C’, series resistance R’, and shunt conductance
G'. This case reduces to case 3 if G’ = 0. The corresponding propagation speed is
c =1/+/L'C’. The w-k dispersion relationship can be written in the form of Eq. (11.6.5):

' 4 ¥ 4 4 y 4 — 4 4 _'R, _'G,
kf—J\/(R + jwL’) (G + jwC') = wVL'C \/(1 J—wL,) (1 J—wc,>

which leads to

3.4 Transient and Steady-State Behavior

The frequency response e /kK(®)Z ig the Fourier transform of h (z, t), but because of the
causality condition h (z,t) = 0 for t < z/c, the time-integration in this Fourier transform
can be restricted to the interval z/c < t < oo, that is,

o0

e Ik(w)z _ J/ e IOty (z,t)dt (3.4.1)
z/c
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We mention, parenthetically, that Eq. (3.4.1), which incorporates the causality con-
dition of h(z,t), can be used to derive the lower half-plane analyticity of k (w) and of
the corresponding complex refractive index n(w) defined through k (w)= wn(w)/c.
The analyticity properties of n(w) can then be used to derive the Kramers-Kronig dis-
persion relations satisfied by n(w) itself [197], as opposed to those satisfied by the
susceptibility ¥ (w) that were discussed in Sec. 1.17.

When a causal sinusoidal input is applied to the linear system h(z, t), we expect the
system to exhibit an initial transient behavior followed by the usual sinusoidal steady-
state response. Indeed, applying the initial pulse E(0,t)= e/“olu(t), we obtain from
the system’s convolutional equation:

t t
E(z,t)= J h(z,tE(0,t —t')dt = j h(z,t)e/wo =t gy
z/c zlc

where the restricted limits of integration follow from the conditions t’ > z/cand t—t' >
0 as required by the arguments of the functions h(z,t’) and E(0,t — t’). Thus, for
t > z/c, the propagated field takes the form:

t
E(z,t)= eJWJ e/ h(z, ') dt’ (3.4.2)
z/c
In the steady-state limit, t — oo, the above integral tends to the frequency response
(3.4.1) evaluated at w = wy, resulting in the standard sinusoidal response:

t
eiwvfj e’jwot’h(z,t’)dt’—»ej“’UtJ e IO h(z,t')dt' = H(z,wo)e/™", or,

z/c zlc
Esteady (2, 1) = @/l JKWOZ = for ¢t 7/c (3.4.3)

Thus, the field E(z,t) eventually evolves into an ordinary plane wave at frequency
wy and wavenumber k (wo) = B(wg) —jx (wq). The initial transients are given by the
exact equation (3.4.2) and depend on the particular form of k (w). They are generally
referred to as “precursors” or “forerunners” and were originally studied by Sommerfeld
and Brillouin [192,1287] for the case of a single-resonance Lorentz permittivity model.

It is beyond the scope of this book to study the precursors of the Lorentz model.
However, we may use the exactly solvable model for a plasma or waveguide given in
Eq. (3.3.7) and numerically integrate (3.4.2) to illustrate the transient and steady-state
behavior.

Fig. 3.4.1 shows on the left graph the input sinusoid (dotted line) and the steady-
state sinusoid (3.4.3) with kg computed from (3.3.6). The input and the steady output
differ by the phase shift —koz. The graph on the right shows the causal output for
t = ty computed using Eq. (3.3.8) with the input E (0, f) = sin(wot)u(t). During the
initial transient period the output signal builds up to its steady-state form. The steady
form of the left graph was not superimposed on the exact output because the two are
virtually indistinguishable for large t. The graph units were arbitrary and we chose the
following numerical values of the parameters:

c=1 wp=1, wo=3, tr=z=10

The following MATLAB code illustrates the computation of the exact and steady-state
output signals:



3.4. Transient and Steady-State Behavior 93

input and steady-state output exact output

Fig. 3.4.1 Transient and steady-state sinusoidal response.

wp = 1; wO = 3; tf = 10;
kO = -j * sqrt(3*wO0+wp)) * sqrt(j*(w0-wp)); % equivalent to Eq. (3.3.6)

t = Tinspace(0,40, 401);
N = 15; K = 20; % use N-point Gaussian quadrature, dividing [tf, t] into K subintervals

for i=1:length(t),

if t(i)<tf,
Ez(i) = 0;
Es(i) = 0;
else
[w,x] = quadrs(linspace(tf,t(i),K), N); % quadrature weights and points
h = - wpA2 * tf * Jlover(wp*sqrt(x.A2 - tfA2)) .* exp(F*wO*(t(i)-x));
Ez(i) = exp(G*w0*(t(i)-tf)) + w’*h; % exact output
Es(i) = exp(j*w0*t(i)-j*k0*tf); % steady-state
end

end
es = imag(Es); ez = imag(Ez); % input is E(0,t) = sin(wqt) u(t)

figure; plot(t,es); figure; plot(t,ez);

The code uses the function quadrs (see Appendix L) to compute the integral over the
interval [tr,t], dividing this interval into K subintervals and using an N-point Gauss-
Legendre quadrature method on each subinterval.

We wrote a function J1lover to implement the function J; (x) /x. The function uses
the power series expansion, J; (x)/x = 0.5(1 — x2/8 + x*/192), for small x, and the
built-in MATLAB function besseTj for larger x:

function y = Jlover(x)
y = zeros(size(x)); %y has the same size as x

xmin = le-4;

i = find(abs(x) < xmin);
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y(@) = 0.5 * (1 - x(i).A2 / 8 + x(i).A4 / 192);

i = find(abs(x) >= xmin);
y(i) = besselj(1, x(i)) ./ x(i);

input and steady-state evanescent output exact evanescent output

1t — ’ ] P - ]
-1t . 1 -1t
I I
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
¢ ¢

Fig. 3.4.2 Transient and steady-state response for evanescent sinusoids.

Fig. 3.4.2 illustrates an evanescent wave with wg < wyp. In this case the wavenumber
becomes pure imaginary, kg = —jxg = —j\/wf, - w(z)/c, leading to an attenuated steady-
state waveform:

Esteady (2, 1) = @/@0t7KoZ — gitotgmeoz = ¢ > %
The following numerical values were used:
c=1 wp=1, wp=09, tr=z=5
resulting in the imaginary wavenumber and attenuation amplitude:
ko = —jog = —0.4359j, Hgy = e J/koZ = g=%7 = .1131

We chose a smaller value of z in order to get a reasonable value for the attenuated
signal for display purposes. The left graph in Fig. 3.4.2 shows the input and the steady-
state output signals. The right graph shows the exact output computed by the same
MATLAB code given above. Again, we note that for large ¢ (here, ¢ > 80), the exact
output approaches the steady one.

Finally, in Fig. 3.4.3 we illustrate the input-on and input-off transients for an input
rectangular pulse of duration t4, and for a causal gaussian pulse, that is,

_ 2
E(0,t)=sin(wot) [u(t)—u(t—tg)], E(0,t)= e/ exp [—%} u (t)
0

The input-off transients for the rectangular pulse are due to the oscillating and de-
caying tail of the impulse response h(z,t) given in (3.3.9). The following values of the
parameters were used:

c=1 wp=1, wo=3, tr=2z=30, t3=20, tc=Tog=5
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propagation of rectangular pulse propagation of gaussian pulse

input output 1| input output

0 ﬂl\/\ o I ﬂﬂl\v
v Uv “v

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Fig. 3.4.3 Rectangular and gaussian pulse propagation.

The MATLAB code for the rectangular pulse case is essentially the same as above
except that it uses the function upulse to enforce the finite pulse duration:

wp = 1; wo = 3; tf = 30; td = 20; N = 15; K = 20;
kO = -3 * sqre(G*(wo+wp)) * sqrt(3*(wo-wp));

t = linspace(0,80,801);
EO = exp(3*w0*t) .* upulse(t,td);

for i=1:length(t),

if t(i)<tf,
Ez(i) = 0;
else
[w,x] = quadrs(linspace(tf,t(i),K), N);
h = - wpA2 * tf * Jlover(wp*sqrt(x.A2-tfA2)) .* ...

exp(G*wo* (t(i)-x)) .* upulse(t(i)-x,td);
Ez(i) = exp(G*w0*(t(i)-tf)).*upulse(t(i)-tf,td) + w’*h;
end
end

e0 = imag(E0); ez = imag(Ez);

plot(t,ez,’-’, t,e0,’-");

3.5 Pulse Propagation and Group Velocity

In this section, we show that the peak of a pulse travels with the group velocity. The con-
cept of group velocity is associated with narrow-band pulses whose spectrum E0,w)
is narrowly concentrated in the neighborhood of some frequency, say, wg, with an ef-
fective frequency band |w — wg| < Aw, where Aw < wy, as depicted in Fig. 3.5.1.
Such spectrum can be made up by translating a low-frequency spectrum, say F(0,w),
to wy, thatis, E (0, w) = F (0, w — wy). From the modulation property of Fourier trans-
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FO, w)  E0, w) = FO, w-wp)

Fig. 3.5.1 High-frequency sinusoid with slowly-varying envelope.

forms, it follows that the corresponding time-domain signal E (0, t) will be:

E,w)=F(0,w - wy) = ‘ E(0,t)= e/®IF(0,t) (3.5.1)

that is, a sinusoidal carrier modulated by a slowly varying envelope F (0, t), where
1 ® jw't ’ ’ 1 ® j(w—wo)t
F(0,t)= — e/CTE (0, w)dw = — e/ OE(0, w0 — wp)dw  (3.5.2)
2T J - 2T J -
Because the integral over w’ = w—w is effectively restricted over the low-frequency
band |w’| < Aw, the resulting envelope F (0, t) will be slowly-varying (relative to the

period 211/ wy of the carrier.) If this pulse is launched into a dispersive medium with
wavenumber k (w), the propagated pulse to distance z will be given by:

E(z,t)= i J e/ (W=kD F (0, ¢y — o) dew (3.5.3)

Defining ko = k (wq), we may rewrite E(z, t) in the form of a modulated plane wave:

‘ E(z,t)= ¢/ (@it=ko2) p (7 ) (3.5.4)

where the propagated envelope F (z,t) is given by

1 © . L
F(z,t)= ot J el (w-wo)t=jk=ko)Z (0 oy — ) dew (3.5.5)

This can also be written in a convolutional form by defining the envelope impulse
response function g (z, t) in terms of the propagator impulse response h(z,t):

h(z,t) = e/ (@ot=k?) g (7 1) (3.5.6)

so that .
g(z, )= ﬁj e/l tmik=koz g 3.5.7)

Then, the propagated envelope can be obtained by the convolutional operation:

F(0, 1) F(z, 1) ®
gz — F(z,t)=J g(z,t'")F(0,t —t')dt' (3.5.8)
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Because F (0, w — wq) restricts the effective range of integration in Eq. (3.5.5) to a
narrow band about w, one can expand k (w) to a Taylor series about wg and keep only
the first few terms:

k(w)=k0+k6(w—wo)-t-%ké,'(w—wo)z-s-- . (3.5.9)
where )
., dk . dk
ko = k(wo), kO = doo o y kO = do? o (3510)

If k (w) is real, we recognize k, as the inverse of the group velocity at frequency wo:

dx
dw

. (3.5.11)

wo vg

’
0

If k;, is complex-valued, ki, = B; — j&, then its real part determines the group velocity
through By, = 1/vy, or, v4 = 1/B,. The second derivative k; is referred to as the
“dispersion coefficient” and is responsible for the spreading and chirping of the wave
packet, as we see below.

Keeping up to the quadratic term in the quantity k (w) —kq in (3.5.5), and changing
integration variables to w’ = w — wg, we obtain the approximation:

S e , ,

F(z,0)= EJ el (t=ko2) ~jke 20" 12 £ (0 0") dew (3.5.12)

In the linear approximation, we may keep k and ignore the k; term, and in the

quadratic approximation, we keep both ki, and k(. For the linear case, we have by
comparing with Eq. (3.5.2):

1 ® o’ ! I 7 7 ’
F(z,t)= EJ @ =R F(0, ') dw' = F(0,t — k{z) (3.5.13)
Thus, assuming that k is real so that k; = 1/v,, Eq. (3.5.13) implies that the initial

envelope F(0,t) is moving as whole with the group velocity v4. The field E(z,t) is
obtained by modulating the high-frequency plane wave e/ (®ot=k02) with this envelope:

E(z,t)= &/ (@ot=ko?) F (0, t — z/v,) (3.5.14)

Every point on the envelope travels at the same speed vy, that is, its shape remains
unchanged as it propagates, as shown in Fig. 3.5.2. The high-frequency carrier suffers a
phase-shift given by —koz.

Similar approximations can be introduced in (3.5.7) anticipating that (3.5.8) will be
applied only to narrowband input envelope signals F (0, t):

gl(z,t)= ij oI’ (t=koz) —jkizw™ 12 gy (3.5.15)
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Fig. 3.5.2 Pulse envelope propagates with velocity v, remaining unchanged in shape.

This integral can be done exactly, and leads to the following expressions in the linear
and quadratic approximation cases (assuming that k(, k; are real):

linear: g(z,t)=6(t — kyz)

L2
quadratic: M} (3.5.16)

1
g(z,1)= ————=exp [— T
21Tk 2 2jkoz
The corresponding frequency responses follow from Eq. (3.5.15), replacing w’ by w:

linear: G(z,w)= e~Jkozw 2517
quadraticc: G (z, w) = e Jkozw p=jkjzw?/2 (3:5:17)

The linear case is obtained from the quadratic one in the limit k; — 0. We note that
the integral of Eq. (3.5.15), as well as the gaussian pulse examples that we consider later,
are special cases of the following Fourier integral:

% r el (@b w2 gy = (3.5.18)

1 o | - t?
2@+ jb) | 2(a +jb)
where a, b are real, with the restriction that a > 0. The integral for g (z, t) corresponds
to the case a = 0 and b = k{ z. Using (3.5.16) into (3.5.8), we obtain Eq. (3.5.13) in the
linear case and the following convolutional expression in the quadratic one:

linear: F(z,t)=F(0,t — kyz)
0 ’_ k’ 2
quadratic: ~ F(z,t)= J 1 exp [7 (t : ,,OZ) }F(O,tf ¢ydt' (3.5.19)
-~ \2mjky Z 2jko z
and in the frequency domain:
linear: F(z,w)= G(z,w0)E(0,w)= e %2 F (0, w)
(3.5.20)

quadraticc: ~ F(z,w)= G(z, w)E(0, w) = eJkzw-jkizw? 2 (0 )

T Given the polar form a + jb = Re/?, we must choose the square root \/a + jb = R1/2e/0/2
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3.6 Group Velocity Dispersion and Pulse Spreading

In the linear approximation, the envelope propagates with the group velocity vy, re-
maining unchanged in shape. But in the quadratic approximation, as a consequence of
Eq. (3.5.19), it spreads and reduces in amplitude with distance z, and it chirps. To see
this, consider a gaussian input pulse of effective width T:

2 2

F(0,t)=exp [7;?] =  E(0,t)= e/®F(0,t)= e/ exp [72{?] (3.6.1)
0 0

with Fourier transforms F (0, w) and E (0, w) = F (0, w — wy):

F(0,w) =272 e %2 = F(0,w)= 21173 e To(@-w0)?/2 (3.6.2)

with an effective width Aw = 1/7¢. Thus, the condition Aw < wy requires that
Towyo > 1, that is, an envelope with a long duration relative to the carrier’s period.

The propagated envelope F(z,t) can be determined either from Eq. (3.5.19) or from
(3.5.20). Using the latter, we have:

ﬁ(zl W)= /2.,.”_(2) efjk(’]zwfjk(’{zwz/ZefT%wZ/Z _ 2.”..(.(2) e—jk(,zwe—(T%ﬁjk(’{z)wzlz (3.6.3)

The Fourier integral (3.5.18), then, gives the propagated envelope in the time domain:

2 Y
5 (t —ko2z)
F(z,t)= _ L KeZ) 3.6.4

(2,0 T3+ jko z P [ 2(T3 + jkg z) ( )

Thus, effectively we have the replacement T2 — T3+ jky z. Assuming for the moment
that k; and kg are real, we find for the magnitude of the propagated pulse:

4 1/4 o 2.2
|F(Z,l‘)|=|:%:| exp[—z(tk&} (3.6.5)

T4+ (ko z (T8 + (kg 2)?)

where we used the property | T3 + jkg z| = /T4 + (ki z)2. The effective width is deter-
mined from the argument of the exponent to be:

\ - L, 2102
2 % 5 1= {Tg + ("TOJ> ] (3.6.6)
0

Therefore, the pulse width increases with distance z. Also, the amplitude of the
pulse decreases with distance, as measured for example at the peak maximum:

4 1/4
|F| T
max —
T3+ (kg z)2

The peak maximum occurs at the group delay t = k;z, and hence it is moving at the
group velocity v4 = 1/kg.

The effect of pulse spreading and amplitude reduction due to the term kj, is referred
to as group velocity dispersion or chromatic dispersion. Fig. 3.6.1 shows the amplitude
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Fig. 3.6.1 Pulse spreading and chirping.

decrease and spreading of the pulse with distance, as well as the chirping effect (to be
discussed in the next section.)

Because the frequency width is Aw = 1/T(, we may write the excess time spread
AT = k{ z/ Ty in the form AT = k; zAw. This can be understood in terms of the change
in the group delay. It follows from t; = z/v4 = k’z that the change in t; due to Aw
will be: , )

Aty = %Aw = Zﬁ) ZAW = %ZA(U =k"zAw (3.6.7)

which can also be expressed in terms of the free-space wavelength A = 27rc/w:

dt ’
Aty = d—;A/\ = %zm =DzAA (3.6.8)

where D is the “dispersion coefficient”

dak’ 21re dk’ 211C
p= 2K _ _enedk__eme, . 3.6.9
dA A2 dw A2 ( )
where we replaced dA = —(A?/2mr¢c)dw. Since k’ is related to the group refractive
index ng by k" = 1/v4 = ng/c, we may obtain an alternative expression for D directly

in terms of the refractive index n. Using Eq. (1.18.6), that is, ng = n — Adn/dA, we find

_dk’_ldng_ld[ dn]_ A d?n
D="ax=car “can " Yaal= "can (3.6-10)
Combining Egs. (3.6.9) and (3.6.10), we also have:
. A3 d%n
= m W (3611)

In digital data transmission using optical fibers, the issue of pulse broadening as
measured by (3.6.8) becomes important because it limits the maximum usable bit rate,
or equivalently, the maximum propagation distance. The interpulse time interval of, say,
T} seconds by which bit pulses are separated corresponds to a data rate of f, = 1/T}
bits/second and must be longer than the broadening time, T > Atg, otherwise the
broadened pulses will begin to overlap preventing their clear identification as separate.
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This limits the propagation distance z to a maximum value:t

1 1 1
DzAA<Tp=- =

f 25 e DAN T kA (3.6.12)

Because D = Aty;/zAA, the parameter D is typically measured in units of picosec-
onds per km per nanometer—the km referring to the distance z and the nm to the
wavelength spread AA. Similarly, the parameter k" = Aty;/zAw is measured in units of
ps?/km. As an example, we used the Sellmeier model for fused silica given in Eq. (1.11.16)
to plot in Fig. 3.6.2 the refractive index n (A) and the dispersion coefficient D (A) versus
wavelength in the range 1 < A < 1.6 um.

refractive index dispersion coefficient in ps/km-nm

1.452 30
145} 201
10f
1.448}
2 2
g ] °
1.446}
-10f
1.444f a0l
1.442 ‘ ‘ ‘ ‘ ‘ 80 ‘ ‘ ‘ ‘
1 11 12 13 14 15 16 1 11 12 13 14 15 16
A (um) A (um)

Fig. 3.6.2 Refractive index and dispersion coefficient of fused silica.

We observe that D vanishes, and hence also k”’ = 0, at about A = 1.27 um corre-
sponding to dispersionless propagation. This wavelength is referred to as a “zero dis-
persion wavelength.” However, the preferred wavelength of operation is A = 1.55 um
at which fiber losses are minimized. At A = 1.55, we calculate the following refractive
index values from the Sellmeier equation:

dn ; d?n ; .
n=1444, ——=-11.98x1073 um™!, —— =-4.24x1073 ym? 3.6.13
da HI e pms GO
resulting in the group index ngz = 1.463 and group velocity vy = ¢/ng = 0.684c. Using
(3.6.10) and (3.6.11), the calculated values of D and k'’ are:

2
Ps 1 Ps
D=219 ——, k" =-279 — 3.6.14
km-nm’ km ( )
The ITU-G.652 standard single-mode fiber [244] has the following nominal values of
the dispersion parameters at A = 1.55 pm:

2

ps K’ = —21.67 B% (3.6.15)

D=17 ———
km-nm’ km

Twhere the absolute values of D, k" must be used in Eq. (3.6.12).
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with the dispersion coefficient D (A) given approximately by the fitted linearized form
in the neighborhood of 1.55 ym:

D(A)= 17+ 0.056(A —1550) — P2 with A in units of nm
km - nm

Moreover, the standard fiber has a zero-dispersion wavelength of about 1.31 ym and
an attenuation constant of about 0.2 dB/km.

We can use the values in (3.6.15) to get arough estimate of the maximum propagation
distance in a standard fiber. We assume that the data rate is f;, = 40 Gbit/s, so that the
interpulse spacing is T, = 25 ps. For a 10 picosecond pulse, i.e., To = 10 ps and Aw =
1/To = 0.1 rad/ps, we estimate the wavelength spread to be AA = (A%/21¢)Aw =
0.1275 nm at A = 1.55 pym. Using Eq. (3.6.12), we find the limit z < 11.53 km—a
distance that falls short of the 40-km and 80-km recommended lengths.

Longer propagation lengths can be achieved by using dispersion compensation tech-
niques, such as using chirped inputs or adding negative-dispersion fiber lengths. We
discuss chirping and dispersion compensation in the next two sections.

The result (3.6.4) remains valid [201], with some caveats, when the wavenumber is
complex valued, k(w)= B(w)—jx(w). The parameters k; = By — joy and k; =
By — jog can be substituted in Egs. (3.6.3) and (3.6.4):

F(z, ) = \2rr78 eI Bo-it) 20 o= (i (e 48 2) w212

7 exp[ (t— By~ jay)2)’ }

T2+ gz +jBoz 2(T3+ gz + jBy 2)

(3.6.16)
F(z,t)=

The Fourier integral (3.5.18) requires that the real part of the effective complex width
T3 + jkyz = (T3 + &y z) +jBg z be positive, that is, T3 + «gz > 0. If &t is negative,
this condition limits the distances z over which the above approximations are valid. The
exponent can be written in the form:

(L= (By—jexp)z)® _ (t—Boz+ o) (Th+ iz~ jBy2)
2(13 + gz + jBy 2) 2[ (T2 + o« 2) 2+ (B 2)?]

(3.6.17)

Separating this into its real and imaginary parts, one can show after some algebra
that the magnitude of F (z, t) is given by:*

4 1/4 2,2 2
Ty oGz (t—tg)
F Z’t = 7 77 € I € -
F(z 0] |:(T(2)+O(OZ)2+(BOZ)2:| Xp[Z(T%+aoz)] xp[ 272
(3.6.18)
where the peak of the pulse does not quite occur at the ordinary group delay t; = Bz,

but rather at the effective group delay:

57

ty=PBoz— ———
R

Tnote that if F = AeB, then |F| = |A|eRe(®),
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The effective width of the peak generalizes Eq. (3.6.6)

"N\ 2

=T i+ )z + 7(2[)’0 Z),,

T+ Xy Z
From the imaginary part of Eq. (3.6.17), we observe two additional effects. First, the
non-zero coefficient of the jt term is equivalent to a z-dependent frequency shift of the
carrier frequency wy, and second, from the coefficient of ji?/2, there will be a certain
amount of chirping as discussed in the next section. The frequency shift and chirping

coefficient (generalizing Eq. (3.7.6)) turn out to be:

a2z (Th+ xf2) . Boz
(5 + g 2)2+ (By 2)2’ (1§ + 0ty 2)+ (B 2)?

Awg = wo =

In most applications and in the fast and slow light experiments that have been carried
out thus far, care has been taken to minimize these effects by operating in frequency
bands where o, ¢y are small and by limiting the propagation distance z.

3.7 Propagation and Chirping

A chirped sinusoid has an instantaneous frequency that changes linearly with time,
referred to as linear frequency modulation (FM). It is obtained by the substitution:

pJwot ej((uot+(bot2/2) (3.7.1)

where the “chirping parameter” g is a constant representing the rate of change of the
instantaneous frequency. The phase O (t) and instantaneous frequency 0 (t) = dO (t) /dt
are for the above sinusoids:

1
0()= wot — O(t)= wot + = wWot?
(t)= wo (t) = wot + 5 @0 (3.7.2)

Q(t):wo — Q(t):w0+a’)0t

The parameter ¢ can be positive or negative resulting in an increasing or decreasing
instantaneous frequency. A chirped gaussian pulse is obtained by modulating a chirped
sinusoid by a gaussian envelope:

2

. o, ] 2
E(0,t) = o/ (@ot+@ot*/2) aypy —t—z = /W0l exp —t—z (1 - jwoTd) (3.7.3)
2T, 2T,

which can be written in the following form, in the time and frequency domains:
2

t N .
5 ] e E(0,w)=2mT5, e Tanp (W-w0)*/2 (3 7 4)
2Tchirp

E(0,t)= e/®lexp [—

where Tghirp is an equivalent complex-valued width parameter defined by:

2 T2 T+ jdoTd) (3.7.5)
AP ) _jweTd 1+ W3Th o
(U] 0%0
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Thus, a complex-valued width is associated with linear chirping. An unchirped gaus-
sian pulse that propagates by a distance z into a medium becomes chirped because it
acquires a complex-valued width, that is, T3 + jkg z, as given by Eq. (3.6.4). Therefore,
propagation is associated with chirping. Close inspection of Fig. 3.6.1 reveals that the
front of the pulse appears to have a higher carrier frequency than its back (in this figure,
we took k; < 0, for normal dispersion). The effective chirping parameter vy can be
identified by writing the propagated envelope in the form:

2 k)2
F(z,0) = |0 exp 77“2 kO.Z,),
\ 7o +Jko z 2(15 + Jjky 2)

T3 ox [_ ((t—k{,z)z

o 2(T8 + (kg 2)?)

—— (13 —jk”Z):|
\ T +Jko z 0 0

Comparing with (3.7.3), we identify the chirping parameter due to propagation:

ki z
= 3.7.6
T4+ (kg z)? (3.7.6)

Wo

If a chirped gaussian input is launched into a propagation medium, then the chirping

due to propagation will combine with the input chirping. The two effects can some-

times cancel each other leading to pulse compression rather than spreading. Indeed, if

the chirped pulse (3.7.4) is propagated by a distance z, then according to (3.6.4), the
propagated envelope will be:

TZ . o 2
F(z,t)= % exp [*%] (3.7.7)
Tchirp + JkO Z 2 (Tchirp +Jk0 Z)

The effective complex-valued width parameter will be:

2 P 2 4
. T6(1 + jwoT . T, . WoT
Tenirp +JK0 2 = Toll +J@oTp) J o o) 4 jkgz = O 00 +kjz) (3.7.8)
L+ wpTo 1+ wjTy 1+ w§T;
If wy is selected such that
o4
WoT,
y 5 = —kizo
1+ wgTy

for some positive distance z, then the effective width (3.7.8) can be written as:
0
—— +jky (z -z 3.7.9
+ (}:)2 7 TJKo ( O) ( )

2 R
TChirp +JkOZ - 1
0‘o

and as z increases over the interval 0 < z < z, the pulse width will be getting narrower,
becoming the narrowest at z = zy. Beyond, z > z, the pulse width will start increasing
again. Thus, the initial chirping and the chirping due to propagation cancel each other
at z = zy. Some dispersion compensation methods are based on this effect.
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3.8 Dispersion Compensation

The filtering effect of the propagation medium is represented in the frequency domain by
F(z,w)= G(z,w)F (0, w), where the transfer function G (z, w) is given by Eq. (3.5.20).

To counteract the effect of spreading, a compensation filter Hcomp () may be in-
serted at the end of the propagation medium as shown in Fig. 3.8.1 that effectively
equalizes the propagation response, up to a prescribed delay ¢4, that is,

—jwt, e_jwtd
G (z, W)Hcomp (W)= e/ = | Heomp (W) = Gz w) (3.8.1)

F(O,1) F(zp

F (z,0) = F(O,t - ty)
7w Gnw) | Ceompr L d

Y

Hcomp(w)

F(0,1) Feomp(0.0) |

F. (zt) =F(0,t - t7)
o Hogp(w) | - compil

G(z,w)

Fig. 3.8.1 Dispersion compensation filters.

The overall compensated output will be the input delayed by t4, thatis, Feomp (2, {) =
F(0,t — tg). For example, if the delay is chosen to be the group delay t; = t; = kg2,
then, in the quadratic approximation for G (z, w), condition (3.8.1) reads:

o o o
G(Zyw)Hcomp(w): e _]kozwe Jkozew /ZHcomp(w): e Jkozew

which gives for the compensation filter:

Hcomp(oo)= ejk('{zwz/z (3.8.2)

with impulse response:

t2
hcnmp(t)= :| (3.8.3)

1
eXp R
\—21jkG 2 [ZJ’(OZ
The output of the compensation filter will then agree with that of the linear approx-
imation case, that is, it will be the input delayed as a whole by the group delay:

Feomp (2, w0) = Hcomp(w)ﬁ(zyw)z Hcomp(w)G(z,w)ﬁ(wa)Z e—jk(']zwﬁ(oy w)

or, in the time domain, Feomp (2,t) = F(0,t — k(Z).

As shown in Fig. 3.8.1, it is possible [236] to insert the compensation filter at the
input end. The pre-compensated input then suffers an equal and opposite dispersion as
it propagates by a distance z, resulting in the same compensated output. As an example,
an input gaussian and its pre-compensated version will be:

F(0,w) =212 e %2 Fromn (0, ) = Heomp () E (0, w) = /2172 e~ (To-Iki D w?/2
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and in the time domain:

F(0,t)=ex ,i F 0,t)= Té exp | — e
,U)=exp 2‘1'(2) , comp (U, 1) = T(Z)—jng p 2(1_(2) —jkEJIZ)

This corresponds to a chirped gaussian input with a chirping parameter opposite
that of Eq. (3.7.6). If the pre-compensated signal is propagated by a distance z, then its
new complex-width will be, (T3 — jkg z) +jki z = T3, and its new amplitude:

T3 T3 — jko z _
T3 — jk z \ (T8 — jk{ z) +jkg z

thus, including the group delay, the propagated signal will be Feomp (2, ) = F (0, t —k(Zz).

There are many ways of implementing dispersion compensation filters in optical
fiber applications, such as using appropriately chirped inputs, or using fiber delay-line
filters at either end, or appending a length of fiber that has equal end opposite disper-
sion. The latter method is one of the most widely used and is depicted below:

kg, k kY, kY

f Z } 21 |

To see how it works, let the appended fiber have length z; and group delay and
dispersion parameters k7, k;’. Then, its transfer function will be:

o o 2
Gi(z;,w)=e Jk]zlwe Jki z1w=/2

The combined transfer function of propagating through the main fiber of length z
followed by z; will be:

G(z,w) G (21, w) = e Ko7 ki 20 2 gmiki 100 gk 21?2
) (3.8.4)
_ e—j(k(']z+k{zl)we—j(k(')'erk;'zl)wZ/Z
If k7’ has the opposite sign from k; and z; is chosen such that ky z + k'z; = 0, or,
ki z1 = —kg z, then the dispersion will be canceled. Thus, up to a delay, G; (z;, w) acts
just like the required compensation filter Hcomp (). In practice, the appended fiber is
manufactured to have |k'| > |k |, so that its length will be short, z; = —kg z/k} < z.

3.9 Slow, Fast, and Negative Group Velocities

The group velocity approximations of Sec. 3.5 are valid when the signal band is narrowly
centered about a carrier frequency wy around which the wavenumber k (w) is a slowly-
varying function of frequency to justify the Taylor series expansion (3.5.9).

The approximations are of questionable validity in spectral regions where the wave-
number, or equivalently, the refractive index n(w), are varying rapidly with frequency,
such as in the immediate vicinity of absorption or gain resonances in the propaga-
tion medium. However, even in such cases, the basic group velocity approximation,



3.9. Slow, Fast, and Negative Group Velocities 107

F(z,t)= F(0,t — z/vg), can be justified provided the signal bandwidth Aw is suffi-
ciently narrow and the propagation distance z is sufficiently short to minimize spread-
ing and chirping; for example, in the gaussian case, this would require the condition
lkq z| < T3, or, |kg z(Aw)?| < 1, as well as the condition | Im (ko) z| < 1 to minimize
amplitude distortions due to absorption or gain.

Because near resonances the group velocity v4 can be subluminal, superluminal, or
negative, this raises the issue of how to interpret the result F (z,t)= F(0,t - z/v,). For
example, if v, is negative within a medium of thickness z, then the group delay t; = z/vy4
will be negative, corresponding to a time advance, and the envelope’s peak will appear
to exit the medium before it even enters it. Indeed, experiments have demonstrated
such apparently bizarre behavior [266,267,285]. As we mentioned in Sec. 3.2, this is
not at odds with relativistic causality because the peaks are not necessarily causally
related—only sharp signal fronts may not travel faster than c.

The gaussian pulses used in the above experiments do not have a sharp front. Their
(infinitely long) forward tail can enter and exit the medium well before the peak does.
Because of the spectral reshaping taking place due to the propagation medium’s re-
sponse e /% (@)Z the forward portion of the pulse that is already within the propagation
medium, and the portion that has already exited, can get reshaped into a peak that ap-
pears to have exited before the peak of the input has entered. In fact, before the incident
peak enters the medium, two additional peaks develop caused by the forward tail of the
input: the one that has already exited the medium, and another one within the medium
traveling backwards with the negative group velocity v4. Such backward-moving peaks
have been observed experimentally [313]. We clarify these remarks later on by means
of the numerical example shown in Fig. 3.9.4 and elaborated further in Problem 3.10.

Next, we look at some examples that are good candidates for demonstrating the
above ideas. We recall from Sec. 1.18 the following relationships between wavenumber
k = B — j«, refractive index n = n, — jn;, group index ng, and dispersion coefficient
k"’, where all the quantities are functions of the frequency w:

wn  w(n, —jnyg)

k=B-joa=""="",
k,_ﬁ_ld(wn)_@ Sy 1
Tdw ¢ dw ¢ 97 Re(k’) ~ Re(ny) (3.9.1)

kII —
dw?

d’k _ldng _ny
T cdw ¢

We consider first a single-resonance absorption or gain Lorentz medium with per-
mittivity given by Eq. (1.11.13), that is, having susceptibility x and refractive index n:

fwp fwp,
=7 => N=4/1+x= |1+ —5"F—"7— 3.9.2
X= wi—w? +jwy X w? — w2+ jwy (3.9.2
where wy, y are the resonance frequency and linewidth, and w,, f are the plasma fre-
quency and oscillator strength. For an absorption medium, we will set f = 1, for a gain
medium, f = —1, and for vacuum, f = 0. To simplify the algebra, we may use the
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approximation (1.18.3), that is,

1 fws/2
n=w1+X:1+§X=l+m (3.9.3)

This approximation is fairly accurate in the numerical examples that we consider.
The corresponding complex-valued group index follows from (3.9.3):

po_dwn) | [wp(w? +wp) /2 (3.9.4)
g dw (w7 — w? + jwy)? -
with real and imaginary parts:
(UZ((UZJr(UZ) ((1)2*(,02)2*(1)2 2
Re(ng)szp 'r[z or)°- ¥?]
[(w? — wF)2+w?2y?]
oty (et - o) (3.9.5)
Im(ng) = 5 5
[(w? — w7)2+w?y?]
Similarly, the dispersion coefficient dng/dw is given by:
L dng _ [@3(@? 3080 - jy}) 06
9 dw (w} - w? + jwy)3 o
At resonance, w = w,, we find the values:
fuwp fwp
n=1—12ya’;r, ng=1—y—2p (3.9.7)

For an absorption medium (f = 1), if w, < y, the group index willbe 0 < ng < 1,
resulting into a superluminal group velocity v; = ¢/ng > ¢, butif y < wp, which is the
more typical case, then the group index will become negative, resulting into a negative
vy = ¢/ng < 0. This is illustrated in the top row of graphs of Fig. 3.9.1. On the other
hand, for a gain medium (f = —1), the group index is always nz > 1 at resonance,
resulting into a subluminal group velocity v, = ¢/ngz < c. This is illustrated in the
middle and bottom rows of graphs of Fig. 3.9.1.

Fig. 3.9.1 plots n(w)= n,(w)—jn;(w) and Re[ngy (w)] versus w, evaluated us-
ing Egs. (3.9.3) and (3.9.4), with the frequency axis normalized in units of w/w,. The
following values of the parameters were used (with arbitrary frequency units):

(top row) f=+1, wp=1, wr=5, y=04
(middlerow) f=-1, wp=1, w,=5, y=04
(bottomrow) f=-1, wp,=1, w,=5, y=0.2

The calculated values of n, n; at resonance were:
(top) w=w,, n=1-0.25, ng=-525

(middle) w =w,, n=1+0.25j, ng=7.25
(bottom) w =w,, n=1+0.5j, ng=26
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Fig. 3.9.1 Slow, fast, and negative group velocities (at off resonance).

Operating at resonance is not a good idea because of the fairly substantial amounts
of attenuation or gain arising from the imaginary part n; of the refractive index, which
would cause amplitude distortions in the signal as it propagates.

A better operating frequency band is at off resonance where the attenuation or gain
are lower [272]. The top row of Fig. 3.9.1 shows such a band centered at a frequency wy
on the right wing of the resonance, with a narrow enough bandwidth to justify the Taylor
series expansion (3.5.9). The group velocity behavior is essentially the reverse of that at
resonance, that is, v4 becomes subluminal for the absorption medium, and superluminal
or negative for the gain medium. The carrier frequency wg and the calculated values of
n,ng at w = wo were as follows:

(top, slow) wo/wy =112, n=0.93-0.02j, ng=1.48+0.39j
(middle, fast) wo/wy =112, n=1.07+0.02j, ng=0.52-0.39j
(bottom, negative) wqo/w, =1.07, n=1.13+0.04j, ng=-0.58-1.02j

We note the sign and magnitude of Re(ny) and the substantially smaller values of
the imaginary part n;. For the middle graph, the group index remains in the interval
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0 < Re(ng)< 1, and hence v4; > c, for all values of the frequency in the right wing of
the resonance.

In order to get negative values for Re(ng,) and for vy, the linewidth y must be re-
duced. As can be seen in the bottom row of graphs, Re(ng) becomes negative over a
small range of frequencies to the right and left of the resonance. The edge frequencies
can be calculated from the zero-crossings of Re(ny) and are shown on the graph. For
the given parameter values, they were found to be (in units of w/w,):

[0.9058, 0.9784], [1.0221, 1.0928]

The chosen value of wg/w, = 1.07 falls inside the right interval.

Another way of demonstrating slow, fast, or negative group velocities with low at-
tenuation or gain, which has been used in practice, is to operate at a frequency band
that lies between two nearby absorption or gain lines.

;. real part, n(m) L imaginary part, n,(w) group index, Re(n,)
0|
0.2 _20]
1
0.4] -60
0. -1
0.7 1 13 07 1 13 0.7 1 13
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real part, () i y oup index, Rel
» part, n,(®) imaginary part, n,(w) group index, Re(n,)
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Fig. 3.9.2 Slow, fast, and negative group velocities (halfway between resonances).

Some examples are shown in Fig. 3.9.2. The top row of graphs depicts the case of
two nearby absorption lines. In the band between the lines, the refractive index exhibits
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normal dispersion. Exactly at midpoint, the attenuation is minimal and the real part
n, has a steep slope that causes a large group index, Re(ngy)>> 1, and hence a small
positive group velocity 0 < v4 < c¢. In experiments, very sharp slopes have been
achieved through the use of the so-called “electromagnetically induced transparency,”
resulting into extremely slow group velocities of the order of tens of m/sec [327].

The middle row of graphs depicts two nearby gain lines [273] with a small gain
at midpoint and a real part n, that has a negative slope resulting into a group index
0 < Re(ny) < 1, and a superluminal group velocity v4 > c.

Choosing more closely separated peaks in the third row of graphs, has the effect of
increasing the negative slope of n,, thus causing the group index to become negative
at midpoint, Re(ny) < 0, resulting in negative group velocity, v4 < 0. Experiments
demonstrating this behavior have received a lot of attention [285].

The following expressions were used in Fig. 3.9.2 for the refractive and group indices,
with f = 1 for the absorption case, and f = —1 for the gain case:

fw?/2 . fw3/2

n=1+-— - 5 -
wi - w2+ jwy ws—w?+jwy

3.9.8
fw? (w? + w?) /2 fw? (w? + w3) /2 ( )

(W3 - w? +jwy)? (W} - w? +jwy)?

hg =1+

The two peaks were symmetrically placed about the midpoint frequency wy, that
is, at w; = wo — A and w> = wp + A, and a common linewidth y was chosen. The
particular numerical values used in this graph were:

(top, slow) f=+1, wp=1, wo=5, A=0.25, y=0.1
(middle, fast) f=-1, wp=1, wo=5, A=0.75, y=03
(bottom, negative) f=-1, wp=1, wo=5, A=0.50, y=0.2

resulting in the following values for n and ng:

(top, slow) n=0.991-0.077j, ng = 8.104 + 0.063j
(middle, fast) n =1.009 + 0.026j, ng =0.208 —0.021j
(bottom, negative) n = 1.009 + 0.039j, ngz = —0.778 —0.032j

Next, we look at an example of a gaussian pulse propagating through a medium with
negative group velocity. We consider a single-resonance gain medium and operating
frequency band similar to that shown in the bottom row of graphs in Fig. 3.9.1. This
example is variation of that discussed in [272]. Fig. 3.9.3 shows the geometry.

The gaussian pulse begins in vacuum on the left, then it enters an absorbing medium
of thickness a in which it propagates with a slow group velocity suffering a modest
amount of attenuation. It then enters a vacuum region of width 2a, followed by a gain
medium of thickness a in which it propagates with negative group velocity suffering a
moderate amount gain, and finally it exits into vacuum.

The attenuation and gain are adjusted to compensate each other, so that the final
output vacuum pulse is identical to the input.

The wavenumbers ky, kq, kg, in vacuum, the absorption and gain media are cal-
culated from Egs. (3.9.1)-(3.9.6) with f = 0,+1, —1, respectively. The analytical and
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Fig. 3.9.3 Absorption and gain media separated by vacuum.

numerical details for this example are outlined in Problem 3.10. Fig. 3.9.4 shows a se-
ries of snapshots. The short vertical arrow on the horizontal axis represents the position
of the peak of an equivalent pulse propagating in vacuum.

1 1
vac abs vac gain vac /
t=-50 k =220 /\
Lt . t
0 1 L, 3 4 0 1 .4 38 4
1 1
t=0 =230 /
0 0 f
0 1 L4, 3 4 0 1 L, 3 4
1 1
t=40 =240 /
0 o f
0 1 L, 3 4 0 1 L, 3 4
1 1
=120 =250 /
o N o t
0 1 L, 3 4 0 1 L, 3 4
1 1
=180 /\ =260 /’\
. ' o f
0 1 3 4 0 1 3 4

Fig. 3.9.4 Snapshots of pulse propagating through regions of different group velocities.

At t = —50 (in units such that ¢ = 1), the forward tail of the gaussian pulse has
already entered the absorbing medium. Between 0 < t < 120, the peak of the pulse
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has entered the absorbing medium and is being attenuated as it propagates while it lags
behind the equivalent vacuum pulse because v, < c.

At t = 120, while the peak is still in the absorbing medium, the forward tail has
passed through the middle vacuum region and has already entered into the gain medium
where it begins to get amplified. Att = 180, the peak has moved into the middle vacuum
region, but the forward tail has been sufficiently amplified by the gain medium and is
beginning to form a peak whose tail has already exited into the rightmost vacuum region.

At t = 220, the peak is still within the middle vacuum region, but the output peak
has already exited into the right, while another peak has formed at the right side of the
gain medium and begins to move backwards with the negative group velocity, v, < 0.
Meanwhile, the output peak has caught up with the equivalent vacuum peak.

Between 230 < t < 260, the peak within the gain medium continues to move back-
wards while the output vacuum peak moves to the right. As we mentioned earlier, such
output peaks that have exited before the input peaks have entered the gain medium,
including the backward moving peaks, have been observed experimentally [313].

A MATLAB movie of this example may be seen by running the file grvmoviel.min the
movies subdirectory of the ewa toolbox. See also the movie grvmovie2.m in which the
carrier frequency has been increased and corresponds to a superluminal group velocity
(vg > c) for the gain medium. In this case, which is also described in Problem 3.10, all
the peaks are moving forward.

3.10 Chirp Radar and Pulse Compression

Pulse Radar Requirements

The chirping and dispersion compensation concepts discussed in the previous sections
are applicable also to chirp radar systems. Here, we give a brief introduction to the main
ideas [358] and the need for pulse compression.

In radar, the propagation medium is assumed to be non-dispersive (e.g., air), hence,
it introduces only a propagation delay. Chirping is used to increase the bandwidth of the
transmitted radar pulses, while keeping their time-duration long. The received pulses
are processed by a dispersion compensation filter that cancels the frequency dispersion
introduced by chirping and results in a time-compressed pulse. The basic system is
shown in Fig. 3.10.1. The technique effectively combines the benefits of a long-duration
pulse (improved detectability and Doppler resolution) with those of a broadband pulse
(improved range resolution.)

A typical pulsed radar sends out sinusoidal pulses of some finite duration of, say, T
seconds. A pulse reflected from a stationary target at a distance R returns back at the
radar attenuated and with an overall round-trip delay of t; = 2R/c seconds. The range
R is determined from the delay t;. An uncertainty in measuring t; from two nearby
targets translates into an uncertainty in the range, AR = c(At;) /2. Because the pulse
has duration T, the uncertainty in t; will be Aty = T, and the uncertainty in the range,
AR = cT/2. Thus, to improve the range resolution, a short pulse duration T must be
used.

On the other hand, the detectability of the received pulse requires a certain minimum
value of the signal-to-noise ratio (SNR), which in turn, requires a large value of T. The
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SNR at the receiver is given by

I'I‘EEC Prec T

SNR = No = No
where Py and Erec = Prec T denote the power and energy of the received pulse, and Ny is
the noise power spectral density given in terms of the effective noise temperature T, of
the receiver by Nog = kT, (as discussed in greater detail in Sec. 16.8). It follows from the
radar equation (16.11.4) of Sec. 16.11, that the received power Py is proportional to the
transmitter power Py and inversely proportional to the fourth power of the distance R.
Thus, to keep the SNR at detectable levels for large distances, a large transmitter power
and corresponding pulse energy £y = PyT must be used. This can be achieved by
increasing T, while keeping Py, at manageable levels.

The Doppler velocity resolution, similarly, improves with increasing T. The Doppler
frequency shift for a target moving at a radial velocity v is fy = 2fyv/c, where f is
the carrier frequency. We will see below that the uncertainty in fy is given roughly by
Afg = 1/T. Thus, the uncertainty in speed will be AV = c(Af3) /2fo = ¢/ (2foT).

The simultaneous conflicting requirements of a short duration T to improve the
resolution in range, and a large duration T to improve the detectability of distant targets
and Doppler resolution, can be realized by sending out a pulse that has both a long
duration T and a very large bandwidth of, say, B Hertz, such that BT > 1. Upon
reception, the received pulse can be compressed with the help of a compression filter to
the much shorter duration of T¢ompr = 1/B seconds, which satisfies Tcompr = 1/B < T.
The improvement in range resolution will be then AR = ¢Tcompr/2 = ¢/2B.

In summary, the following formulas capture the tradeoffs among the three require-
ments of detectability, range resolution, and Doppler resolution:

Frec _ PrecT c c

SNR = —™¢ — AR= S Av-
No = No ' 28" V7T ofT

(3.10.1)

For example, to achieve a 30-meter range resolution and a 50 m/s (180 km/hr) veloc-
ity resolution at a 3-GHz carrier frequency, would require B = 5 MHz and T = 1 msec,
resulting in the large time-bandwidth product of BT = 5000.

Such large time-bandwidth products cannot be achieved with plain sinusoidal pulses.
For example, an ordinary, unchirped, sinusoidal rectangular pulse of duration of T sec-

— T —
1 E(0) ENANNVITT—
pulse >©4> to target
generator transmitted long chirped pulse
antenna
> b Tcompr
Ecompr(D) b

E(t-1q) NNV —

received long chirped pulse

B — Hcompr(w) -
compressed and

amplified pulse  compression filter

@4— from target

Fig. 3.10.1 Chirp radar system.
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onds has an effective bandwidth of B = 1/T Hertz, and hence, BT = 1. This follows
from the Fourier transform pair:

sin((w — wgo)T/2)
(w—wo)T/2

E(t) = rect (%) Wl o E(w)=T (3.10.2)

where rect (x) is the rectangular pulse defined with the help of the unit step u(x):

1, if [x] <0.5

rect(x)=u(x+0.5)-u(x—-0.5)=
) ( ) ¢ ) {O, if |x| > 0.5

It follows from (3.10.2) that the 3-dB width of the spectrum is Aw = 0.886(21) /T,
orinHz, Af = 0.886/T, and similarly, the quantity Af = 1/T represents the 4-dB width.
Thus, the effective bandwidth of the rectangular pulseis 1/T.

Linear FM Signals

It is possible, nevertheless, to have a waveform whose envelope has an arbitrary dura-
tion T while its spectrum has an arbitrary width B, at least in an approximate sense.
The key idea in accomplishing this is to have the instantaneous frequency of the signal
vary—during the duration T of the envelope—over a set of values that span the de-
sired bandwidth B. Such time variation of the instantaneous frequency translates in the
frequency domain to a spectrum of effective width B.

The simplest realization of this idea is through linear FM, or chirping, that corre-
sponds to a linearly varying instantaneous frequency. More complicated schemes exist
that use nonlinear time variations, or, using phase-coding in which the instantaneous
phase of the signal changes by specified amounts during the duration T in such a way
as to broaden the spectrum. A chirped pulse is given by:

‘ E(t) = F(t)e/wot+jdot?/2 ‘ (3.10.3)

where F(t) is an arbitrary envelope with an effective duration T, defined for example
over the time interval —T/2 < t < T/2. The envelope F (t) can be specified either in the
time domain or in the frequency domain by means of its spectrum F (w):

ﬁ(w):L F(t)e/oldt o F(t):ij_ F(w)e/*tdw (3.10.4)

Typically, F(t) is real-valued and therefore, the instantaneous frequency of (3.10.3)
is w (t)= 0 (t)= wq + woet. During the time interval —T/2 < t < T/2, it varies over the
band wo — woT/2 < w(t)< wo + WeT/2, (we are assuming here that w, > 0.) Hence,
it has an effective total bandwidth:

Q woT

Q= woT, or,inunitsofHz, B=— =

.10.
2T 21T 3 >)

Thus, given T and B, the chirping parameter can be chosen to be wy = 21tB/T. We
will look at some examples of F (t) shortly and confirm that the spectrum of the chirped
signal E (t) is effectively confined in the band |f — fo| < B/2. But first, we determine
the compression filter.
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Pulse Compression Filter

The received signal reflected from a target is an attenuated and delayed copy of the
transmitted signal E (t), that is,

Erec(t) = @E(t — tg) = aF (t — tg) /@0 (t-t) +j@o (t=ta)*/2 (3.10.6)

where a is an attenuation factor determined from the radar equation to be the ratio of
the received to the transmitted powers: a? = Prec/Pir.

If the target is moving with a radial velocity v towards the radar, there will be a
Doppler shift by wg = 2vwg/c. Although this shift affects all the frequency compo-
nents, that is, w — w + wy, it is common to make the so-called narrowband approxi-
mation in which only the carrier frequency is shifted wo — wo + wy. This is justified
for radar signals because, even though the bandwidth  is wide, it is still only a small
fraction (typically one percent) of the carrier frequency, that is, Q < wy. Thus, the
received signal from a moving target is taken to be:

Frec ()= aE(t - td)ejwd(t*fd) =aF(t - td)ei(w0+wd)(t*td)Jrij(t*td)z/Z (3.10.7)

To simplify the notation, we will ignore the attenuation factor and the delay, which
can be restored at will later, and take the received signal to be:

Erec (1) = E (1) @/®dt = F(t) el (Wotwa)thjdot*/2 (3.10.8)

This signal is then processed by a pulse compression filter that will compress the
waveform to a shorter duration. To determine the specifications of the compression
filter, we consider the unrealizable case of a signal that has infinite duration and infinite
bandwidth defined by F(t) = 1, for —o < t < o. For now, we will ignore the Doppler
shift so that Eye. (t) = E(t). Using Eq. (3.5.18), the chirped signal and its spectrum are:

E(t)= @f@tiot2 o f)= |2 gritw-wn?/2i (3.10.9)
o

Clearly, the magnitude spectrum is constant and has infinite extent spanning the en-
tire frequency axis. The compression filter must equalize the quadratic phase spectrum
of the signal, that is, it must have the opposite phase:

Heompr () = /(€@0)*/2@0 | (hy]ge compression filter) (3.10.10)

The corresponding impulse response is the inverse Fourier transform of Eq. (3.10.10):

Pcompr (1) = 4 /JZ% eIwot=j@ot*/2 | " (nylse compression filter) (3.10.11)

The resulting output spectrum for the input (3.10.9) will be:

Ecom r (W)= Heom r(w)ﬁ(w)= LTU. eI (@=wo)?/2dp 2j<w7w0)2/2w0 = LTU.
i i wo wo
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that is, a constant for all w. Hence, the input signal gets compressed into a Dirac delta:

Ecompr(l‘)= A Z(L)L(;]é(t) (3.10.12)

When the envelope F(t) is a finite-duration signal, the resulting spectrum of the
chirped signal E (t) still retains the essential quadratic phase of Eq. (3.10.9), and there-
fore, the compression filter will still be given by Eq. (3.10.10) for all choices of F (t). Using
the stationary-phase approximation, Problem 3.17 shows that the quadratic phase is a
general property. The group delay of this filter is given by Eq. (3.2.1):

d (w—wo)z}:7w—wo 21 (f = fo)

=—— = =-T
=" dw [ 2ao Wo 2mB/T B

As the frequency (f — fp) increases from —B/2 to B/2, the group delay decreases
from T/2 to —T/2, that is, the lower frequency components, which occur earlier in the
chirped pulse, suffer a longer delay through the filter. Similarly, the high frequency
components, which occur later in the pulse, suffer a shorter delay, the overall effect
being the time compression of the pulse.

Itis useful to demodulate the sinusoidal carrier ¢/®o! and write R compr (0) = eJWolg (t)
and Hcompr (W) = G (w — wy), where the demodulated “baseband” filter, which is known
as a quadrature-phase filter, is defined by:

g)= JZ% e @t /2 G ()= e/®*/2@0 | (quadratic phase filter)  (3.10.13)

For an arbitrary envelope F (t), one can derive the following fundamental result that
relates the output of the compression filter (3.10.11) to the Fourier transform, F (w), of
the envelope, when the input is E (t) = F (t) e/@ot+i@ot*/2 .

Ecompr“#d%’f e Wot=J @0t /2 F(_ iy ot) (3.10.14)

This result belongs to a family of so-called “chirp transforms” or “Fresnel trans-
forms” that find application in optics, the diffraction effects of lenses [1431], and in
other areas of signal processing, such as for example, the “chirp z-transform” [48]. To
show Eg. (3.10.14), we use the convolutional definition for the filter output:

00
Ecompr(t) = I hcompr(t - t’)E(t’) dt’
_ [J@o Jw I @0 t=t)=jeo (t=U)2 /2 [ (4 glwol +icoat /2 gy
2T J-w
_ /J'ZCUTFO elwot=jdot?/2 Joo F(t') el (@0t gy
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where the last integral factor is recognized as F(—wpt). As an example, Eq. (3.10.12)
can be derived immediately by noting that F(t)= 1 has the Fourier transform F(w)=
216 (w), and therefore, using Eq. (3.10.14), we have:

—— o
Ecompr (1) = 4| 100 g0t =012 118 (—qiggt) =  [=T2 5(1)
2T wWo

where we used the property 8 (—wgot)= 6 (wot)= O (t)/wp and set t = 0 in the expo-
nentials.

The property (3.10.14) is shown pictorially in Fig. 3.10.2. This arrangement can also
be thought of as a real-time spectrum analyzer of the input envelope F(t).

Ecom T t
F() 120) Gleo—cy) pr(?)
e/t +jcogt2
2 £ E_COIH T t
F(1) Gl F(f) E(1) Glw—cy) pr(?)

e /@0t +jcogt?2

Fig. 3.10.2 Pulse compression filter.

In order to remove the chirping factor eJ®*/2 one can prefilter F(t) with the
baseband filter G (w) and then apply the above result to its output. This leads to a
modified compressed output given by:

Ecompr (0= [ 122 € F(=cit) (3.10.15)

Fig. 3.10.2 also depicts this property. To show it, we note the identity:

ejwot—jwot?/zﬁ(_wot)z ewot [efij/zwo ﬁ(w)]w:-wor
Thus, if in this expression F (w) is replaced by its prefiltered version G (w) F (w),
then the quadratic phase factor will be canceled leaving only F(w).
For amoving target, the envelope F (t) is replaced by F (t) e/®d! and F(w) isreplaced
by F (w—wy), and similarly, F (—ot) is replaced by F (—wot—wg). Thus, Eq. (3.10.14)
is modified as follows:

Ecompr (1) = 4 /“’;’—WO @IWOt=JO0 12 B (_ (o4 + ddgt)) (3.10.16)

Chirped Rectangular Pulse

Next, we discuss the practical case of a rectangular envelope of duration T:

F(t) = rect <%> = E(t)=rect (%) eI wotHjdot?/2 (3.10.17)
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From Eq. (3.10.2), the Fourier transform of F (t) is,

o ter2

Therefore, the output of the compression filter will be:

_ on Jwot—jwot2/2 fro_ - — u@ jwot—jot? /2 M
Ecompr(t) \/ 217 e F(=dot) \| 21T el T —wotT/2

Noting that woT = Q = 27tB and that \/jwoT?/21 = /jJBT, we obtain:

. o i Bt)
E = [iBT jewot—jot?/2 % 3.10.18
compr (1) J e TtBt ( :

The sinc-function envelope sin(1rBt) /1tBt has an effective compressed width of
Tcompr = 1/B measured at the 4-dB level. Moreover, the height of the peak is boosted
by a factor of +/BT.

Fig. 3.10.3 shows a numerical example with the parameter values T = 30 and B = 4
(in arbitrary units), and wo = 0. The left graph plots the real part of E (t) of Eq. (3.10.17).
The right graph is the real part of Eq. (3.10.18), where because of the factor +/j, the peak
reaches the maximum value of /BT /+/2.

FM pulse, T=30, B=4, f,=0 compressed pulse, T'=30, B=4, f,=0

8r 8
6l 6 4fB
Tempn=1/B
4r 4r
+ +
— -
a 1]
gl il
< <
i [
- -
—of 1 -2r
_47 L L L L L L L ] _47 L L L L L L L ]
-20 -15 -10 -5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20
time, ¢ time, ¢

Fig. 3.10.3 FM pulse and its compressed version, with T = 30, B = 4, fo = 0.

We may also determine the Fourier transform of E (t) of Eq. (3.10.17) and verify that
it is primarily confined in the band |f — fo| < B/2. We have:
Y T/2 i
E(w)= I E(t)e /°ldt = I eIwolHidat?/2 p=jet ¢
—00 -T/2
After changing variables from t to u = /o /[t — (w — wq) /o], this integral
can be reduced to the complex Fresnel integral F (x)= C(x)—jS(x)= [y e /™ /2dy
discussed in greater detail in Appendix F. The resulting spectrum then takes the form:

E(w)= \/wio e (@0 200 [ F ()~ F (w-) |*
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which can be written in the normalized form:

E(w): ,Zwiﬂj e—j(w—wo)2/2w0 D*(w) , D(w)= %j(w (3.10.19)

where w.. are defined by:

wt=,/@(¢z—w) =\/2BT(¢1—@) (3.10.20)
™ 2 Wy 2 B

Eg. (3.10.19) has the expected quadratic phase term and differs from (3.10.9) by the
factor D*(«w). This factor has a magnitude that is effectively confined within the ideal
band |f — fo| < B/2 and a phase that remains almost zero within the same band, with
both of these properties improving with increasing time-bandwidth product BT.t Thus,
the choice for the compression filter that was made on the basis of the quadratic phase
term is justified.

Fig. 3.10.4 displays the spectrum E (w) for the values T = 30 and B = 4, and wg = 0.
The left and right graphs plot the magnitude and phase of the quantity D*(w). For
comparison, the spectrum of an ordinary, unchirped, pulse of the same duration T = 30,
given by Eq. (3.10.2), is also shown on the magnitude graph. The Fresnel functions were
evaluated with the help of the MATLAB function fcs.m of Appendix F. The ripples that
appear in the magnitude and phase are due to the Fresnel functions.

magnitude spectrum, |D*(w)I phase spectrum, Arg[D"(»)]

5 180
ok FAWN A A A A
VY d 4 YW/
s ~|-1/T | 90
-10f g
g B O
-151 ideal band sinc spectrum 5
0 W 1-B2,B2] |~ ;{“1‘;;0}““’9‘1
-90
-25
-30, -180, : : : : :
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
frequency, f frequency, f
Fig. 3.10.4 Frequency spectrum of FM pulse, with T = 30, B = 4, fy = 0.
Doppler Ambiguity

For a moving target causing a Doppler shift wg, the output will be given by Eq. (3.10.16),
which for the rectangular pulse gives:

JOO jeoyt—jae /2 ¢ SIN((Wa + Do) T/2)
E. _ J0 ol—JWo T
Lompr(t) \/:ej (wg + wet)T/2

TThe denominator (1 —j) in D (w) is due to the asymptotic value of F(co)= (1 —j)/2.
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Noting that (wg + wot) T = 21 (f4T + Bt), and replacing t by t — t; to restore the actual
delay of arrival of the received pulse, we obtain:

25 in[TT(f4T + B(t — tg))]
T (faT + B(t — ta))

Ecompr (£, fa) = yjBT /@0 t=ta)=jeo (t-ta) (3.10.21)

It is seen that the peak of the pulse no longer takes place at t = t4, but rather at the
shifted time f3T + B(t —t3)= 0, or, t = ty — f4T/B, resulting in a potential ambiguity in
the range. Eq. (3.10.21) is an example of an ambiguity function commonly used in radar
to quantify the simultaneous uncertainty in range and Doppler. Setting t = tg, we find:

Ecompr (ta, fa) = \[JBT % (3.10.22)

which shows that the Doppler resolutionis Af; = 1/T, as we discussed at the beginning.

Sidelobe Reduction

Although the filter output (3.10.18) is highly compressed, it has significant sidelobes
that are approximately 13 dB down from the main lobe. Such sidelobes, referred to as
“range sidelobes,” can mask the presence of small nearby targets.

The sidelobes can be suppressed using windowing, which can be applied either in the
time domain or the frequency domain. To reduce sidelobes in one domain (frequency
or time), one must apply windowing to the conjugate domain (time or frequency).

Because the compressed output envelope is the Fourier transform F(w) evaluated
at w = —wot, the sidelobes can be suppressed by applying a time window w(t) of
length T to the envelope, that is, replacing F (t) by Fy, (t)= w(t) F (t). Alternatively, to
reduce the sidelobes in the time signal F (- gt), one can apply windowing to its Fourier
transform, which can be determined as follows:

F(w)= J F(—wot)e®tdt = J F(w")el®w /@ duy 16y = i—"F(w/wO)
— —00 0

that is, the time-domain envelope F (t) evaluated at t = w/wy. Thus, a time window
w(t) can just as well be applied in the frequency domain in the form:

F(w)=F(w/wy) = Fy(w)=w(w/do)F(w/wo)

Since w(t) is concentrated over —T/2 < t < T/2, the frequency window w (w/wg)
will be concentrated over

w

_I< <I = f— <w=<
27wy 2 T

N[O

Q
2

where Q = woT = 21B. For example, a Hamming window, which affords a suppression
of the sidelobes by 40 dB, can be applied in the time or frequency domain:

w(t) —‘1+20(COS<7t> —— <t< —
T ’ , =t=
W(w/d))—l+20((()s<7) - < < —
0 Q ’ 2 2
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where 2 = 0.46/0.54, or, & = 0.4259.T The time-domain window can be implemented
in a straightforward fashion using delays. Writing w (t) in exponential form, we have

w(t)=1+ a[e?™WT 4 ¢=2mUT]

The spectrum of Fy, (t) = w(t)F(t)= (1 + [e?™UT + ¢=2TUT]) F(t) will be:
Fy(w)=F(w)+a[F(w—-2m/T)+F(w + 21/T)]

Thus, the envelope of the compressed signal will be:

Fy(—wot) = F(—wot) +& [E (—wot — 210/ T) +F (oot + 271/T) |

= F(—ot) + & [F (= o (t + Teompr)) + F (=00 (t — Teompr)) ]

where Teompr = 2TTT/wo = 1/B. It follows that the compressed output will be:

Ecompr (£) = \[JBT /0! J0C/2 [sinc (Bt) + o sinc (Bt + 1) +acsine (Bt — 1) (3.10.24)

where sinc (x) = sin(1rx) /77X, and we wrote B (t + Tcompr) = (Bt = 1). Fig. 3.10.5 shows
the Hamming windowed chirped pulse and the corresponding compressed output com-
puted from Eq. (3.10.24).

Hamming windowed FM pulse Hamming windowed compressed pulse

8 8
6 6 4 fB
Toompr = 1.46 / B
4 4
+ +
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-2 -2r
74 L L L L L L L 747 L L L L L L L ]
-20 -15 -10 -5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20
time, ¢ time, ¢

Fig. 3.10.5 Hamming windowed FM pulse and its compressed version, with T = 30, B = 4.

The price to pay for reducing the sidelobes is a somewhat wider mainlobe width.
Measured at the 4-dB level, the width of the compressed pulse is Tcompr = 1.46/B, as
compared with 1/B in the unwindowed case.

Matched Filter

A more appropriate choice for the compression filter is the matched filter, which maxi-
mizes the receiver’s SNR. Without getting into the theoretical justification, a filter matched
to a transmitted waveform E (t) has the conjugate-reflected impulse response h (t) =

TThis definition of w(t) differs from the ordinary Hamming window by a factor of 0.54.
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E*(—t) and corresponding frequency response H (w)= E*(w). In particular for the
rectangular chirped pulse, we have:

E(t)=rect (%) QWO /2 (1) = ¥ (=) = rect (%) @I@ot=j@ot*/2 (3 10 25)

which differs from our simplified compression filter by the factor rect(t/T). Its fre-
quency response is given by the conjugate of Eq. (3.10.19)
H(w) = |- 2TV itw-wn*/2é0 (), D(w)= T ¥ =T V)

: (3.10.26)
Wy 1 —J

We have seen that the factor D (w) is essentially unity within the band |f — fo] <
B/2. Thus again, the matched filter resembles the filter (3.10.10) within this band. The
resulting output of the matched filter is remarkably similar to that of Eq. (3.10.18):

sin(TtB|t| — Bt/ T)

Ecompr(t):ejwotT T(B|t|

, for -T=<t<T (3.10.27)

while it vanishes for |t| > T.

In practice, the matched/compression filters are conveniently realized either dig-
itally using digital signal processing (DSP) techniques or using surface acoustic wave
(SAW) devices [383]. Similarly, the waveform generator of the chirped pulse may be
realized using DSP or SAW methods. A convenient generation method is to send an
impulse (or, a broadband pulse) to the input of a filter that has as frequency response
H(w)=E(w), so that the impulse response of the filter is the signal E (t) that we wish
to generate.

Signal design in radar is a subject in itself and the present discussion was only meant
to be an introduction motivated by the similarity to dispersion compensation.

3.11 Further Reading

The topics discussed in this chapter are vast and diverse. The few references given
below are inevitably incomplete.

References [168-191] discuss the relationship between group velocity and energy ve-
locity for lossless or lossy media, as well as the issue of electromagnetic field momentum
and radiation pressure.

Some references on pulse propagation, spreading, chirping, and dispersion compen-
sation in optical fibers, plasmas, and other media are [192-244], while precursors are
discussed in Sommerfeld [1287], Brillouin [192], and [245-257].

Some theoretical and experimental references on fast and negative group velocity
are [258-313]. Circuit realizations of negative group delays are discussed in [314-318].
References [319-350] discuss slow light and electromagnetically induced transparency
and related experiments.

Some references on chirp radar and pulse compression are [351-390]. These include
phase-coding methods, as well as alternative phase modulation methods for Doppler-
resistant applications.
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3.12 Problems

3.1 Using the definitions (3.2.5), show that the group and phase velocities are related by:

dvp
ap

3.2 It was mentioned earlier that when v, > ¢, the peak of a pulse shifts forward in time as
it propagates. With reference to Fig. 3.2.2, let tycax be the time of the peak of the initial
pulse E(0,t). First, show that the peak of the propagated pulse E(z,t) occurs at time
tprop = tpeak +Z/ V4. Then, show that the peak value E (z, tpp) does not depend on the initial
peak E (0, tpea) but rather it depends causally on the values E (0, t), for t) <t < tpeax — AL,
where At = z/c — z/v,, which is positive if v, > ¢. What happens if 0 < v4 < ¢ and if
Vg <0?

Vg=Vp+B

3.3 Consider case 6 of the exactly solvable examples of Sec. 3.3 describing a lossy transmission
line with distributed parameters L', C’,R’, G'. The voltage and current along the line satisfy
the so-called telegrapher’s equations:

ov oI oI ov

—+L —=+RI1=0, —+C—+GV=0 3.12.1

0z ot 0z ot ( )
The voltage impulse response V(z,t) of the line is given by Eq. (3.3.1), where ty = z/c,
a+b=R'/L'ya—-b=G'/C',andc=1//L'C":

Db —)

2 _ 42
t tf

V(z,t)=8(t —tr)e ™ + e~ btpu(t - ty)

Show that the corresponding current I(z,t) is given by

’ I (byt2 — 7
/é[(z,t):é(ttf)e'“[f+e“[|:1<f)bth1()<b tztﬁ)]u(ttf)

2 _ 42
e -t

by verifying that V and I satisfy Egs. (3.12.1). Hint: Use the relationships: I}, (x) = I; (x) and
I7 (x) = Iy (x) —I1 (x) /x between the Bessel functions I (x) and I (x).

Next, show that the Fourier transforms of V (z,t) and I (z,t) are:
e v
V4

Viz,w)=e*, [(z,w)=
where y, Z are the propagation constant and characteristic impedance (see Sec. 11.6):

. T /R +jwl’
y:Jk:\/R +JUJL\/G +jwC, Z= ¢+ jwC

3.4 Computer Experiment—Transient Behavior. Reproduce the results and graphs of the Figures
3.4.1, 3.4.2, and 3.4.3.

3.5 Consider the propagated envelope of a pulse under the linear approximation of Eq. (3.5.13),
thatis, F (z,t)= F (0, t — kyz), for the case of a complex-valued wavenumber, ki, = B —j .
For a gaussian envelope:

PN oN2
F(z,t):F(O,t—kéz):exp[—%]
0
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3.6

3.7

3.8

3.9

Determine an expression for its magnitude |F(z,t)|. Then show that the maximum of
|F(z,t)| with respect to t at a given fixed z is moving with the group velocity v4 = 1/8;.
Alternatively, at fixed t show that the maximum with respect to z of the snapshot |F(z,t) |
is moving with velocity [198]:

Bo

V=07 I
0 — &g

Consider the propagating wave E (z, t) = F (z, t) e/®0t=jkoZ Assuming the quadratic approx-
imation (3.5.9), show that the envelope F (z, t) satisfies the partial differential equation:

O, O _ ki o _
<az+k°8t_ 2 at2>F(z’”’0

Show that the envelope impulse response g(z,t) of Eq. (3.5.16) also satisfies this equation.
And that so does the gaussian pulse of Eq. (3.6.4).

Let F(z,t) be the narrowband envelope of a propagating pulse as in Eq. (3.5.5). Let z(t)
be a point on the snapshot F(z,t) that corresponds to a particular constant value of the
envelope, that is, F(z(t), t) = constant. Show that the point z(t) is moving with velocity:

0(F
0,F

z(t)= -

Under the linear approximation of Eq. (3.5.13), show that the above expression leads to the
group velocity Z(t) = 1/kg.
Alteratively, use the condition |F(z,t)|? = constant, and show that in this case

Re(0.F/F)

z(t)y= " Re(,F/F)

Under the linear approximation and assuming that the initial envelope F (0, t) is real-valued,
show that Z = 1/Re(kg).

Given the narrowband envelope F (z, t) of a propagating pulse as in Eq. (3.5.5), show that it
satisfies the identity:

e 1kk0)z (0,0 — wp) = J F(z,t)e (@ wolt gy

Define the “centroid” time t (z) by the equation

tHz)= [®, F(z,t) dt

Using the above identity, show that t (z) satisfies the equation:

t(z)=t(0)+kjz (3.12.2)

Therefore, t(z) may be thought of as a sort of group delay. Note that no approximations
are needed to obtain Eqg. (3.12.2).

Consider the narrowband envelope F (z,t) of a propagating pulse E (z, t) = F (z, t) e/®ot=ikoz
and assume that the medium is lossless so that k (w) is real-valued. Show the identity

© Y T iy a e " , ,
J |E(z,t) e~ /@t dt = E.[ elkWNZ fx(0 ) e KW +®Z B " + w) dew
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Define the average time delay and average inverse group velocity through:

IS tIF(z, ) ]2 dt
[56|F(z,0)12dt °

o~ 5 S K (wo + ) |F(0,w) [2dw
)= k= 1%, 1F(0,w) 2dw

S

where F (0, w) is defined in Eq. (3.5.2). Using the above identity, show the relationship:
t(z)=1(0)+kyz

Computer Experiment—Propagation with Negative Group Velocity. Consider the pulse prop-
agation experiment described in Figs. 3.9.3 and 3.9.4, which is a variation of the experiment
in Ref. [272]. The wavenumbers in vacuum, in the absorption and gain media will be de-
noted by ky, kg, kg. They can be calculated from Egs. (3.9.1)-(3.9.6) with f = 0,+1, -1,
respectively.

Let E(t) and E(w) be the initially launched waveform and its Fourier transform on the
vacuum side of the interface with the absorbing medium at z = 0. Because the refractive
indices n(w) are very nearly unity, we will ignore all the reflected waves and assume that
the wave enters the successive media with unity transmission coefficient.

a. Show that the wave will be given as follows in the successive media shown in Fig. 3.9.3:

ejwt—jkvz if z<0

ejwt—jkaz if0<z<a

E(z,t)= iJ' E(w)dw eJwt—jkaa—jky(z-a) ifa<z<3a (3.12.3)

ejwr—j(ka+2kv)a—jkg(Z—Sa) if 3a <z < 4a

ejwt—j(ka+2kv+kg)a—jkv(z—4a) if 4a < z
Thus, in each region, the pulse will have the following form, with appropriate defini-
tions of the wavenumbers g (w), k (w), and offset d:
1 (® . N
E(z,t)= %J E(w)e/wt-aa-ikz=d) g, (3.12.4)
b. Consider, next, a gaussian pulse with width Ty, modulating a carrier w, defined at
z = 0 as follows:

E(t)= e /2T it o F ()= 27772 e To(@-w0)?/2 (3.12.5)

Assuming a sufficiently narrow bandwidth (small 1/7 or large T(,) the wavenumbers
g(w) and k(w) in Eq. (3.12.4) can be expanded up to second order about the carrier
frequency wy giving:

qa(w) =qo +qy(w — we) +q4 (W — we)?/2
(3.12.6)
k(w) = ko + kg (@ — wo) +kg (w — wg)?/2

where the quantities go = g (wo), g = q' (wo), etc., can be calculated from Egs. (3.9.1)-
(3.9.6). Inserting these expansions into Eq. (3.12.4), show that the pulse waveform is
given by:

2
To
To +Jdga + jky (z — d)

E(z,t) = ejwot—jqoa—jk(x(z—d)J
(3.12.7)

e | (L@ Koz - )’
2(78 +jaga+ ki (z - d))
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c. Assume the following values of the various parameters:
c=1, wp=1 y=0.01, w,=5 T9=40, a=50, wo=>5.35

The carrier frequency wy is chosen to lie in the right wing of the resonance and lies
in the negative-group-velocity range for the gain medium (this range is approximately
[5.005, 5.5005] in the above frequency units.)

Calculate the values of the parameters qo, qg, 4, Ko, Ko, ki within the various ranges
of z as defined by Eq. (3.12.3), and present these values in a table form.

Thus, E(z,t) can be evaluated for each value of t and for all the z’s in the four ranges.
Eq. (3.12.7) can easily be vectorized for each scalar t and a vector of z’s.

Make a MATLAB movie of the pulse envelope |E(z,t) |, that is, for each successive t,
plot the envelope versus z. Take z to vary over —2a < z < 6a and t over —100 <t <
300. Such a movie can be made with the following code fragment:

z = -2%a : 6*a; % vector of z’s
t = -100 : 300; % vector of t's

for i=1:length(t),

R

here insert code that calculates the vector E = E(z, t(i))

plot(z/a, abs(E));
x1im([-2,6]); xtick([0,1,3,4]); grid % keep axes the same
y1im([0,11); ytick(0:1:1); % xtick, ytick are part of ewa
text(-1.8, 0.35, strcat(’t=’,num2str(t(i))), ’fontsize’, 15);

% plot as function of z

F(:,i) = getframe; % save current frame

end

movie(F); % replay movie - check syntax of movie() for playing options

Discuss your observations, and explain what happens within the absorption and gain
media. An example of such a movie may be seen by running the file grvmoviel.m in
the movies subdirectory of the ewa toolbox.

d. Reproduce the graphs of Fig. 3.9.4 by evaluating the snapshots at the time instants:
t =[-50, 0, 40, 120, 180, 220, 230, 240, 250, 260]

e. For both the absorbing and the gain media, plot the real and imaginary parts of the
refractive index n = n, — jn; and the real part of the group index ny versus frequency
in the interval 4 < w < 6. Indicate on the graph the operating frequency points. For
the gain case, indicate the ranges over which Re(ng) is negative.

f. Repeat Parts c-d for the carrier frequency w, = 5.8 which lies in the superluminal
range 0 < Re(ng) < 1.

3.11 Consider Egs. (3.9.1)-(3.9.6) for the single-resonance Lorentz model that was used in the

previous experiment. Following [272], define the detuning parameters:

w-w wo — W
E=— ", So=——

wp wp

(3.12.8)
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and make the following assumptions regarding the range of these quantities:

w
Yy < wp < w, and w—” < & <« % (3.12.9)

r P
Thus, y/wp < 1, wp/w, < 1, and &, &y can be taken to be order of 1. In the above
experiment, they were &, = 0.35 and &, = 0.8.

Show that the wavenumber k (w), and its first and second derivatives k' (w), k"’ (w), can be
expressed approximately to first order in the quantities y/w, and w,/w; as follows [272]:

Wl fwp o f (wp\(y
klw) =~ [1 4§wi Tsg (wi)(w,,)]
, 1 f . f (y

cw -t g (@)

) = - | 3y
O =", [2&33 g (wﬂ

The group velocity v, is obtained from the real part of k' (w):

1 1 f c

— =Re[k' =1+ = =

Vg e[k (w)] C|: 4§2] = Ve f

1+

4&2

Thus, v4 = c in vacuum (f = 0) and v, < c in the absorbing medium (f = 1). For the gain

medium (f = —1), we have v, < 01if |§| < 1/2,and v, > cif [§] > 1/2.

Verify that this approximation is adequate for the numerical values given in the previous

problem.

Consider a chirped pulse whose spectrum has an ideal rectangular shape and an ideal
quadratic phase, where 2 = 27tB and wq = 21tB/T:

E(w)= \/?rect <%) e’.i(w*wo)z/zd)g
0

This is the ideal spectrum that all waveforms in chirp radar strive to have. Show that the
corresponding time signal E (t) is given in terms of the Fresnel function F (x) by
Fr)-F(1-)

1t
L= vaBT (+1 - L
j T <2 >

E(t)= F(t) @/0ot+i®ot’/2 = p ()=
1—j T

Show that the output of the compression filter (3.10.10) is given by

— - sin(mrBt)
Ecompr (t)= \/ﬁ 15’73[) eJwot

Computer Experiment—Pulse Compression. Take T = 30, B = 4, fo = 0. Plot the real parts of
the signals E (t) and Ecompr () of the previous problem versus t over theinterval -T < t < T.
Some example graphs are shown in Fig. 3.12.1.

Consider the following chirped pulse, where wo = 21TB/T:

sin(rrt/T) piwot+jcoot? /2

EO=—"0T
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Show that the output of the compression filter (3.10.10) is given by
Ecompr (1) = \[jBT e/®0t=J@0/2 pact (Br)

Moreover, show that the spectrum of E (t) is given in terms of the Fresnel function F (x) as

follows:
Foy_ JWe)=F(w-) _ 2 (1
Ew)= POy [ (55 - - foT)

3.15 Computer Experiment—Pulse Compression. Take T = 30, B =4, fo = 0.

a. Plot the real parts of the signals E (t) and Ecompr (t) of the previous problem over the
interval —T <t < T. Some example graphs are shown in Fig. 3.12.2.

b. Plot the magnitude spectrum |E (w) | in dB versus frequency over the interval —B/2 <
f < B/2 (normalize the spectrum to its maximum at f = f;,.) Verify that the spectrum
lies essentially within the desired bandwidth B and determine its 4-dB width.

c. Write £ (w) in the form:

E(CU) = efj(w—wo)z/zwo D (w) D ((U) _ _T(WJr) __T(W—) eﬂw,wu)z/zwu
) T ;
Plot the residual phase spectrum Arg[D (w) | over the above frequency interval. Verify
that it remains essentially flat, confirming that the phase of E (w) has the expected
quadratic dependence on w. Show that the small residual constant phase is numeri-
cally is equal to the phase of the complex number (1 + j) F(1/+/2BT).

FM pulse, =30, B=4, f,=0 FM pulse, =30, B=4, f,=0

1.5 15
1 | 1 ” M
0.5] 1 0.5 i
@ ©
i
< El H !
o 0 — 0
E <
: : I
-0.5 -0.5 v
-1 \ S\ uvwesaseiat AL 1 -1
1. -1
—%O -5 -10 -5 0 5 10 15 20 —%O -15 -10 -5 0 5 10 15 20
time, ¢ time, ¢

Fig. 3.12.1 Example graphs for Problem 3.13.
3.16 Consider the chirped gaussian pulse of effective duration T, where wo = Q/T:
E(t)= e—r2/2T2 ejwnt+jwot2/2 —oo <t <o
Show that the output of the compression filter (3.10.10) is given by
Eeompr (1) = \[JQT pJwot=jiot? /2 5=Q2t2/2

which has an effective duration of 1/0. Show that the spectrum of E (t) is given by:

By 2T jw-wo2r2ii, | T __(w—wo)?
E@)=1/"%, aT+j ™| 2w @QT +))

130 3. Pulse Propagation in Dispersive Media

FM pulse, T=30, B=4, f,=0 FM pulse, T=30, B=4, f,=0
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Fig. 3.12.2 Example graphs for Problem 3.15.

Show that in the limit of large time-bandwidth product, QT > 1, the last exponential factor
becomes
exp | — (W= @o)?
P 202
which shows that the effective width of the chirped spectrum is Q.

3.17 Stationary-Phase Approximation. Consider a radar waveform E (t)= F(t)e/?© with enve-
lope F(t) and phase 0 (t).

a. Using the stationary-phase approximation of Eq. (H.4) of Appendix F, show that the
spectrum of E (t) can be expressed approximately as:

; ® 0t 5 | 2mj j | 2mj 0 (tw) ,-Jt,
E(w):J F(t)elfWe-jot gy ~ [ E(ty)e 0w = [ F(ty) e/ tw) gmjwlew
o 0 (tw) 0(tw)

where t, is the solution of the equation 0 (t) = w, obtained by applying the stationary-
phase approximation to the phase function ¢ (t)= 0 (t) —wt.

b. For the case of a linearly chirped signal E (t) = F (t) e/©€0t+j@0t*/2 show that the above
approximation reads:
R 211] -
E(w)= |~V F (—w ®o

[an wo

) e (@=w)? /20

Thus, it has the usual quadratic phase dispersion. Show that if F (t) has finite duration
over the time interval |t| < T/2, then, the above approximate spectrum is sharply
confined within the band |w — wq| < Q2/2, with bandwidth Q = woT.

c. Consider the inverse Fourier transform of the above expression:

1 J” 2nj | (w) oI (@=w0)2 1200 it g
2T ) (DO O:J()

Define the phase function ¢ (w)= wt — (w — wy)?/2wy. By applying the stationary-
phase approximation to the above integral with respect to the phase function ¢ (w),
show that the above inverse Fourier transform is precisely equal to the original chirped
signal, that is, E(t) = F () e/®ot+j@ot?/2,
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d. Apply the compression filter (3.10.10) to the approximate spectrum of Part b, and show
that the corresponding compressed signal is in the time domain:

jwo A .
Ecompr(t): .]270 ejwotF(fw()t)

where F (w) is the Fourier transform of F(t). This is similar, but not quite identical,
to the exact expression (3.10.14).

e. Show that Part c is a general result. Consider the stationary-phase approximation
spectrum of Part a. Its inverse Fourier transform is:

1 J’m 211j i0 - i
— _ F(t,,)elftw) p=jwlw ojwt 4y
Py —001,9(1',“) (tw)

Define the phase function ¢ (w) = 0 (t,) — Wty + wt. Show that the stationary-phase
approximation applied to this integral with respect to the phase function ¢ (w) recov-
ers the original waveform E (t) = F(t)e/®,

[Hint: the condition 0 (t,,) = c implies 0 (to) (dte/dw)=1.]

3.18 An envelope signal F (t) is processed through two successive pulse compression filters with
chirping parameters w; and w3, as shown below.

F(f) Fou(2)

Gi(w) & Gy (w)

T o J@01%2

where G;(w)= e/®°/2®i j = 1,2. Show that if the chirping parameter of the intermediate
quadratic modulation is chosen to be w(y = w; + >, then the overall output is a time-scaled

version of the input:
Four (6) = ji | L2 pitootoat? 20 (,M)
(Dl wl

4

Propagation in Birefringent Media

4.1 Linear and Circular Birefringence

In this chapter, we discuss wave propagation in anisotropic media that are linearly or cir-
cularly birefringent. In such media, uniform plane waves can be decomposed in two or-
thogonal polarization states (linear or circular) that propagate with two different speeds.
The two states develop a phase difference as they propagate, which alters the total po-
larization of the wave. Such media are used in the construction of devices for generating
different polarizations.

Linearly birefringent materials can be used to change one polarization into another,
such as changing linear into circular. Examples are the so-called uniaxial crystals, such
as calcite, quartz, ice, tourmaline, and sapphire.

Optically active or chiral media are circularly birefringent. Examples are sugar solu-
tions, proteins, lipids, nucleic acids, amino acids, DNA, vitamins, hormones, and virtually
most other natural substances. In such media, circularly polarized waves go through
unchanged, with left- and right-circular polarizations propagating at different speeds.
This difference causes linearly polarized waves to have their polarization plane rotate
as they propagate—an effect known as natural optical rotation.

A similar but not identical effect—the Faraday rotation—takes place in gyroelec-
tric media, which are ordinary isotropic materials (glass, water, conductors, plasmas)
subjected to constant external magnetic fields that break their isotropy. Gyromagnetic
media, such as ferrites subjected to magnetic fields, also become circularly birefringent.

We discuss all four birefringent cases (linear, chiral, gyroelectric, and gyromagnetic)
and the type of constitutive relationships that lead to the corresponding birefringent
behavior. We begin by casting Maxwell’s equations in different polarization bases.

An arbitrary polarization can be expressed uniquely as a linear combination of two
polarizations along two orthogonal directions.” For waves propagating in the z-direction,
we may use the two linear directions {X, ¥V}, or the two circular ones for right and left
polarizations {é,,é_}, where é, = & —jy and é_ = %X + j¥.¥ Indeed, we have the
following identity relating the linear and circular bases:

TFor complex-valued vectors ey, ez, orthogonality is defined with conjugation: ef‘ -ex =0.
*Note that é. satisfy: é¥ -é. =2, 8% .6_ =0, 8, xé_ =2jz,and ZX é. = +jé..
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1
E=RE +yEy =& E, +& E |, where E.=_(Ex=JEy) 4.1.1)

The circular components E; and E_ represent right and left polarizations (in the
IEEE convention) if the wave is moving in the positive z-direction, but left and right if it
is moving in the negative z-direction.

Because the propagation medium is not isotropic, we need to start with the source-
free Maxwell’s equations before we assume any particular constitutive relationships:

VXE=—-jwB, VxH=jwD, V-D=0, V-B=0 4.1.2)

For a uniform plane wave propagating in the z-direction, we may replace the gradient
by V = 2 0,. It follows that the curls VX E=2Z X 0,E and V X H= Z X 0,H will be
transverse to the z-direction. Then, Faraday’s and Ampeére’s laws imply that D, = 0
and B, = 0, and hence both of Gauss’ laws are satisfied. Thus, we are left only with:

ZX 0,E=—-jwB

4.1.
72X 0,H=jwD (4.1.3)

These equations do not “see” the components E,, H,. However, in all the cases that
we consider here, the conditions D, = B, = 0 will imply also that E, = H, = 0. Thus,
all fields are transverse, for example, E = XEy + VE, = &, E, + é_E_. Equating x,y
components in the two sides of Eq. (4.1.3), we find in the linear basis:

0,Ex = —jwBy, 0;E, = jwBx

9,H, = —jwDy, 0,Hy = jwD, (linear basis) (4.1.4)

Using the vector property Z X é. = +jé. and equating circular components, we
obtain the circular-basis version of Eq. (4.1.3) (after canceling some factors of j):

0,E. = FwB-

9,H. = +wD. (circular basis) (4.1.5)

4.2 Uniaxial and Biaxial Media

In uniaxial and biaxial homogeneous anisotropic dielectrics, the D—E constitutive rela-
tionships are given by the following diagonal forms, where in the biaxial case all diagonal
elements of the permittivity matrix are distinct:

Dy € 0 O Ex Dy eg 0 O Ex
Dy |=]0 € O Ey and Dy,|=]0 € O Ey (4.2.1)
D, 0 0 € E, D, 0 0 €3 E,

For the uniaxial case, the x-axis is taken to be the extraordinary axis with €; = €,,
whereas the y and z axes are ordinary axes with permittivities €, = €3 = €.
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The ordinary z-axis was chosen to be the propagation direction in order for the
transverse X,y axes to correspond to two different permittivities. In this respect, the
uniaxial and biaxial cases are similar, and therefore, we will work with the biaxial case.
Setting Dx = €1Ex and D), = €>E) in Eq. (4.1.4) and assuming B = o H, we have:

0,Ex = —jwuoHy, 0;E, = jwuoHy

9,Hy = —jwe Ex,  9,Hy = jweEy 4.2.2)

Differentiating these once more with respect to z, we obtain the decoupled Helmholtz
equations for the x-polarized and y-polarized components:

02Ex = —w?poei Ex
) 4.2.3)
aZEy = —u)Z/J()EzEy

The forward-moving solutions are:

Ex(z)=AeJhz ki = w./Ho€1 = kom
Ey(z)=BeJkz,  k, = w. /o€ = kony

where kg = w./Ho€g = W/ is the free-space wavenumber and we defined the refractive
indices n; = /€1/€p and n, = \/€2/€y. Therefore, the total transverse field at z = 0 and
at distance z = [ inside the medium will be:

(4.2.4)

E(0) =%XA+YyB
. ) . ) (4.2.5)
E(l) =xAe /Ml 4 yBe/kl = [x A + yBe/ ikl g ikl
The relative phase ¢ = (k; — k2)1 between the x- and y-components introduced by
the propagation is called retardance:

2l
¢ = (ki —ko)l = (1 —ny)kol = (m, —nz)T’T (4.2.6)

where A is the free-space wavelength. Thus, the polarization nature of the field keeps
changing as it propagates.

In order to change linear into circular polarization, the wave may be launched into
the birefringent medium with a linear polarization having equal x- and y-components.
After it propagates a distance [ such that ¢p = (n; — n2) kol = 1/2, the wave will have
changed into left-handed circular polarization:

E(0) = A(X+Y)
, , , (4.2.7)
E() =Ax+yeP)e Ml = A(x+ jy)e k!
Polarization-changing devices that employ this property are called retarders and are
shown in Fig. 4.2.1. The above example is referred to as a quarter-wave retarder because
the condition ¢ = 11/2 may be written as (n; — n2)Il = A/4.
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X linearly birefringent x
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linear polarization elliptic polarization

X circularly birefringent X
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linear polarization linear polarization

Fig. 4.2.1 Linearly and circularly birefringent retarders.

4.3 Chiral Media

Ever since the first experimental observations of optical activity by Arago and Biot in
the early 1800s and Fresnel’s explanation that optical rotation is due to circular bire-
fringence, there have been many attempts to explain it at the molecular level. Pasteur
was the first to postulate that optical activity is caused by the chirality of molecules.
There exist several versions of constitutive relationships that lead to circular bire-
fringence [720-736]. For single-frequency waves, they are all equivalent to each other.
For our purposes, the following so-called Tellegen form is the most convenient [33]:

D=¢€E-jxH

B = uH+ jxE (chiral media) (4.3.1)

where x is a parameter describing the chirality properties of the medium.
It can be shown that the reality (for a lossless medium) and positivity of the energy
density function (E* - D+ H* - B) /2 requires that the constitutive matrix

€ —JX
JjX u

be hermitian and positive definite. This implies that €, i, x are real, and furthermore,
that | x| < ./H€. Using Egs. (4.3.1) in Maxwell’s equations (4.1.5), we obtain:
0,E+ = FwB: = Fw(uH+ + jXE+)
. (4.3.2)
aZHi = iwDi = iw(EEi _JXHi)
Defining ¢ = 1/./U€, n = Ju/€, k = w/c = w. /H€E, and the following real-valued
dimensionless parameter a = cx = X /./H€ (so that |a| < 1), we may rewrite Egs. (4.3.2)
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in the following matrix forms:

0 E. _| jka k E.
oz [nHi] - *[ —k jka] [nHi] @33
These matrix equations may be diagonalized by appropriate linear combinations. For

example, we define the right-polarized (forward-moving) and left-polarized (backward-
moving) waves for the {E,, H,} case:

Ers = 3 [E. —jnH.] E. = Ep, +Ep.
X = 1 (4.3.4)
E .= §[E+ +JjnH.] H. = _J'_)’][ERJr ~EL]

It then follows from Eq. (4.3.3) that {Er, Er+} will satisfy the decoupled equations:

0 [ Ere | _[ ke O ][ Ere Eri(2)= Ay e /k? 435)
0z | Er+ |~ 0 Jk- Ep E;+(z)=B, elk-z o
where k., k_ are defined as follows:
ki =k(1+a)= w(J/ue=xx) (4.3.6)

We may also define circular refractive indices by n. = k. /kg, where kj is the free-
space wavenumber, kg = w./Ho€p. Setting also n = k/kg = \/H€E//Ho€y, We have:
ki =n.ko, n.=n(l=a) 4.3.7)

For the {E_, H_} circular components, we define the left-polarized (forward-moving)
and right-polarized (backward-moving) fields by:

B = S[E- +jnH ] E =E +Ep
X = 1 (4.3.8)
ER—=§[E—_J"7H—] H__E[EL__ER_]

Then, {E;_, Eg_} will satisfy:

O [E-] [-/k o0 Er_ E_(z2)=A_e k2 43.9)
0z | Er- | 0 Jky || Er- Er_(z)= B_ e/k+2 o
In summary, we obtain the complete circular-basis fields E.. (z):
E.(2) = Egy (2)+E. (2)= A, e /X7 1+ B, olk-7
. ) (4.3.10)
E_(z) =E_(2)+Egp_(2)= A_e /-2 4 B_o/k+2z

Thus, the E, (z) circular component propagates forward with wavenumber k., and
backward with k_, and the reverse is true of the E_ (z) component. The forward-moving



4.3. Chiral Media 137

component of E, and the backward-moving component of E_, that is, Eg; and Egr_, are
both right-polarized and both propagate with the same wavenumber k.. Similarly, the
left-polarized waves Er, and E;_ both propagate with k_.

Thus, a wave of given circular polarization (left or right) propagates with the same
wavenumber regardless of its direction of propagation. This is a characteristic difference
of chiral versus gyrotropic media in external magnetic fields.

Consider, next, the effect of natural rotation. We start with a linearly polarized field
at z = 0 and decompose it into its circular components:

1
E(0)=XAx+§Ay =& A +& A, with As= (AcjAy)

where Ay, Ay must be real for linear polarization. Propagating the circular components
forward by a distance I according to Eq. (4.3.10), we find:

E(l) =é, A, e ®lra_A_ ekl
= [ A e i kek U2 L& A oi(ke—k)1/2] gmikerko)1/2 @.3.11)
= [é+A+eij¢ + é_A_ej¢]e’j(k++k7)l/2

where we defined the angle of rotation:

¢ =-(ky — k)l =akl (natural rotation) (4.3.12)

N |~

Going back to the linear basis, we find:
N i ~ i . o1 . i o1 . ;
e, A e e A b= (x-jy) 5 (Ax+jAy)e It 4 (% + ) 5 (Ax —jAy)el®
= [Rcosp —ysinp|Ax + [ycosp + ksinpA,
=RA+V'A,
Therefore, at z = 0 and z = [, we have:

E(0)= [XAx+VA)] 43.13)
E() = [X Ax + ¥/ Ay Jer] kerkl2 @3

The new unit vectors X = Xcosp—ysin¢ and ¥’ = y cos p+Xsin ¢ arerecognized
as the unit vectors X, ¥ rotated clockwise (if ¢ > 0) by the angle ¢, as shown in Fig. 4.2.1
(for the case Ay # 0, Ay = 0.) Thus, the wave remains linearly polarized, but its
polarization plane rotates as it propagates.

If the propagation is in the negative z-direction, then as follows from Eq. (4.3.10), the
roles of k. and k_ are interchanged so that the rotation angle becomes ¢ = (k_—k)1/2,
which is the negative of that of Eq. (4.3.12).

If a linearly polarized wave travels forward by a distance I, gets reflected, and travels
back to the starting point, the total angle of rotation will be zero. By contrast, in the
Faraday rotation case, the angle keeps increasing so that it doubles after a round trip
(see Problem 4.10.)
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4.4 Gyrotropic Media

Gyrotropict media are isotropic media in the presence of constant external magnetic
fields. A gyroelectric medium (at frequency w) has constitutive relationships:

Dx €1 j€2 0 Ex
Dy|=|-je2 e O ||E |, B=uH 4.4.1)
Dz O O 63 EZ

For a lossless medium, the positivity of the energy density function requires that the
permittivity matrix be hermitian and positive-definite, which implies that €;, €2, €3 are
real, and moreover, €; > 0, |€2] < €1, and €3 > 0. The quantity € is proportional to the
external magnetic field and reverses sign with the direction of that field.

A gyromagnetic medium, such as a ferrite in the presence of a magnetic field, has
similar constitutive relationships, but with the roles of D and H interchanged:

Bx Hi1 ju2 0 Hx
By | =| —ju2 0 Hy, |, D=€E (4.4.2)
Bz 0 0 H3 Hz

where again p; > 0, |H2| < pp, and p3 > 0 for a lossless medium.
In the circular basis of Eq. (4.1.1), the above gyrotropic constitutive relationships
take the simplified forms:
D.= (€, +€)E., B.=uH., (gyroelectric) 44.3)
B. = (uy +pup)H., D.=€E., (gyromagnetic) o

where we ignored the z-components, which are zero for a uniform plane wave propa-
gating in the z-direction. For example,

Dx = JDy = (€1Ex + j€2Ey) £j(€1Ey — je2Ex) = (€1 = €2) (Ex £ JEy)

Next, we solve Egs. (4.1.5) for the forward and backward circular-basis waves. Con-
sidering the gyroelectric case first, we define the following quantities:

€+ =€ *+€, Kki=wUEs, nNi= /6— (4.4.4)

Using these definitions and the constitutive relations D. = €. E., Egs. (4.1.5) may
be rearranged into the following matrix forms:

0 E. _ 0 Tk E.
oz [mHi } - [ +k. 0 ] [niHi } (4.4.5)

These may be decoupled by defining forward- and backward-moving fields as in
Egs. (4.3.4) and (4.3.8), but using the corresponding circular impedances n.:

1 . 1 .
Er+ = E[E+ —Jjn+H.] Ep- = E[E* +jn-H-]
(4.4.6)

1 . 1 .
Eri = E[EJr +jniH,] Eg- i[Ef —Jjn-H-]

TThe term “gyrotropic” is sometimes also used to mean “optically active.”
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These satisfy the decoupled equations:

i ER+ ) _ —Jk+ O ER+ ER+ (Z) = A+ e—jk+Z
oz | Erv |~ 0 Jk+ Ery Er.(z)= B, e/k+2
~ ) (4.4.7)
O [E-| [-ik 0 |[E- E(2)=A_e/k?
0z | Er- | B 0 Jk- Er- Er-(z)= B_elk-*
Thus, the complete circular-basis fields E. (z) are:
E.(2) = Eg+ (2)+EL+ (2)= A e /K7 4 B, olke?
_ , (4.4.8)
E_(2) =EL_(2)+Eg_(z2)= A_e X2 1 B_e/k-*

Now, the E (z) circular component propagates forward and backward with the same
wavenumber k., while E_ (z) propagates with k_. Eq. (4.3.13) and the steps leading to
it remain valid here. The rotation of the polarization plane is referred to as the Faraday
rotation. If the propagation is in the negative z-direction, then the roles of k, and k_
remain unchanged so that the rotation angle is still the same as that of Eq. (4.3.12).

If a linearly polarized wave travels forward by a distance I, gets reflected, and travels
back to the starting point, the total angle of rotation will be double that of the single
trip, that is, 2¢p = (ky+ — k_)L

Problems 1.10 and 4.12 discuss simple models of gyroelectric behavior for conduc-
tors and plasmas in the presence of an external magnetic field. Problem 4.14 develops
the Appleton-Hartree formulas for plane waves propagating in plasmas, such as the
ionosphere [737-741].

The gyromagnetic case is essentially identical to the gyroelectric one. Egs. (4.4.5) to
(4.4.8) remain the same, but with circular wavenumbers and impedances defined by:

e =M1 £z, Kk:i=w /€U, N=z= “f (44.9)

Problem 4.13 discusses a model for magnetic resonance exhibiting gyromagnetic
behavior. Magnetic resonance has many applications—from NMR imaging to ferrite mi-
crowave devices [742-753]. Historical overviews may be found in [751,753].

4.5 Linear and Circular Dichroism

Dichroic polarizers, such as polaroids, are linearly birefringent materials that have widely
different attenuation coefficients along the two polarization directions. For a lossy ma-
terial, the field solutions given in Eq. (4.2.4) are modified as follows:

Ex(z)= Ae /M7 = Ae=Ze Bz, ki = w /b€l = 1 —jou (4.5.1)
. _ 5.1
Ey(z)= Be /K7 = Be=%Ze=iB12 1 k) = w /u€; = B2 — joz

where o1, &, are the attenuation coefficients. Passing through a length I of such a
material, the initial and output polarizations will be as follows:
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E(0)=%XA +¥B
E(l) =% Ae Ml 4 yBe kel = (g Ae~®! + y Be~*2lo/$) e=JBil @52

In addition to the phase change ¢ = (81— B2)1, the field amplitudes have attenuated
by the unequal factors a; = e~*! and a, = e~*2!. The resulting polarization will be
elliptic with unequal semi-axes. If ®» > 1, then a, < a; and the y-component can be
ignored in favor of the x-component.

This is the basic principle by which a polaroid material lets through only a preferred
linear polarization. An ideal linear polarizer would have a; = 1 and a, = 0, correspond-
ing to @; = 0 and x» = co. Typical values of the attenuations for commercially available
polaroids are of the order of a; = 0.9 and a, = 1072, or 0.9 dB and 40 dB, respectively.

Chiral media may exhibit circular dichroism[722,735], in which the circular wavenum-
bers become complex, k. = . — jx. Eq. (4.3.11) reads now:

E() =é,A,e™l e _A_e k!
= [6, A e dkikIl2 L g A pilki—k)l/2] gk +ko) /2 (4.5.3)
— [é+A+e—w—j¢ + éiAiewﬁd)]e—j(kwkf)l/Z

where we defined the complex rotation angle:

. 1 1 o1
¢—Jw=§(k+—kf)l=E(B+—Bf)l—15(a+—(xf)l (4.5.4)
Going back to the linear basis as in Eq. (4.3.13), we obtain:

E(0)= [RAx +V Ay

E() = [§A, + ;,'A;,]e—j(k++k,)1/z (4.5.5)
where {&', ¥’} are the same rotated (by ¢) unit vectors of Eg. (4.3.13), and
Al = Aycoshy — jA, sinh
x T Aeosay Ity ST (4.5.6)

A}, = Ay coshy + jAysinh @

Because the amplitudes Ay, A;, are now complex-valued, the resulting polarization
will be elliptical.

4.6 Oblique Propagation in Birefringent Media

Here, we discuss TE and TM waves propagating in oblique directions in linearly birefrin-
gent media. We will use these results in Chap. 8 to discuss reflection and refraction in
such media, and to characterize the properties of birefringent multilayer structures.

Applications include the recently manufactured (by 3M, Inc.) multilayer birefrin-
gent polymer mirrors that have remarkable and unusual optical properties, collectively
referred to as giant birefringent optics (GBO) [698].

Oblique propagation in chiral and gyrotropic media is discussed in the problems.
Further discussions of wave propagation in anisotropic media may be found in [30-32].
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We recall from Sec. 2.10 that a uniform plane wave propagating in a lossless isotropic
dielectric in the direction of a wave vector k is given by:

E(r)= Ee %" H(r)= He /%" with k-E=0, H= nﬁli xE (461
0
where n is the refractive index of the medium n = /€/€p, no the free-space impedance,
and k the unit-vector in the direction of k, so that,
R w
k=kk, k=|kl=w./Up€e = nky, k0=C—=w Uo€o (4.6.2)
0
and K is the free-space wavenumber. Thus, E, H, k form a right-handed system.
In particular, following the notation of Fig. 2.10.1, if k is chosen to lie in the xz plane
at an angle 0 from the z-axis, that is, k = Xsin 0 + Z cos 0, then there will be two inde-

pendent polarization solutions: TM, parallel, or p-polarization, and TE, perpendicular,
or s-polarization, with fields given by

(TM, p-polarization): E=Ey(Xcos0 —2zsin0), H= ’72 Eyy
0

. n X 0 (4.6.3)
(TE, s-polarization): E=Eyy, H= '7_ Eo(—%Xcos O + Zsin0)
0
where, in both the TE and TM cases, the propagation phase factor e/ k¥ is:
e—jk-r — e—j(kzz+kxx) _ e—jkon(zc059+xsin0) (4.6.4)

The designation as parallel or perpendicular is completely arbitrary here and is taken
with respect to the xz plane. In the reflection and refraction problems discussed in
Chap. 7, the dielectric interface is taken to be the xy plane and the xz plane becomes
the plane of incidence.

In a birefringent medium, the propagation of a uniform plane wave with arbitrary
wave vector k is much more difficult to describe. For example, the direction of the
Poynting vector is not towards k, the electric field E is not orthogonal to k, the simple
dispersion relationship k = nw/cy is not valid, and so on.

In the previous section, we considered the special case of propagation along an ordi-
nary optic axis in a birefringent medium. Here, we discuss the somewhat more general
case in which the xyz coordinate axes coincide with the principal dielectric axes (so that
the permittivity tensor is diagonal,) and we take the wave vector k to lie in the xz plane
at an angle 0 from the z-axis. The geometry is depicted in Fig. 4.6.1.

Although this case is still not the most general one with a completely arbitrary direc-
tion for k, it does contain most of the essential features of propagation in birefringent
media. The 3M multilayer films mentioned above have similar orientations for their
optic axes [698].

The constitutive relations are assumed to be B = poH and a diagonal permittivity
tensor for D. Let €1, €2, €3 be the permittivity values along the three principal axes and
define the corresponding refractive indices n; = +/€j/€g, i = 1,2,3. Then, the D-E
relationship becomes:

0
Dy|=]0 e O0||E |=€| 0 n3 0 ]|]|E (4.6.5)
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Fig. 4.6.1 Uniform plane waves in a birefringent medium.

For a biaxial medium, the three n; are all different. For a uniaxial medium, we take
the xy-axes to be ordinary, with n, = n, = n,, and the z-axis to be extraordinary, with
n3 = ne." The wave vector k can be resolved along the z and x directions as follows:

k=kk =k(xsin0 + zZcos 0) = kky + 2k, (4.6.6)

The w-k relationship is determined from the solution of Maxwell’s equations. By
analogy with the isotropic case that has k = nkg = nw/co, we may define an effective
refractive index N such that:

k=Nko=N cﬂ (effective refractive index) (4.6.7)
0

We will see in Eq. (4.6.22) by solving Maxwell’s equations that N depends on the
chosen polarization (according to Fig. 4.6.1) and on the wave vector direction 9:

nng -
- , (TM, p-polarization)
N = \/nf sin? 0 + n3 cos? 0 (4.6.8)
nz, (TE, s-polarization)

For the TM case, we may rewrite the N-60 relationship in the form:

1 cos2@ sin’? 0
— = + ffective TM ind 4.6.9
N2 "'12 n% (effective index) ( )

Multiplying by k? and using ko = k/N, and kx = ksin 8, k, = k cos 8, we obtain the
w-k relationship for the TM case:
2 kZ k2
w—z =-Z+3 (TM, p-polarization) (4.6.10)
€o ny  nj

Similarly, we have for the TE case:

TIn Sec. 4.2, the extraordinary axis was the x-axis.
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2 2
w k

— = (TE, s-polarization) (4.6.11)
ch ns

Thus, the TE mode propagates as if the medium were isotropic with index n = no,
whereas the TM mode propagates in a more complicated fashion. If the wave vector k
is along the ordinary x-axis (60 = 90°), then k = ky = n3w/cop (this was the result of
the previous section), and if k is along the extraordinary z-axis (6 = 0°), then we have
k = kz =n,w/cop.

For TM modes, the group velocity is not along k. In general, the group velocity
depends on the w-k relationship and is computed as v = 0w/ dk. From Eq. (4.6.10), we
find the x- and z-components:

dw  kxc3 N |
vV, = = = o —5 sin@
T ke wnd m3 ™ w612)
v—a—w——kZC%—CECOSG -
2Tk, wnd 'l

The Veloci_ty vector vis not parallel to k. The angle 0 that v forms with the z-axis is
given by tan 6 = v, /v,. It follows from (4.6.12) that:

2
- n
tan 0 = n—; tan 0 (group velocity direction) (4.6.13)
3

Clearly, @ # 0 if n, # n3. The relative directions of k and v are shown in Fig. 4.6.2.
The group velocity is also equal to the energy transport velocity defined in terms of the
Poynting vector P and energy density w as v = P/w. Thus, v and P have the same
direction. Moreover, with the electric field being orthogonal to the Poynting vector, the
angle 0 is also equal to the angle the E-field forms with the x-axis.

1
E b Py
0 0
k
0
»Z
H
y

Fig. 4.6.2 Directions of group velocity, Poynting vector, wave vector, and electric field.

Next, we derive Egs. (4.6.8) for N and solve for the field components in the TM
and TE cases. We look for propagating solutions of Maxwell’s equations of the type
E(r)= Ee7*7 and H(r)= He 7¥" Replacing the gradient operator by V — —jk and
canceling some factors of j, Maxwell’s equations take the form:
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V XE=—jwuoH kX E= wugH
V X H-=jwD kxH=—-wD
= (4.6.14)
V-D=0 k-D=0
V-H=0 k-H=0

The last two equations are implied by the first two, as can be seen by dotting both
sides of the first two with k. Replacing k = k k = Nkgk, where N is still to be determined,
we may solve Faraday’s law for H in terms of E:

kX E (4.6.15)

NCkxE=wuH = |H=Ek
Co no

where we used ng = coto. Then, Ampeére’s law gives:

2

D:—ikXH:—iNgl}XH: kx (Exk) = |kx(Exk)=

D
w w Co NoCo eONZ

where we used cong = 1/€p. The quantity kx (ExK) is recognized as the component of
E that is transverse to the propagation unit vector k. Using the BAC-CAB vector identity,
we have k X (E x k)= E — k(k - E). Rearranging terms, we obtain:

D=k(k-E) (4.6.16)

E—
€0N2

Because D is linear in E, this is a homogeneous linear equation. Therefore, in order
to have a nonzero solution, its determinant must be zero. This provides a condition
from which N can be determined.

To obtain both the TE and TM solutions, we assume initially that E has all its three
components and rewrite Eq. (4.6.16) component-wise. Using Eq. (4.6.5) and noting that
k-E= Exsin 0 + E, cos 6, we obtain the homogeneous linear system:

2
(1 - ﬂ)EX = (Exsin @ + E, cos 0)sin 0
ne
(17—2>Ey:0 (4.6.17)

2
n
(1 - N—i) E, = (Exsin@ + E, cos 0)cos 0
The TE case has Ey # 0 and Ex = E, = 0, whereas the TM case has Ex # 0, E; # 0,
and Ey, = 0. Thus, the two cases decouple.
In the TE case, the second of Egs. (4.6.17) immediately implies that N = n,. Setting
E=Eyy and using k X y = —Xcos 0 + Zsin 0, we obtain the TE solution:
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E(r) = Eoye /K"

Ny ) (TE) (4.6.18)
H(r) = o Eo(—%cos 0 + zsin@)e k"
0
where the TE propagation phase factor is:
‘ e kT = pikonz(zcos0+xsin0) ‘ (TE propagation factor) (4.6.19)

The TM case requires a little more work. The linear system (4.6.17) becomes now:
n2
(1 - N—lz Ex = (Exsin@ + E, cos 0)sin
(4.6.20)

2
(1 - %)Ez = (Exsin® + E, cos 0)cos 0

Using the identity sin® 0 + cos? @ = 1, we may rewrite Eq. (4.6.20) in the matrix form:
2 ni .
cos Gfm —sin 6 cos 0 Ex o
2 EZ

n-
i 2 N3
sinf@cos @ sin- 0 N2

(4.6.21)

Setting the determinant of the coefficient matrix to zero, we obtain the desired con-
dition on N in order that a non-zero solution Ey, E, exist:

NZ

n? n3
cos® 0 — N—lz sin?0 — — | —sin® O cos?0 =0 (4.6.22)

This can be solved for N? to give Eq. (4.6.9). From it, we may also derive the following
relationship, which will prove useful in applying Snel’s law in birefringent media:

n - N2sin? 0
NcosO = n—lﬂr@ —N2sin?0 =n; |1- L? (4.6.23)

3 nj

With the help of the relationships given in Problem 4.16, the solution of the homo-
geneous system (4.6.20) is found to be, up to a proportionality constant:
n

3 cos@, E,=-A % sin 0 (4.6.24)
3

Ex=A
X n

The constant A can be expressed in terms of the total magnitude of the field Ey =
|E| = +/|Ex|%2 + |Ez|2. Using the relationship (4.7.11), we find (assuming A > 0):

N

\Jn? +nj — N2

The magnetic field H can also be expressed in terms of the constant A. We have:

A=E (4.6.25)
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H=Nixe=-N (%sin 0 + Z cos 0) X (XEy + ZE;)
No nNo
N N :
= — V(Excos® —E,sinf)= —yA (E cos? 0 + L gin? 9) (4.6.26)
no No np ns
N N nins _ A N M

Y —Y
o N2 no~ N

where we used Eq. (4.7.10). In summary, the complete TM solution is:

n: n .
E(r) = Ey )Acic:ose—i—'1 sinG)e*J’”

T
n?+ni-N2\ M n3

Ey nyns
Mo \/n? + n3 — N2

where the TM propagation phase factor is:

(TM) (4.6.27)

H(r) = yeJkr

‘ e Tk = g-jkoN(zcos 0+xsin0) ‘ (TM propagation factor) (4.6.28)

The solution has been put in a form that exhibits the proper limits at @ = 0° and
90°. It agrees with Eq. (4.6.3) in the isotropic case. The angle that E forms with the x-axis
in Fig. 4.6.2 is given by tan @ = —E,/Ey and agrees with Eq. (4.6.13).

Next, we derive expressions for the Poynting vector and energy densities. It turns
out—as is common in propagation and waveguide problems—that the magnetic energy
density is equal to the electric one. Using Eq. (4.6.27), we find:

1 E? ninsN _n . n
fP:7Re(E><H*):—O%(X—1sin9+z—3c059> (4.6.29)
2 2no ny+n3— N2 \' n3 ny
and for the electric, magnetic, and total energy densities:
w, :lRe(D-E*): l(—:o(nz\E 12 + ni|E,|?) = leoEzﬂ
€72 4 ONTLEX 3z 4770 n? 4 ni — N2
Wi = LRe(B HF) = Lpglby 2 = Leorz M, (4.6.30)
m= o T ROl = 0k T e N T e v
1 nin;
W =We + W =2We = —€0E2 ——5°>——
€ m € ZOOn%JrnszZ

The vector P is orthogonal E and its direction is O given by Eq. (4.6.13), as can be
verified by taking the ratio tan @ = Py/?P,. The energy transport velocity is the ratio of
the energy flux to the energy density—it agrees with the group velocity (4.6.12):

N N
V= P = Cp (ﬁ—zsin9+i—2c039> (4.6.31)
w n; ny
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To summarize, the TE and TM uniform plane wave solutions are given by Egs. (4.6.18)

and (4.6.27). We will use these results in Sects. 8.10 and 8.12 to discuss reflection and re-
fraction in birefringent media and multilayer birefringent dielectric structures. Further
discussion of propagation in birefringent media can be found in [638,57] and [698-719].

4.7 Problems

4.1

4.2

4.3

4.4

4.5

For the circular-polarization basis of Eq. (4.1.1), show

E=é,F, +é. E. = ZXE=jé,E,—-jé E. = ZXE.==jE.
Show the component-wise Maxwell equations, Eqgs. (4.1.4) and (4.1.5), with respect to the

linear and circular polarization bases.

Suppose that the two unit vectors {X,y} are rotated about the z-axis by an angle ¢ resulting
inX =Xcos¢ +ysing and ¥ = ycos ¢ — Xsin ¢p. Show that the corresponding circular
basis vectors é. =X ¥ jy and &, =% Fj§ change by the phase factors: &, = e*/¢é._ .
Consider a linearly birefringent 90° quarter-wave retarder. Show that the following input
polarizations change into the indicated output ones:

o
+ I+

y
y

~.

i/_.
v - %

s
=+

il

What are the output polarizations if the same input polarizations go through a 180° half-
wave retarder?

A polarizer lets through linearly polarized light in the direction of the unit vector &, =
Xcos 0, + ysin 6, as shown in Fig. 4.7.1. The output of the polarizer propagates in the
z-direction through a linearly birefringent retarder of length I, with birefringent refractive
indices np, ny, and retardance ¢ = (n; — ny) kol.

Fig. 4.7.1 Polarizer-analyzer measurement of birefringence.

The output E(I) of the birefringent sample goes through an analyzing linear polarizer that
lets through polarizations along the unit vector é; = Xcos 6, + ¥ sin 0,. Show that the light
intensity at the output of the analyzer is given by:

Io= |& - E()|* = |cos B, cos 0, + e/® sin B, sin 6, |

For a circularly birefringent sample that introduces a natural or Faraday rotation of ¢ =
(k; — k_)1/2, show that the output light intensity will be:

Io= & -EWD|* = cos?(6, — 04 — b)

For both the linear and circular cases, what are some convenient choices for 8, and 6,?
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4.7

4.8

4.9
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A linearly polarized wave with polarization direction at an angle 6 with the x-axis goes
through a circularly birefringent retarder that introduces an optical rotation by the angle
¢ = (k; — k_)I/2. Show that the input and output polarization directions will be:

XcosO +ysin@ — Xcos(0 —¢p)+ysin(0 — P)

Show that an arbitrary polarization vector can be expressed as follows with respect to a
o o

linear basis {%, ¥} and its rotated version {X',y’}:
E=A%+By=A'X +B'Yy

where the new coefficients and the new basis vectors are related to the old ones by a rotation
by an angle ¢:

Al cos¢p  sing A %] cos¢p  sing X

B | | —sing cos¢ B |’ v | | —sing cosg v
Show that the source-free Maxwell’s equations (4.1.2) for a chiral medium characterized by
(4.3.1), may be cast in the matrix form, where k = w./{€, n = \/Ju/€, and a = x/./HeE:

AR

Show that these may be decoupled by forming the “right” and “left” polarized fields:

V x [?L‘ } = [ko* 727 ] [?L‘] where Eg = %(E—jnH), Ep = %(E-%—jr]H)
where k. = k(1 = a). Using these results,Ashow that the possible plane-wave solutions
propagating in the direction of a unit-vector k are given by:

E(r)=Eo(p—j8)e %" and E(r)=Eo(p+js)e *r
where k. = k. k and {p, §, k} form a right-handed system of unit vectors, such as {£',¥',2'}

of Fig. 2.10.1. Determine expressions for the corresponding magnetic fields. What freedom
do we have in selecting {p, §} for a given direction k?

Using Maxwell’s equations (4.1.2), show the following Poynting-vector relationships for an
arbitrary source-free medium:

V- (ExH*) = jw(D*-E-B-H")

V -Re(Ex H*) = —w Im(D* - E+ B* - H)

Explain why a lossless medium must satisfy the condition V - Re(E X H*) = 0. Show that
this condition requires that the energy function w = (D* - E+ B* - H) /2 be real-valued.
For a lossless chiral medium characterized by (4.3.1), show that the parameters €, u, x are
required to be real. Moreover, show that the positivity of the energy function w > 0 requires
that |x| < /1€, as well as € > 0 and u > 0.
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4.10

4.12

4.13
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In a chiral medium, at z = 0 we lauch the fields Eg, (0) and E;_ (0), which propagate by a
distance I, get reflected, and come back to the starting point. Assume that at the point of
reversal the fields remain unchanged, that is, Eg (I)= Er; (I) and E;_ (I)= Eg-(I). Using
the propagation results (4.3.5) and (4.3.9), show that fields returned back at z = 0 will be:

Er4(0)=Er (De %! = Ep, () e %I = Eg, (0) eI ke+k-I1
Ep-(0)= Eg— (e *! = E;_(De k! = E;_(0) e~/ ke k)

Show that the overall natural rotation angle will be zero. For a gyrotropic medium, show
that the corresponding rountrip fields will be:

Ery (0)=Ery (De™*-! = Eg, (e ™% = Eg, (0)e~%k+!
Eg-(0)= Eg-(De 7kl = E;_(l)e/*k+! = E;_(0)e %K1

Show that the total Faraday rotation angle will be 2¢p = (k. —k_)L
Show that the X,y components of the gyroelectric and gyromagnetic constitutive relation-
ships (4.4.1) and (4.4.2) may be written in the compact forms:

Dr =¢€Er — jea Z X Er (gyroelectric)

Br = pnHr — ju» ZX Hr ~ (gyromagnetic)
where the subscript T indicates the transverse (with respect to z) part of a vector, for exam-
ple, Dy = XDx + VD,

Conductors and plasmas exhibit gyroelectric behavior when they are in the presence of an
external magnetic field. The equation of motion of conduction electrons in a constant mag-
netic field is mv = e(E + v X B) —mav, with the collisional damping term included. The
magnetic field is in the z-direction, B = Z By.

Assuming e/®! time dependence and decomposing all vectors in the circular basis (4.1.1),
for example, v=¢&,v, + é_v_ + 2Vv,, show that the solution of the equation of motion is:

e e
—E. —E,

Ve = m , v =
& +j(w + wg) o+ jw

where wp = eByp/m is the cyclotron frequency. Then, show that the D—E constitutive
relationship takes the form of Eq. (4.4.1) with:

) Jjwsy . Jjw}
L=€ *€ = - = -—F
Ex=€E12 6 =6 wla+j(w + wp)] € = €o W (& + jw)

where wf, = Ne?/mey is the plasma frequency and N, the number of conduction electrons
per unit volume. (See Problem 1.10 for some helpful hints.)

If the magnetic field Hy, = ZH, + He/®! is applied to a magnetizable sample, the in-
duced magnetic moment per unit volume (the magnetization) will have the form M, =
72 M, + Me/®t, where z M, is the saturation magnetization due to 2 H, acting alone. The
phenomenological equations governing M, including a so-called Landau-Lifshitz damping
term, are given by [750]:

dam, 164
ﬁ =y (Mot X Hiot) — m Mot X (Mior X Hior)
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where y is the gyromagnetic ratio and T = 1/, a relaxation time constant. Assuming that
|H| < Hy and |M| < M,, show that the linearized version of this equation obtained by
keeping only first order terms in H and M is:

JwM= wpn(ZXH) -wy(ZX M) —xzX [ (M- xoH) XZ|

where wy = yMy, wy = yHy, and xo = Mo/Hy. Working in the circular basis (4.1.1), show
that the solution of this equation is:

X+ jwg

Mi=Xo——F " ——
- X0a+j(win)

H.

X+H+: and M, =0

Writing B = o (H + M), show that the permeability matrix has the gyromagnetic form of
Eq. (4.4.2) with py = p» = g+ = U (1 + xX+) and g3 = po. Show that the real and imaginary
parts of u; are given by [750]:

HoXo | & + wi (W + wpr) | & — wy (W = wp)
R =po+ S | ' ' :
e(p) =po+ =3 [ o2 1 (w + wp)?2 a2 + (w - wy)?
HoXo xw xw
I - . S+ — »
m () 5 |:0(2+((»U+(UH)Z O(Z+(UJ—UJH)Z]

Derive similar expressions for Re(u») and Im (u»).

A uniform plane wave, Ee /" and He /¥'" is propagating in the direction of the unit vector
k = 2 = zcos @ + zsin @ shown in Fig. 2.10.1 in a gyroelectric medium with constitutive
relationships (4.4.1).

Show that Egs. (4.6.14)-(4.6.16) remain valid provided we define the effective refractive index
N through the wavevector k = k R, where k = Nkg, ko = w./H€y.

Working in the circular-polarization basis (4.1.1), that is, E = é,E, + é_E_ + ZE,, where
E. = (Ex + jEy) /2, show that Eq. (4.6.16) leads to the homogeneous system:

1 . 1 . 1

1- 3 silnZ 0 — 606;,2 1— 3 sin® 0 —% sin 0 cos 0 E.

—~sin® 0 1--sin?0- - _“sinOcos0 E_[=0 (4.7.1)
2 2 €N? 2 . E
—sin 0 cos 0 —sin 0 cos 0 sin? @ — — i
E()]\/v2
where €. = €; + €. Alternatively, show that in the linear-polarization basis:
€1 — €gN?cos? @ je €oN? sin 0 cos 0 Ey

*A].Ez €1 — €0N2 0 Ey =0 4.7.2)

€oN?sin 0 cos 0 0 €3 — €gN?sin® 0 E,

For either basis, setting the determinant of the coefficient matrix to zero, show that a non-
zero E solution exists provided that N2 is one of the two solutions of:

€3 (egN? —€,) (egN? —€_ 2,6 € -6
tan @ = ——> (€ +) (€ ) , where €, = —* =L =2 (4.7.3)
€1 (€0N? - €3) (€0N? — €o) €+ € €
Show that the two solutions for N? are:
(€2 — €3 — €1€3)sin% 0 + 2€1€3 = +/ (€7 — €5 — €1€3)2sin* O + 4€3€35 cos? O
N2 1T @ \/ 16 2€3 4.7.4)

26y (€ sin® O + €3 cos? 0)
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For the special case k=2 (6 = 0°), show that the two possible solutions of Eq. (4.7.1) are:

eN?=¢,, k=k,=wypue;, E,+#0, E.=0, E,=0
eN>=¢., k=k_ =wype_, E, =0, E_.#0, E,=0

For the case k = % (0 = 90°), show that:

€N’ =¢, k=k3y=wynué;, E. =0, E_ =0, E,+0
€N’ —€o, k=ke=c i€, E.#0, E-=-"F., E =0

For each of the above four special solutions, derive the corresponding magnetic fields H.
Justify the four values of N2 on the basis of Eq. (4.7.3). Discuss the polarization properties of
the four cases. For the “extraordinary” wave k = k., show that Dy = 0 and Ex/E, = —jea /€.
Eq. (4.7.4) and the results of Problem 4.14 lead to the so-called Appleton-Hartree equations
for describing plasma waves in a magnetic field [737-741].

A uniform plane wave, Ee /K" and He /¥, is propagating in the direction of the unit vector
k = 2" = 2cos0 + Zsin @ shown in Fig. 2.10.1 in a gyromagnetic medium with constitutive
relationships (4.4.2). Using Maxwell’s equations, show that:

kx E= wB, k-B=0
kxH=—-weE, k-E=0

H B=k(k-H (4.7.5)

E

where the effective refractive index N is defined through the wavevector k = kR, where
k = Nko, ko = w./Ho€. Working in the circular polarization basis H=é&.H, +&é_H_+ZH,,
where H. = (Hy = jHy) /2, show that Eq. (4.7.5) leads to the homogeneous system:

1 1 1
17§sin297u:;;]2 lfgsinze 7%sin9c056 i
— = sin’ 0 1- —sin2o - = —=sin 0 cos 0 H_ =0 (4.7.6)
2 2 UoN? 2 H
—sin 0 cos 0 —sin 0 cos 0 sin2@ — 3 ?
HoN?

where (. = p; + up. Alternatively, show that in the linear-polarization basis:

Uy — HoN? cos® 0 Ju2 UoN? sin 0 cos 0 Hy
—ju2 p1 — HoN? o Hy [=0 (4.7.7)
HoN? sin O cos 0 0 U3 — HoN? sin® 0 H,

For either basis, setting the determinant of the coefficient matrix to zero, show that a non-
zero E solution exists provided that N? is one of the two solutions of:

22
where p, = Zu*'i _ MM (4.7.8)
My + Hy

M3 (MoN® — py) (HoN® — )

tan® 0 = ,
M1 (HoN? = p3) (HoN? — pe)

Show that the two solutions for N? are:

_(WF =g~ pps)sin® 0 + 2pips £ Vi = 13— pips) 2sin 0 + 43 cos?

N2
2o (Uy sin® @ + 3z cos? 0)

For the special case 0 = 0°, show that the two possible solutions of Eq. (4.7.6) are:

HON? = py, Kk =k,
MoN? =p_, k=ky

w.€uy, H.#0, H_-=0, H,=0
w.€u_, H, =0, H +#0, H,=0
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For the special case 6 = 90°, show that:

MoN? =3, k=ks=wEms, H.=0, H_ =0, H,#0
HoN? = o, k=Ko = w.jell;, H, #0, H’z_%H*’ H,=0

For each of the above four special solutions, derive the corresponding electric fields E. Justify
the four values of N2 on the basis of Eq. (4.7.8). Discuss the polarization properties of the
four cases. This problem is the dual of Problem 4.14.

4.16 Using Eq. (4.6.9) for the effective TM refractive index in a birefringent medium, show the
following additional relationships:

in® 0 20
A 4.7.9)
nj n3
n: 5 n 5 nn:
300820 + —Lsin?0 = 3 (4.7.10)
n ns N2
2 2 2 2 2
n n ni +ns; - N
—1sin?0 + =3 cos? 0 = % (4.7.11)
ns ni N
2 2
n n
TN e
sin® 0 = el cos’ 0 = p: (4.7.12)
1-— 1-23
nj nj
2 2 2 2
2 ny L. 2 n; nj 2
cos*0 — — =—— sin“ 0, sin“ 0 — —= = —— cos- 0 4.7.13
N2 nj N2 n? ( )

Using these relationships, show that the homogeneous linear system (4.6.20) can be simpli-
fied into the form:

m . ns n3 n .
Ex— sin@ = —-E, — cos0, E,— cosO = —Ex— sin0
ns n nm ns
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Reflection and Transmission

5.1 Propagation Matrices

In this chapter, we consider uniform plane waves incident normally on material inter-
faces. Using the boundary conditions for the fields, we will relate the forward-backward
fields on one side of the interface to those on the other side, expressing the relationship
in terms of a 2x2 matching matrix.

If there are several interfaces, we will propagate our forward-backward fields from
one interface to the next with the help of a 2x2 propagation matrix. The combination of
a matching and a propagation matrix relating the fields across different interfaces will
be referred to as a transfer or transition matrix.

We begin by discussing propagation matrices. Consider an electric field that is lin-
early polarized in the x-direction and propagating along the z-direction in a lossless
(homogeneous and isotropic) dielectric. Setting E(z)= XEx(z)= XE(z) and H(z)=
VHy(z)=yH(z), we have from Eq. (2.2.6):

E(z) = Egye % + Ey_e/*? = E, () +E_(2)

1 " " 1 (5.1.1)
H(z) = E[E0+e’f Z — Ep_e/*?] = E[E+ (z)-E_(2)]
where the corresponding forward and backward electric fields at position z are:
E,(z)= Ep e k2
+(z)= Eo4 (5.1.2)

E_(z)= Eq_elkz

We can also express the fields E. (z) in terms of E(z),H (z). Adding and subtracting
the two equations (5.1.1), we find:
E.(z)= =[E(z)+nH(z)]
(5.1.3)

[ = N[ =

E_(z)= - [E(z)-nH(2)]

2
Egs.(5.1.1) and (5.1.3) can also be written in the convenient matrix forms:
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)L e (2L )

Two useful quantities in interface problems are the wave impedance at z:

_E(2)

Z(z)= H(z)

(wave impedance)

and the reflection coefficient at position z:

I'(z)= E-(2) (reflection coefficient)
Ei(2)
Using Eq. (5.1.3), we have:
1 E
ro B QETID T z-n
E, 1 E Z+n
- E H -
5 (E+nH) H +n
Similarly, using Eq. (5.1.1) we find:
L
,_E E.+E- n E, n1+r
= =7 = s = -
Ho L gy -5 1T
n E,
Thus, we have the relationships:
1+TI(z2) Z(z)-n
Z(z)=n—7— I'(z)= ———
@D=n1"Tey | 1TD= 200
Using Eq. (5.1.2), we find:
Jkz .
I'(z)= E_ (Z) _ Eo_e =F(0)e2-’kz

Ei(2) ~ Egre
where I'(0) = E¢—/Eq is the reflection coefficient at z = 0. Thus,

I'(z)=I(0)e¥kz (propagation of I')
Applying (5.1.7) at z and z = 0, we have:

Z(z)-n ... 2ikz _ Z(0)=N jks
Z(z)+n =T(2)=T(0)e™™ = Z(0)+n°

This may be solved for Z(z) in terms of Z(0), giving after some algebra:

Z(0)—jntankz

Z{z)=n n-jZ(0)tankz

(propagation of Z)

(5.1.4)

(5.1.5)

(5.1.6)

(5.1.7)

(5.1.8)

(5.1.9)
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The reason for introducing so many field quantities is that the three quantities
{E+(2),E_(z),I'(z)} have simple propagation properties, whereas {E(z),H(z),Z(z)}
do not. On the other hand, {E (z),H (z), Z(z) } match simply across interfaces, whereas
{E;(2),E_(z),I'(z)} do not.

Egs. (5.1.1) and (5.1.2) relate the field quantities at location z to the quantities at
z = 0. In matching problems, it proves more convenient to be able to relate these
quantities at two arbitrary locations.

Fig. 5.1.1 depicts the quantities {E(z),H (z),E(z),E_(z),Z(z),I'(z)} at the two
locations z; and z, separated by a distance I = z, — z;. Using Eq. (5.1.2), we have for
the forward field at these two positions:

E>, = Eo+e—jk22, Eiy = E(l-v-ej‘kz1 = E0+eijk(zzil) = ejkIE2+

Ey, H, Ey, H,

Ey, Er- Eyy, By

7, I %, I

—i—» medium —i—»
: n :
; ; > 7
-~

Fig. 5.1.1 Field quantities propagated between two positions in space.

And similarly, E,_ = e X E,_. Thus,

Eiy =eME, . E_=eNE,_ (5.1.10)
and in matrix form:
E JKL E
[Et ] - [20 Sl ] [Ei ] (propagation matrix) (5.1.11)

We will refer to this as the propagation matrix for the forward and backward fields.
It follows that the reflection coefficients will be related by:

_Ei-  Epe M
Ey E oM

(reflection coefficient propagation) (5.1.12)

Using the matrix relationships (5.1.4) and (5.1.11), we may also express the total
electric and magnetic fields E;, H; at position z; in terms of E», H, at position z;:

E, 1 1 E ] [ 1 1 ekl Es,
Hy nt -n || E- | | nt -nT! 0 ek || E
11 1 ekl 1 nl|[ E
2| nt -nt 0 e/ |l1 —n||H

I = e 9K or,
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which gives after some algebra:

E; | cos kl jnsinkl E; . .
[ H, ] = [jn‘l sinkl  coskl H» (propagation matrix) (5.1.13)

Writing n = no/n, where n is the refractive index of the propagation medium,
Eq. (5.1.13) can written in following form, which is useful in analyzing multilayer struc-
tures and is common in the thin-film literature [632,634,638,649]:

Er | cos & jn~ngsind E, ) )
[H1 ] = [j"m&l siné oSS H, (propagation matrix) (5.1.14)

where ¢ is the propagation phase constant, 6 = kl = konl = 21 (nl) /A, and nl the
optical length. Egs. (5.1.13) and (5.1.5) imply for the propagation of the wave impedance:

E> -
_Ei Escoskl+jnHysinkl _p, ©SKITJnsinkl
te H, JE>n—1sinkl + H, coskl =n

n coskl +j15—22 sinkl

which gives:

Z kl + jn sinkl
Zy=n r,ch)(s)skl +jJZZ :?nlkl (impedance propagation) (5.1.15)
It can also be written in the form:
Zy + jntankl
1= % (impedance propagation) (5.1.16)

A useful way of expressing Z; is in terms of the reflection coefficient I'. Using (5.1.7)
and (5.1.12), we have:

7. = 1+F1_ 1+F2€72jkl
L R T
1 +1"2e‘2ﬂ"

We mention finally two special propagation cases: the half-wavelength and the quarter-
wavelength cases. When the propagation distance is | = A/2, or any integral multiple
thereof, the wave impedance and reflection coefficient remain unchanged. Indeed, we
have in this case kIl = 2ml/A = 211/2 = 1 and 2kl = 2m. It follows from Eq. (5.1.12)
that I'y = I'; and hence Z; = Z,.

If on the other hand [ = A/4, or any odd integral multiple thereof, then kI = 217/4 =
1r/2 and 2kl = 1r. The reflection coefficient changes sign and the wave impedance
inverts:

1+1, 1-T» 1 n?

Iy =Te 2Kl e ™ - _T 7, = = = =
! 2¢ 2¢ 2z ! nl—l"l n1+1"2 nZg/r] Zo
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Thus, we have in the two cases:

l=% = Zl=Zz, F1=F2
N n? (5.1.18)
I=Z = 21=Z, 1"1——1"2

5.2 Matching Matrices

Next, we discuss the matching conditions across dielectric interfaces. We consider a
planar interface (taken to be the xy-plane at some location z) separating two dielec-
tric/conducting media with (possibly complex-valued) characteristic impedances n,n’,
as shown in Fig. 5.2.1.1

n n' n n' n n'
E. E, E, |Ei=TE: E,=pE.
R R —
-+ -+ -+
E_ E. E_=pE. E_=TE. E.
pT|P T’ pT|P. T pT|P\ T’

Fig. 5.2.1 Fields across an interface.

Because the normally incident fields are tangential to the interface plane, the bound-
ary conditions require that the total electric and magnetic fields be continuous across
the two sides of the interface:

E=F

H=H (continuity across interface) (5.2.1)

In terms of the forward and backward electric fields, Eq. (5.2.1) reads:

E,+E_=E +E.
1 1 (5.2.2)

Eq. (5.2.2) may be written in a matrix form relating the fields E. on the left of the
interface to the fields E’, on the right:

E. | _1( 1 p E', . .
[ E ]_ T[ o1 }[ E (matching matrix) (5.2.3)

TThe arrows in this figure indicate the directions of propagation, not the direction of the fields—the field
vectors are perpendicular to the propagation directions and parallel to the interface plane.
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and inversely:

E" | p 1 E_

where {p, T} and {p’, T’} are the elementary reflection and transmission coefficients
from the left and from the right of the interface, defined in terms of n,n" as follows:

[ EL ] - i[ 1, P ] [ E. ] (matching matrix) (5.2.4)

’ _ 2 4
p=1 =0 L _ <N (5.2.5)
n+n n+n
,_n-n" _,_ _2n
o= o= , (5.2.6)
n+n n+n
Writing n = no/n and n’ = no/n’, we have in terms of the refractive indices:
n-n' 2n
p= S, T= -
n+n n+n
(5.2.7)
, n-n , 2n’
p = ’ ’ T = 7
n +n n +n

These are also called the Fresnel coefficients. We note various useful relationships:

T=1+p, pP=-p, T=1+p ' =1-p, 17 =1-p? (5.2.8)

In summary, the total electric and magnetic fields E, H match simply across the

interface, whereas the forward/backward fields E.. are related by the matching matrices

of Egs. (5.2.3) and (5.2.4). An immediate consequence of Eq. (5.2.1) is that the wave
impedance is continuous across the interface:

E E
7==—="=7
H H
On the other hand, the corresponding reflection coefficients I' = E_/E, and I’ =
E” /E', match in a more complicated way. Using Eq. (5.1.7) and the continuity of the

wave impedance, we have:

1+T , J1+T
T i A A
which can be solved to get:
p+1I , p +T
I = d I' =
1+ pI” an 1+pT

The same relationship follows also from Eq. (5.2.3):

+ = ,
E, _ p+Tl
E. 1+ pI'

1 ’ ’
Cp WELHE) P

,E,l

I =
JEL+pE) 14p

EL
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To summarize, we have the matching conditions for Z and I":

Z=27 = I = p+T = '=p+r
1+ pl” 1+pT

(5.2.9)

Two special cases, illustrated in Fig. 5.2.1, are when there is only an incident wave
on the interface from the left, so that E” = 0, and when the incident wave is only from
the right, so that E; = 0. In the first case, we have I = E’ /E, = 0, which implies
Z' =n"(1+T")/(1 —TI")=n’. The matching conditions give then:

. p+I
Z=7=n', T= =
n 1+ pI” p

The matching matrix (5.2.3) implies in this case:

e =il TS -

Expressing the reflected and transmitted fields E_, E, in terms of the incident field E,
we have:

E_ =pE,

E, = TE, (left-incident fields) (5.2.10)

This justifies the terms reflection and transmission coefficients for p and 7. In the
right-incident case, the condition E; = 0 implies for Eq. (5.2.4):

AR P S E

These can be rewritten in the form:

E =p'E_

E -TE (right-incident fields) (5.2.11)

which relates the reflected and transmitted fields E’,, E_ to the incident field E”. In this
case I' = E_/E,; = o and the third of Egs. (5.2.9) gives I" = E’ /E. = 1/p’, which is
consistent with Eq. (5.2.11).

When there are incident fields from both sides, that is, E., E’, we may invoke the
linearity of Maxwell’s equations and add the two right-hand sides of Egs. (5.2.10) and
(5.2.11) to obtain the outgoing fields E’,, E_ in terms of the incident ones:

E. =7TE, + p'E_

E_=pE, +TE. (5.2.12)

This gives the scattering matrix relating the outgoing fields to the incoming ones:

E, | | T /0 E, ) .
[ £ ]7 [ p T }[ £ ] (scattering matrix) (5.2.13)

Using the relationships Eq. (5.2.8), it is easily verified that Eq. (5.2.13) is equivalent
to the matching matrix equations (5.2.3) and (5.2.4).
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5.3 Reflected and Transmitted Power

For waves propagating in the z-direction, the time-averaged Poynting vector has only a
z-component:

P= %Re(chxifH*) =2 —Re(EH*)

A direct consequence of the continuity equations (5.2.1) is that the Poynting vector
is conserved across the interface. Indeed, we have:

P = Re(EH*)= JRe(E'H'")= 7' (5.3.1)

In particular, consider the case of a wave incident from a lossless dielectric n onto a
lossy dielectric np’. Then, the conservation equation (5.3.1) reads in terms of the forward
and backward fields (assuming E” = 0):

P =

1 1
—(IE+1> = |E_1?) = Re(

72 _ ’

The left hand-side is the difference of the incident and the reflected power and rep-
resents the amount of power transmitted into the lossy dielectric per unit area. We saw
in Sec. 2.6 that this power is completely dissipated into heat inside the lossy dielectric
(assuming it is infinite to the right.) Using Egs. (5.2.10), we find:

1

’

_ i 2 _ 2y _ 2 2
P = 2 [E+[*(1 = [p1) = Re (5 7) E+IT] (5.3.2)

This equality requires that:
1(1*|P|2):Re(i)|T|2 (5.3.3)
n n'

This can be proved using the definitions (5.2.5). Indeed, we have:

1- 1-1pl? 1-Ip|?
n_l-p Re(g{) _ Ipl2 _ I;ZJI
n 1+p n 1+ pl [Tl

which is equivalent to Eq. (5.3.3), if n is lossless (i.e., real.) Defining the incident, re-
flected, and transmitted powers by

1
Pin = §|E+\Z

1 1
Preg = EUEJZ = E\EHZIPIZ = Pinlpl?

1
2n’

1
2n’

Pu = Re(y ) [ELI = Re(y ) IE4 1T = P Re()) I
Then, Eq. (5.3.2) reads Py = Pin — Pref. The power reflection and transmission
coefficients, also known as the reflectance and transmittance, give the percentage of the

incident power that gets reflected and transmitted:
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Pret 2 Py 2 n 2 n' 2
=lpl5, = =1-Ipl"=Re()ITI" =Re(—)|T| (5.3.4)
P, =P Py p (,7 ) (n)

If both dielectrics are lossless, then p, T are real-valued. In this case, if there are
incident waves from both sides of the interface, it is straightforward to show that the
net power moving towards the z-direction is the same at either side of the interface:

1 1
2n 2n’
This follows from the matrix identity satisfied by the matching matrix of Eq. (5.2.3):

111 0p 1 0 1ol n[1 o
g[P IHO—IHp 1]—,7/[0_1] (5.3.6)

If p, T are real, then we have with the help of this identity and Eq. (5.2.3):

P =

|EL 12— |E_|%) = (IEL 12— |EL|1?) =P (5.3.5)

,L 2 _ 2 ,L * * 1 0 E+
?_2n(|E+| |E7| )_Zn[E+|E—] 0 -1 E_

R S TR | 1 p* 1 0 1 p E,
st e I | R DR |

1n.., , 1 0 E' 1 , , ,
=——[E+*,E,*][ o -1 ][ E{ }= (IE\P—IE|?) =P

2nn’ 2n’

Example 5.3.1: Glasses have a refractive index of the order of n = 1.5 and dielectric constant
€ = n°ey = 2.25¢p. Calculate the percentages of reflected and transmitted powers for
visible light incident on a planar glass interface from air.

Solution: The characteristic impedance of glass will be n = no/n. Therefore, the reflection and
transmission coefficients can be expressed directly in terms of n, as follows:

- -1 _ _
p:n o _n 1:1 n’ 14p- 2
n+ny nl'+1 1+n 1+n
For n = 1.5, we find p = —0.2 and T = 0.8. It follows that the power reflection and
transmission coefficients will be
[p|> =0.04, 1-|pl®>=0.96
That is, 4% of the incident power is reflected and 96% transmitted. [}

Example 5.3.2: A uniform plane wave of frequency f is normally incident from air onto a thick
conducting sheet with conductivity o, and € = €9, 4 = Ho. Show that the proportion
of power transmitted into the conductor (and then dissipated into heat) is given approxi-
mately by

Pe 4R [Bwep

Pin No o

Calculate this quantity for f = 1 GHz and copper ¢ = 5.8x107 Siemens/m.
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Solution: For a good conductor, we have \/weo/o < 1. It follows from Eq. (2.8.4) that Rg/no =
Jwey/20 < 1. From Eq. (2.8.2), the conductor’s characteristic impedance is . = Rg(1 +
J). Thus, the quantity n./no = (1+j)Rs/no is also small. The reflection and transmission
coefficients p, T can be expressed to first-order in the quantity n./no as follows:

2nc

2
. 2ne
Ne + No

2N
~ =L =T-1=~-1+
No p No

Similarly, the power transmission coefficient can be approximated as

. . . 2R 4R
1-lplP=1-|T=-1°=1-1-|T]*> +2Re(T)=2Re(T) = p2Relne) _ 4Rs

No no
where we neglected |T|? as it is second order in n./no. For copper at 1 GHz, we have
Jweg/20 = 2.19x107°, which gives Ry = no/tweg/20 = 377x2.19x107° = 0.0082 Q. It
follows that 1 — |p|? = 4Rg/no = 8.76X107°.

This represents only a small power loss of 8.76x10~3 percent and the sheet acts as very
good mirror at microwave frequencies.

On the other hand, at optical frequencies, e.g., f = 600 THz corresponding to green
light with A = 500 nm, the exact equations (2.6.5) yield the value for the character-
istic impedance of the sheet n. = 6.3924 + 6.3888i Q and the reflection coefficient
p = —0.9661 + 0.0328i. The corresponding power loss is 1 — |p|? = 0.065, or 6.5 percent.
Thus, metallic mirrors are fairly lossy at optical frequencies. |

Example 5.3.3: A uniform plane wave of frequency f is normally incident from air onto a thick
conductor with conductivity o, and € = €y, 4 = po. Determine the reflected and trans-
mitted electric and magnetic fields to first-order in n./no and in the limit of a perfect
conductor (n. = 0).

Solution: Using the approximations for p and T of the previous example and Eq. (5.2.10), we
have for the reflected, transmitted, and total electric fields at the interface:

E = pE, = (—1+%)E+
no
E, =7E, = 2T p,
No
2
E=E, +E ="1E -F =F
No

For a perfect conductor, we have 0 — o and n./no — 0. The corresponding total tangen-
tial electric field becomes zero E = E' = 0, and p = —1, T = 0. For the magnetic fields, we
need to develop similar first-order approximations. The incident magnetic field intensity
is Hy = E,/no. The reflected field becomes to first order:

Ho=-Yp =L pp - —pH. - (1 - %)m
no No

Similarly, the transmitted field is
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H, = Lp = top, = Moqy, M0 2Ne p 20 H+22<1—&>H+
Ne Ne Ne Ne Ne + No Ne+ No No

The total tangential field at the interface will be:

H=H.+H. :2<17&>H+ ~H, =H
No
In the perfect conductor limit, we find H = H' = 2H .. As we saw in Sec. 2.6, the fields just
inside the conductor, E,, H',, will attenuate while they propagate. Assuming the interface
is at z = 0, we have:

E (z)=FE,e %7 H' (z)= H,e e /b?

where @ = 8 = (1 —j)/6, and § is the skin depth § = Jwuo /2. We saw in Sec. 2.6 that
the effective surface current is equal in magnitude to the magnetic field at z = 0, that is,
Js = H',. Because of the boundary condition H = H' = H',, we obtain the result J; = H,
or vectorially, Jy = HX Z = i X H, where i = —Z is the outward normal to the conductor.
This result provides a justification of the boundary condition J; = fi X H at an interface
with a perfect conductor. m]

5.4 Single Dielectric Slab

Multiple interface problems can be handled in a straightforward way with the help of
the matching and propagation matrices. For example, Fig. 5.4.1 shows a two-interface
problem with a dielectric slab n; separating the semi-infinite media n, and nyp.

- [ —»

Na N1,k ur
El+ El'+ E2+ E2,+
— —

- -
E B

Py P2 Ty

Z Z
I, Iy L, I,

Fig. 5.4.1 Single dielectric slab.

Let [; be the width of the slab, k; = w/c; the propagation wavenumber, and A; =
27t/k; the corresponding wavelength within the slab. We have A1 = Ag/ny, where Ag is
the free-space wavelength and n; the refractive index of the slab. We assume the incident
field is from the left medium n,, and thus, in medium n, there is only a forward wave.
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Let p1, p2 be the elementary reflection coefficients from the left sides of the two
interfaces, and let T, T2 be the corresponding transmission coefficients:

_ M —Na _Nvh—m
m+na’ np+m’
To determine the reflection coefficient I'; into medium n,, we apply Eq. (5.2.9) to
relate I'7 to the reflection coefficient I'] at the right-side of the first interface. Then, we
propagate to the left of the second interface with Eq. (5.1.12) to get:

p1 p2 T1=1+p1, T2=1+p2 (5.4.1)

r p1 + Fi pP1+ erizjklll
L = _

N - - 42
1+plF,1 l+p1]"2e*2]k111 (5 )

At the second interface, we apply Eq. (5.2.9) again to relate I'; to I';. Because there
are no backward-moving waves in medium ny, we have I'y, = 0. Thus,

p2+15
[,=""="~-2 _
2 1+p21"'2 p2

We finally find for I'y:

p1 + pae” kil

= Lt pee 2 5.4.3
YT 1+ prpoe2ikil ( )

This expression can be thought of as function of frequency. Assuming a lossless
medium n,, we have 2k;1; = w(2ly/c1)= wT, where T = 2I,/c; = 2(n1ly) /cy is the
two-way travel time delay through medium ;. Thus, we can write:

p1 + pae T

I = -
1 () 1+ pipre~joT

(5.4.4)

This can also be expressed as a z-transform. Denoting the two-way travel time delay
in the z-domain by z~! = e J@T = ¢~2kh e may rewrite Eq. (5.4.4) as the first-order
digital filter transfer function:

p1+ prz!

I (z)=
1(2) 1+ p1p2z7!

(5.4.5)

An alternative way to derive Eq. (5.4.3) is working with wave impedances, which
are continuous across interfaces. The wave impedance at interface-2 is Z, = Z5, but
Z) = np because there is no backward wave in medium 1. Thus, Z> = np. Using the
propagation equation for impedances, we find:

, Zy + jnitankql + jn; tank; !
Zi=Z,=m 2 +Jm 11:'7 Np +Jm 11

m +ngtank111 ! n +jnbtank111

Inserting this into I'y = (Z1 — ng) /(Z1 + ng) gives Eq. (5.4.3). Working with wave
impedances is always more convenient if the interfaces are positioned at half- or quarter-
wavelength spacings.
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If we wish to determine the overall transmission response into medium np, that is,
the quantity 7 = E,, /E; ., then we must work with the matrix formulation. Starting at
the left interface and successively applying the matching and propagation matrices, we
obtain:

Eip | _ 11 p E.|_ 1|1 p efkili 0 E>,
E_-| 1| 1 E_| 1| 1 0 ekl || Ep
11 m elkily 0 11 po|[Es
| o1 1 0 ekl |4, ps 1 0

where we set E5_ = 0 by assumption. Multiplying the matrix factors out, we obtain:

eltil 2jkah
Eiy = (1+ prp2e” M) Ey,
T1T2
jkyl
e/t ~2jkil
E- = (p1+ pae” M) Ep
T1T2

These may be solved for the reflection and transmission responses:

ro-f-_ ; + pre @kl
YT En T 1+ pipeedikih
: (5.4.6)

" Eiv 1+ pipre2kib

The transmission response has an overall delay factor of e kit = ¢=/®T/2 pepre-
senting the one-way travel time delay through medium n;.

For convenience, we summarize the match-and-propagate equations relating the field
quantities at the left of interface-1 to those at the left of interface-2. The forward and
backward electric fields are related by the transfer matrix:

Eie [_1]1 p e/kih 0 Ezy
Ei_ B T | P1 1 0 eJkih Eo_

. ) (5.4.7)
Ei 1 ekl preikih Es,
E,_ = ?1 plejklll e—Jkih Es_
The reflection responses are related by Eq. (5.4.2):
_ p1+ehb (5.4.8)

1= T = Sm
1+ pie-kih

The total electric and magnetic fields at the two interfaces are continuous across the
interfaces and are related by Eq. (5.1.13):

Eq _ COSklll JT]1 sinklll E, (5.4.9)

H, N _]T]fl sinkﬂl COSklll H, o
Egs. (5.4.7)-(5.4.9) are valid in general, regardless of what is to the right of the second
interface. There could be a semi-infinite uniform medium or any combination of multiple
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slabs. These equations were simplified in the single-slab case because we assumed that
there was a uniform medium to the right and that there were no backward-moving waves.

For lossless media, energy conservation states that the energy flux into medium n;
must equal the energy flux out of it. It is equivalent to the following relationship between
I’ and 7, which can be proved using Eq. (5.4.6):

i(1 — | ?) = L |72 (5.4.10)
Ny

a

Thus, if we call |I'1|? the reflectance of the slab, representing the fraction of the
incident power that gets reflected back into medium n,, then the quantity

1- 2 =272 = Mo yg2 (5.4.11)
Np Ng

will be the transmittance of the slab, representing the fraction of the incident power that
gets transmitted through into the right medium nj. The presence of the factors ng4, np
can be can be understood as follows:

Lk, 2
P transmitted _ 2np 2+ _ M |T‘Z
Pincident 1 |E1+|2 Np

Na

5.5 Reflectionless Slab

The zeros of the transfer function (5.4.5) correspond to a reflectionless interface. Such
zeros can be realized exactly only in two special cases, that is, for slabs that have either
half-wavelength or quarter-wavelength thickness. It is evident from Eq. (5.4.5) that a
zero will occur if p; + ppz~1 = 0, which gives the condition:

7= ¥kl — _P2 (5.5.1)
P

Because the right-hand side is real-valued and the left-hand side has unit magnitude,
this condition can be satisfied only in the following two cases:

z = e¥kih = 7, p> = —p1,  (half-wavelength thickness)

7z = edkih = _1, P2 = p1, (quarter-wavelength thickness)

The first case requires that 2k;1; be an integral multiple of 27, thatis, 2k;l; = 2mrt,
where m is an integer. This gives the half-wavelength condition I; = mA;/2, where A,

is the wavelength in medium-1. In addition, the condition p, = —p; requires that:
Nnp — N1 Na — N1
_ = = — = = = =nNp
mprm 2T P T e fa =1

that is, the media to the left and right of the slab must be the same. The second pos-
sibility requires e¥*1i = —1, or that 2k;I; be an odd multiple of T, that is, 2k;I; =
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(2m + 1) 1, which translates into the quarter-wavelength condition I; = (2m+1)A,/4.
Furthermore, the condition p> = p; requires:

np—Mm n —nNa 2
—_— = = = = = = =
np +m pa=p ni+nNa = Nalb

To summarize, a reflectionless slab, I'; = 0, can be realized only in the two cases:

half-wave: L=m % ,

A
quarter-wave: I; = (2m + DZl’ ni = /Nallb, Na,Np arbitrary

n1 arbitrary, ng = np
(5.5.2)

An equivalent way of stating these conditions is to say that the optical length of
the slab must be a half or quarter of the free-space wavelength Ag. Indeed, if n; is the
refractive index of the slab, then its optical length is n;l;, and in the half-wavelength
case we have nyl; = nymA/2 = mAy/2, where we used A; = Ag/n;. Similarly, we have
nily = (2m+ 1)Ay/4 in the quarter-wavelength case. In terms of the refractive indices,
Eq. (5.5.2) reads:

A
half-wave: ml, =m 20 , n; arbitrary, n, =np

20 (5.5.3)
quarter-wave: ml; = 2m + I)TO, n, = /NgnNp, MNg,Np arbitrary

The reflectionless matching condition can also be derived by working with wave
impedances. For half-wavelength spacing, we have from Eq. (5.1.18) Z; = Z> = np. The
condition I'; = 0 requires Z; = ng, thus, matching occurs if n, = np. Similarly, for the
quarter-wavelength case, we have Z; = n2/Z» = n?/np = na.

We emphasize that the reflectionless response I'; = 0 is obtained only at certain slab
widths (half- or quarter-wavelength), or equivalently, at certain operating frequencies.
These operating frequencies correspond to wT = 2mrr, or, wT = (2m + 1)1, that is,
w =2m1/T = mwy, or, w = (2m + 1) wg/2, where we defined wqy = 21/T.

The dependence on I; or w can be seen from Eq. (5.4.5). For the half-wavelength
case, we substitute p, = —p; and for the quarter-wavelength case, p, = p;. Then, the
reflection transfer functions become:

1-— 1
Ih(z) = Pr ZZ ) , (half-wave)
1-piz—1
1 (5.5.4)
1+2z~
I'i(z) = [)1(722) , (quarter-wave)
1+ piz!
where z = e%kili = J®0T The magnitude-square responses then take the form:
, 2p5 (1 - 2k, 1 2p2(1 - T
|I1)% = pl(z cos (2k; 1))4 = P1(2 cos wT) =, (half-wave)
1-2picos(2ki 1) +p] 1—-2picoswT + pj
(5.5.5)

2 2
2o 2p1 (1 + cos(2k;14)) _ 2p7(1 + coswT) L (quarter-wave)

r
I 1+2p%cos(2k 1) +p% 1 +2picoswT + pi
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These expressions are periodic in I; with period A;/2, and periodic in w with period
wo = 211/T. In DSP language, the slab acts as a digital filter with sampling frequency
wp. The maximum reflectivity occurs at z = —1 and z = 1 for the half- and quarter-
wavelength cases. The maximum squared responses are in either case:

4pi

1 = s
i = (1 e

Fig. 5.5.1 shows the magnitude responses for the three values of the reflection co-
efficient: |p;| = 0.9, 0.7, and 0.5. The closer p; is to unity, the narrower are the reflec-
tionless notches.

AL ((x))l2 half-wavelength A I (OU)l2 quarter-wavelength
11 I+

L
1’/‘ ! > (0 f » (0

0 w, w, 3&)0 2w, 5&)0 3w, 0 w, d)o 3w, 2&)0 Sw, 3&)0
2 2 2 2 2 2

Fig. 5.5.1 Reflection responses |[I'(w)|?. @) |p1] = 0.9, (b) |p1| = 0.7, (c) |p1] = 0.5.

It is evident from these figures that for the same value of p;, the half- and quarter-
wavelength cases have the same notch widths. A standard measure for the width is
the 3-dB width, which for the half-wavelength case is twice the 3-dB frequency w3, that
is, Aw = 2w3, as shown in Fig. 5.5.1 for the case |p;| = 0.5. The frequency w3 is
determined by the 3-dB half-power condition:

1
T (@3) 1 = 5 1T

or, equivalently:

4p?
(1+p?)2

2p%(1 — cos w;3T)
1 —2p3cosws3T + p}

_1
)

Solving for the quantity cos w3 T = cos(AwT/2), we find:

AwT 2p3 AwT, 1-p?
cos (29 = p14 o tan(290) = p; (5.5.6)
2 1+ p] 4 1+p1

If p% is very near unity, then 1 — p% and Aw become small, and we may use the
approximation tanx = X to get:
AwT 1-pi 1-pi
4 T 1+p? 2
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which gives the approximation:

AwT =2(1 - p?) (5.5.7)

This is a standard approximation for digital filters relating the 3-dB width of a pole
peak to the radius of the pole [49]. For any desired value of the bandwidth Aw, Eq. (5.5.6)
or (5.5.7) may be thought of as a design condition that determines p;.

Fig. 5.5.2 shows the corresponding transmittances 1 — |I'1 (w) |? of the slabs. The
transmission response acts as a periodic bandpass filter. This is the simplest exam-
ple of a so-called Fabry-Perot interference filter or Fabry-Perot resonator. Such filters
find application in the spectroscopic analysis of materials. We discuss them further in
Chap. 6.

A 1—IF|(w)I2 half-wavelength A 1—|1"|((x))|2 quarter-wavelength
1§ ‘ 1+
(c)
(a)
f f f » (0 f f } » (0
0 w, w, 3w, 2w, Sw, 3w, 0 w, w, 3w, 2w, 5w, 3w,
2 2 2 2 2 2

Fig. 5.5.2 Transmittance of half- and quarter-wavelength dielectric slab.

Using Eq. (5.5.5), we may express the frequency response of the half-wavelength
transmittance filter in the following equivalent forms:

(1-p7)? _ 1
1-2p3coswT +p} 1+ Fsin?(wT/2)
where the F is called the finesse in the Fabry-Perot context and is defined by:

11— (w)]* = (5.5.8)

__ 4pt
T

The finesse is a measure of the peak width, with larger values of ¥ corresponding
to narrower peaks. The connection of F to the 3-dB width (5.5.6) is easily found to be:

wT
4

) = 1-pf _ 1
L+pi I+ F
Quarter-wavelength slabs may be used to design anti-reflection coatings for lenses,
so that all incident light on a lens gets through. Half-wavelength slabs, which require that
the medium be the same on either side of the slab, may be used in designing radar domes
(radomes) protecting microwave antennas, so that the radiated signal from the antenna
goes through the radome wall without getting reflected back towards the antenna.

tan(A (5.5.9)
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Example 5.5.1: Determine the reflection coefficients of half- and quarter-wave slabs that do not
necessarily satisfy the impedance conditions of Eq. (5.5.2).

Solution: The reflection response is given in general by Eq. (5.4.6). For the half-wavelength case,
we have e¥*1h = 1 and we obtain:

I = Prtp _ Mm+Na Np+Mi _Nb—Na _Na—MNp
1 1+ pip2 1+n1—l7aflb—'71 Ny +Na Ng+ Ny

Ni+Nallp+m

nl_na+’7b_n1

This is the same as if the slab were absent. For this reason, half-wavelength slabs are
sometimes referred to as absentee layers. Similarly, in the quarter-wavelength case, we

have e?*1l1 = —1 and find:
2 2
I = PL—p2 _ Ni—Nallp _ Nallp — NI
L—pip2  nNi+nally  Nahp +ni
The slab becomes reflectionless if the conditions (5.5.2) are satisfied. [}

Example 5.5.2: Antireflection Coating. Determine the refractive index of a quarter-wave antire-
flection coating on a glass substrate with index 1.5.

Solution: From Eq. (5.5.3), we have with n, = 1 and nj, = 1.5:
n, = /nghp = V1.5 =1.22

The closest refractive index that can be obtained is that of cryolite (Na3AlFg) with n, =
1.35 and magnesium fluoride (MgF,) with n; = 1.38. Magnesium fluoride is usually pre-
ferred because of its durability. Such a slab will have a reflection coefficient as given by
the previous example:

PL—pP2 _ NMi—nNaly Nanp—ni 1.5-1.38°

I = =72 2= 2
1-p1p2 ni + Nanlp NaNp + Ni 1.5+ 1.38

=-0.118
with reflectance |I'|?2 = 0.014, or 1.4 percent. This is to be compared to the 4 percent
reflectance of uncoated glass that we determined in Example 5.3.1.

Fig. 5.5.3 shows the reflectance |I'(A) |? as a function of the free-space wavelength A. The
reflectance remains less than one or two percent in the two cases, over almost the entire
visible spectrum.

The slabs were designed to have quarter-wavelength thickness at A; = 550 nm, that is, the
optical length was n;l; = Ag/4, resultingin l; = 112.71 nm and 99.64 nm in the two cases
of n; = 1.22 and n; = 1.38. Such extremely thin dielectric films are fabricated by means
of a thermal evaporation process [632,634].

The MATLAB code used to generate this example was as follows:
n=[1, 1.22, 1.50]; L = 1/4;

lambda = Tinspace(400,700,101) / 550;
Gammal = multidiel(n, L, lambda);

refractive indices and optical length
visible spectrum wavelengths
reflection response of slab
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Antireflection Coating on Glass

. Tglass = 1.50
— ;=122
3 --- n; =138

uncoated glass

[S)
’
B

I Ty(A\)12 (percent)

—-

Fig. 5.5.3 Reflectance over the visible spectrum.

The syntax and use of the function multidiel is discussed in Sec. 6.1. The dependence
of I' on A comes through the quantity k1I; = 271 (n;ly)/A. Since n1l; = Ag/4, we have
klll :OSWAO/A m}

Example 5.5.3: Thick Glasses. Interference phenomena, such as those arising from the mul-

tiple reflections within a slab, are not observed if the slabs are “thick” (compared to the
wavelength.) For example, typical glass windows seem perfectly transparent.

If one had a glass plate of thickness, say, of I = 1.5 mm and index n = 1.5, it would have
optical length nl = 1.5x1.5 = 2.25 mm = 225x10* nm. At an operating wavelength
of Ay = 450 nm, the glass plate would act as a half-wave transparent slab with nl =
104(A(/2), that is, 10 half-wavelengths long.

Such plate would be very difficult to construct as it would require that [ be built with
an accuracy of a few percent of Ay/2. For example, assuming n(Al)= 0.01(Ay/2), the
plate should be constructed with an accuracy of one part in a million: Al/l = nAl/(nl)=
0.01/10* = 1075, (That is why thin films are constructed by a carefully controlled evapo-
ration process.)

More realistically, a typical glass plate can be constructed with an accuracy of one part in a
thousand, Al/l = 1073, which would mean that within the manufacturing uncertainty Al,
there would still be ten half-wavelengths, nAl = 1073 (nl) = 10(A(/2).

The overall power reflection response will be obtained by averaging |I'; |? over several Ag/2
cycles, such as the above ten. Because of periodicity, the average of |I' |2 over several cycles
is the same as the average over one cycle, that is,

1 wo
- - L Ty () P deo

where wo = 217/T and T is the two-way travel-time delay. Using either of the two expres-
sions in Eq. (5.5.5), this integral can be done exactly resulting in the average reflectance
and transmittance:

2p} = 1-p} 2
R T YA s (5.5.10)

T2 = = , -
il 1+ p3% 1+p% n2+1
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where we used p; = (1 — n)/ (1 + n). This explains why glass windows do not exhibit a
frequency-selective behavior as predicted by Eq. (5.5.5). For n = 1.5, we find 1 — |I'1]? =
0.9231, that is, 92.31% of the incident light is transmitted through the plate.

The same expressions for the average reflectance and transmittance can be obtained by
summing incoherently all the multiple reflections within the slab, that is, summing the
multiple reflections of power instead of field amplitudes. The timing diagram for such
multiple reflections is shown in Fig. 5.6.1.

Indeed, if we denote by p, = p? and p; = 1 — p, = 1 — p?, the power reflection and trans-
mission coefficients, then the first reflection of power will be p,. The power transmitted
through the left interface will be p; and through the second interface p? (assuming the
same medium to the right.) The reflected power at the second interface will be p;p, and
will come back and transmit through the left interface giving p?p;.

Similarly, after a second round trip, the reflected power will be p?p?, while the transmitted
power to the right of the second interface will be p? p2, and so on. Summing up all the
reflected powers to the left and those transmitted to the right, we find:

pivr _ 2pr

1-p} 1+pr

T2 = pr + pipr + P{D; +pipy + - = pr +

1 2=p2+p2p2+p?pis... = _ =
[T Pt + Ptby + PPy 1—p2 1+p,

where we used p; = 1 — p,. These are equivalent to Egs. (5.5.10). O

Example 5.5.4: Radomes. A radome protecting a microwave transmitter has € = 4€, and is

designed as a half-wavelength reflectionless slab at the operating frequency of 10 GHz.
Determine its thickness.

Next, suppose that the operating frequency is 1% off its nominal value of 10 GHz. Calculate
the percentage of reflected power back towards the transmitting antenna.

Determine the operating bandwidth as that frequency interval about the 10 GHz operating
frequency within which the reflected power remains at least 30 dB below the incident
power.

Solution: The free-space wavelengthis Ag = ¢o/fo = 30 GHz cm/10 GHz = 3 cm. The refractive

index of the slab is n = 2 and the wavelength inside it, A\; = A¢g/n = 3/2 = 1.5 cm. Thus,
the slab thickness will be the half-wavelength I, = A;/2 = 0.75 cm, or any other integral
multiple of this.

Assume now that the operating frequency is w = w, + dw, where wo = 21fy = 21/T.
Denoting 6 = dw/wy, we can write w = wo (1 + 6). The numerical value of § is very
small, 6 = 1% = 0.01. Therefore, we can do a first-order calculation in 6. The reflection
coefficient p; and reflection response I” are:

n-no _05-1_ 1 _p-zY) _pi(1-edT)

= = =—2, Inw ,
P e Tos+1 3 1{w) 1-piz! 1 - pie-jwT

where we used n = no/n = no/2. Noting that wT = weT (1 + 6)= 2m(1 + §), we can
expand the delay exponential to first-order in §:

771 = o JOT _ 2T (1+8) _ o=2Tjo=2Tj6 _ 5,=27Tj6 o 1 _ 2Tl'j5
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Thus, the reflection response becomes to first-order in 6:

ro (- =-2mjs) p121j0 _ p12mjo
1= P - =7 _ 2 2 s T _ 2
1-pi(1-2mjd) 1-pi+ pi2mjod 1-p1

where we replaced the denominator by its zeroth-order approximation because the numer-
ator is already first-order in o. It follows that the power reflection response will be:

i1y = PO
(1-p7)?
Evaluating this expression for § = 0.01 and p; = —1/3, we find |[I'|> = 0.00049, or

0.049 percent of the incident power gets reflected. Next, we find the frequency about
wy at which the reflected power is A = 30 dB below the incident power. Writing again,
w = wo+ 0w = wo(l+ ) and assuming 6 is small, we have the condition:

pi (2mé)? _ Prent — 10-A/10

)" _ 1-p? 104720
(1- pf)z Pinc

T2 = =
! 2mtlp

=

Evaluating this expression, we find § = 0.0134, or dw = 0.0134w,. The bandwidth will
be twice that, Aw = 26w = 0.0268wy, or in Hz, Af = 0.0268f, = 268 MHz. O

Example 5.5.5: Because of manufacturing imperfections, suppose that the actual constructed
thickness of the above radome is 1% off the desired half-wavelength thickness. Determine
the percentage of reflected power in this case.

Solution: This is essentially the same as the previous example. Indeed, the quantity 6 = wT =
2k,l; = 2wl,/c; can change either because of w or because of I,. A simultaneous in-
finitesimal change (about the nominal value 6y = woT = 277) will give:

66=2(6w)11/c1+2w0(611)/c1 = 6:@267(”4»%

0o Wo L

In the previous example, we varied w while keeping I; constant. Here, we vary I;, while

keeping w constant, so that 6 = 61;/1;. Thus, we have 66 = 66 = 2. The correspond-

ing delay factor becomes approximately z~! = e = ¢ J2m+60) — 1 _ j50 = 1 — 271j6.

The resulting expression for the power reflection response is identical to the above and its

numerical value is the same if 6 = 0.01. O

Example 5.5.6: Because of weather conditions, suppose that the characteristic impedance of
the medium outside the above radome is 1% off the impedance inside. Calculate the per-
centage of reflected power in this case.

Solution: Suppose that the outside impedance changes to n, = no + 6n. The wave impedance
at the outer interface will be Z, = n, = no + 6n. Because the slab length is still a half-
wavelength, the wave impedance at the inner interface will be Z; = Z» = no + on. It
follows that the reflection response will be:

_Zi—No _MNo+dn—no on on

T Zi+no no+én+no  2no+dén  2no

1

where we replaced the denominator by its zeroth-order approximation in 6n. Evaluating
at dn/no = 1% = 0.01, we find I'; = 0.005, which leads to a reflected power of |I';|? =
2.5x107°, or, 0.0025 percent. O
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5.6 Time-Domain Reflection Response

We conclude our discussion of the single slab by trying to understand its behavior in
the time domain. The z-domain reflection transfer function of Eq. (5.4.5) incorporates
the effect of all multiple reflections that are set up within the slab as the wave bounces
back and forth at the left and right interfaces. Expanding Eq. (5.4.5) in a partial fraction
expansion and then in power series in z~! gives:
pi+pzt 1 1 (1-p])

ry(zy=—"—"—"——=— - — — + 1- 2)(_ )n—l n,—n
! L+pipozt  pr prLapipazt P! ,,; PO=PUT P2

Using the reflection coefficient from the right of the first interface, p; = —p1, and the
transmission coefficients T; = 1 + p; and T = 1+ p} = 1 — p1, we have T, T} = 1 — p3.
Then, the above power series can be written as a function of frequency in the form:

Ii(w)=pi+ > ity (p)" oz = pr+ 3 it (p)" e T

n=1 n=1

where we set z~! = e J@T 1t follows that the time-domain reflection impulse response,

that is, the inverse Fourier transform of I'; (w), will be the sum of discrete impulses:

I (0)=pi5O+ > 11T (p)" '8 8 (t — nT) (5.6.1)
n=1
This is the response of the slab to a forward-moving impulse striking the left inter-
face att = 0, thatis, the response to the input E1 .. (t) = 6 (t). The first term p; 6 (t) is the
impulse immediately reflected at t = 0 with the reflection coefficient p;. The remaining
terms represent the multiple reflections within the slab. Fig. 5.6.1 is a timing diagram
that traces the reflected and transmitted impulses at the first and second interfaces.

- | ———»

1
P t=T2
T,
T T\P; 1=3T12

T T,T,1P2P)
T P3P t=5T12

I T, P3P
T T,p3P

Fig. 5.6.1 Multiple reflections building up the reflection and transmission responses.

The input pulse 6 (t) gets transmitted to the inside of the left interface and picks up
a transmission coefficient factor T;. In T/2 seconds this pulse strikes the right interface
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and causes a reflected wave whose amplitude is changed by the reflection coefficient p»
into T1p2.

Thus, the pulse T;p26 (t — T/2) gets reflected backwards and will arrive at the left
interface T/2 seconds later, that is, at time t = T. A proportion T; of it will be transmit-
ted through to the left, and a proportion p; will be re-reflected towards the right. Thus,
at time t = T, the transmitted pulse into the left medium will be T, T}p.6(t — T), and
the re- reflected pulse T1p]p26(t — T).

The re-reflected pulse will travel forward to the right interface, arriving there at time
t = 3T/2 getting reflected backwards picking up a factor p,. This will arrive at the left
at time ¢t = 2T. The part transmitted to the left will be now T,T}p}p38 (t — 2T), and
the part re-reflected to the right T1p}2p36 (t — 2T). And so on, after the nth round trip,
the pulse transmitted to the left will be 71T} (p])" 'p5S(t — nT). The sum of all the
reflected pulses will be I'y (t) of Eq. (5.6.1).

In a similar way, we can derive the overall transmission response to the right. It is
seen in the figure that the transmitted pulse at time t = nT+ (T/2) willbe T, T2 (p})"p}.
Thus, the overall transmission impulse response will be:

T ()= Z T1T2(p)"PY 6(t —nT —T/2)

n=0

It follows that its Fourier transform will be:

o]
T(w) — Z T2 (pfl)npge—jane—ij/Z
n=0

which sums up to Eq. (5.4.6):

T1Toe JeT/2 T1Toe T2

T(w)= : —_ = .
() 1= pip2e®T 1+ pypre~ieT

(5.6.2)

For an incident field Eq, (t) with arbitrary time dependence, the overall reflection
response of the slab is obtained by convolving the impulse response I'y (t) with Ey; (t).
This follows from the linear superposition of the reflection responses of all the frequency
components of Ey; (t), that is,

« ord 0 ord
Eo0= [ M@ @e @50, where 0= [ B (w)e 50
—o 27T — 21T
Then, the convolution theorem of Fourier transforms implies that:
® }w(dw - ’ ’ ’
Ei_(t)= I'(w)E+ (w)e o I ()E+(t=t)dt (5.6.3)

Inserting (5.6.1), we find that the reflected wave arises from the multiple reflections
of E1. (t) as it travels and bounces back and forth between the two interfaces:

E1- ()= p1Er (OD+ > 11Ty (p) " pY Ery (t = nT) (5.6.4)

n=1
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For a causal waveform E1 . (t), the summation over n will be finite, such that at each
time t > 0 only the terms that have t — nT > 0 will be present. In a similar fashion, we
find for the overall transmitted response into medium ny :

E;, (t)= I T (tVE1. (t—t)dt' = > T1T2(p)"pI Ery (t —nT = T/2)  (5.6.5)
- n=0

We will use similar techniques later on to determine the transient responses of trans-
mission lines.

5.7 Two Dielectric Slabs

Next, we consider more than two interfaces. As we mentioned in the previous section,
Egs. (5.4.7)-(5.4.9) are general and can be applied to all successive interfaces. Fig. 5.7.1
shows three interfaces separating four media. The overall reflection response can be
calculated by successive application of Eq. (5.4.8):

p1 + [re~3kih

p2 + Tze 2kl
1= - =
1+ p1e~2kih

3y 2 - - o a1
1+ pzl“ge’ZJk?lZ

- [ —a— [, —»
Na ’71,k1 '72, k2 np
E, Ey, Ey, Ey  Es E3,

—> > ——>  —— >

- - -+

E_| E_ E | E E_
P 25 P3
Z Z, Z,
I, L, I LT

Fig. 5.7.1 Two dielectric slabs.

If there is no backward-moving wave in the right-most medium, then I'; = 0, which
implies I'; = p3. Substituting I'> into I'; and denoting z; = e¥kili| z, = ekal2 e
eventually find:

L= p1+ P21 + p1pep3zyt + p3zitzy!

L+ p1pazyt + papszy’ + prpszyzy

The reflection response I’} can alternatively be determined from the knowledge of
the wave impedance Z; = E;/H; at interface-1:

(5.7.1)

1221—%
Zy + Na
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The fields E;, H; are obtained by successively applying Eq. (5.4.9):

E; _ COSklll JI’]l sink111 E»
H1 - Jnfl sink111 COSklll Hz
B [ coskily Jjnisink ] [ cos kol Jjnesinkzl» ] [ E; ]

Jjnitsinkil;  coskily Jjn>tsinksl,  coskaly H;

But at interface-3, E5 = E = Ej, and Hy = Z3'E3 = n,'Ej,, because Z3 = np.
Therefore, we can obtain the fields E;, H; by the matrix multiplication:

E, _ COSklll Jm sinklll COSkzlz jn2 Sinkzlz 1 E,
H, | | jnitsinkil;  coskily jnstsinkyl;  coskalp nyt | 3
Because Z; is the ratio of E; and Hj, the factor E5, cancels out and can be set equal

to unity.

Example 5.7.1: Determine I'; if both slabs are quarter-wavelength slabs. Repeat if both slabs
are half-wavelength and when one is half- and the other quarter-wavelength.

Solution: Because I; = A1/4 and I, = A,/4, we have 2k;1; = 2kyl, = T, and it follows that
71 = Zy = —1. Then, Eq. (5.7.1) becomes:

I = P1— P2 — P1P2P3 T P3
1—p1p2 — p2p3 + p1P3

A simpler approach is to work with wave impedances. Using Z3 = nj, we have:

Inserting this into I'y = (Z, — ng) /(Z1 + nga), we obtain:

o2 i = n3na
1= 72 2
niNp + N3Na
The two expressions for I'; are equivalent. The input impedance Z; can also be obtained

by matrix multiplication. Because k1, = kI, = 11/2, we have cosk;l; = O and sink;l; = 1
and the propagation matrices for E;, H; take the simplified form:

E|_[ 0 jm o gm |[ V| [ -mn2t |

H, Jnit oo [ lnzt oo [ npt |7 —mentnpt R
Theratio E,/H; gives the same answer for Z; as above. When both slabs are half-wavelength,
the impedances propagate unchanged: Z; = Z, = Z3, but Z3 = ny.
If n; is half- and n, quarter-wavelength, then, Z, = Z» = n3/Z3 = n3/np. And, if the

quarter-wavelength is first and the half-wavelength second, Z, = n3/Z> = n3/Z3 = n3/np.
The corresponding reflection coefficient I'; is in the three cases:

Mo+na’ ' m3+nany’ ' ni+nam

_Mb=Na . _N3=Nalp ni = Nanp

These expressions can also be derived by Eq. (5.7.1), or by the matrix method. m]
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The frequency dependence of Eq. (5.7.1) arises through the factors z;, z», which can
be written in the forms: z; = ¢/©T1 and z, = /T2 where T} = 211/cy and T» = 21> /¢
are the two-way travel time delays through the two slabs.

A case of particular interest arises when the slabs are designed to have the equal
travel-time delays so that T; = T» = T. Then, defining a common variable z = z; =
7o = e/®T we can write the reflection response as a second-order digital filter transfer
function:

pL+p2(L+p1p3)z !t + p3z?
L+ p2(p1+p3)z=t + p1p3z2

In the next chapter, we discuss further the properties of such higher-order reflection
transfer functions arising from multilayer dielectric slabs.

I'i(z)=

(5.7.2)

5.8 Reflection by a Moving Boundary

Reflection and transmission by moving boundaries, such as reflection from a moving
mirror, introduce Doppler shifts in the frequencies of the reflected and transmitted
waves. Here, we look at the problem of normal incidence on a dielectric interface that
is moving with constant velocity v perpendicularly to the interface, that is, along the
z-direction as shown in Fig. 5.8.1. Additional examples may be found in [474-492]. The
case of oblique incidence is discussed in Sec. 7.12.

,
X Ar

moving dielectric

E, «—
Ei—»——>F
i ki kt t
S z s z’
stationary frame
—V
€y | €

Fig. 5.8.1 Reflection and transmission at a moving boundary.

The dielectric is assumed to be non-magnetic and lossless with permittivity €. The
left medium is free space €p. The electric field is assumed to be in the x-direction and
thus, the magnetic field will be in the y-direction. We consider two coordinate frames, the
fixed frame S with coordinates {t,x,y, z}, and the moving frame S’ with {t',x’,y’,z'}.
The two sets of coordinates are related by the Lorentz transformation equations (K.1)
of Appendix K.

We are interested in determining the Doppler-shifted frequencies of the reflected and
transmitted waves, as well as the reflection and transmission coefficients as measured
in the fixed frame S.
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The procedure for solving this type of problem—originally suggested by Einstein
in his 1905 special relativity paper [474]—is to solve the reflection and transmission
problem in the moving frame S’ with respect to which the boundary is at rest, and
then transform the results back to the fixed frame S using the Lorentz transformation
properties of the fields. In the fixed frame S, the fields to the left and right of the
interface will have the forms:

(5.8.1)

Ex = Eiej(wt—kiz) + Erej(wrt+krz) Ey = Etej(wrf—krl)
left H, = Hjel(wt-kiz) _ [y oi(wrt+krz) right H, = Hel(wit=kiz)

where w, w,, w; and k;, k,, k; are the frequencies and wavenumbers of the incident,
reflected, and transmitted waves measured in S. Because of Lorentz invariance, the
propagation phases remain unchanged in the frames S and S’, that is,

¢
br

Pr=wit —kiz = w't —kiz' = ¢y

wt—kiz =w't —kjz' = ¢;

wrt+krz=w't +k,z' =, (5.8.2)

In the frame S” where the dielectric is at rest, all three frequencies are the same
and set equal to w’. This is a consequence of the usual tangential boundary conditions
applied to the interface at rest. Note that ¢, can be written as ¢, = w,t — (—k;)z
implying that the reflected wave is propagating in the negative z-direction. In the rest
frame S’ of the boundary, the wavenumbers are:

4 4 4 4 w
ki = , k,=—, ki=w euoznc (5.8.3)
where ¢ is the speed of light in vacuum and n = \/€/¢€( is the refractive index of the
dielectric at rest. The frequencies and wavenumbers in the fixed frame S are related
to those in S’ by applying the Lorentz transformation of Eq. (K.14) to the frequency-
wavenumber four-vectors (w/c,0,0,k;), (wy/c,0,0,—k;), and (w;/c,0,0,k;):

w=y(w +Bcki)=w'y(1+p)

;B W
kiZY(ki+Ew):TY(1+B)
wr =y(w +Bc(-ky)) =w'y(l-p)

. B, w’ (5.8.4)
—kr =y(=k, + v )= —7y(1 -B)
w =y(w + Bckp)=w'y( + Bn)
kx:y(k§+§w'): w,y(n+ﬁ)

C C

where B = v/c and y = 1/+4/1 — B2. Eliminating the primed quantities, we obtain the
Doppler-shifted frequencies of the reflected and transmitted waves:

1-B

=w
1+

=W g (5.8.5)

1+ Bn
y we = W B

‘wr
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The phase velocities of the incident, reflected, and transmitted waves are:

w w 1+ Bn
=c, Vv,=-+ == B

== == (5.8.6)

Vi =

EaES

These can also be derived by applying Einstein’s velocity addition theorem of Eq. (K.8).
For example, we have for the transmitted wave:

Vg+V c/n+v 1+ Bn

Vi = - -
T 1 +vavice 1+ (¢/n)vie? n+p

where vy = c¢/n is the phase velocity within the dielectric at rest. To first-order in
B = v/c, the phase velocity within the moving dielectric becomes:

1+ pn c 1
Vi=¢C B :f-s-v(l——)
n+p n n?

The second term is known as the “Fresnel drag.” The quantity n; = (n+)/(1+8n)
may be thought of as the “effective” refractive index of the moving dielectric as measured
in the fixed system S.

Next, we derive the reflection and transmission coefficients. In the rest-frame S’ of
the dielectric, the fields have the usual forms derived earlier in Sections 5.1 and 5.2:

E;{ = El/ (e]‘i’; + peJd),r) E;{ = TEl'eJd’;

left 1, i right 1, (5.8.7)
Hj, = —FE;(e/* — pel?r) & Hj = —TEje/%
nNo n
where 1 )
No n—-no —hn
= — = = =14p=
=" F n+noe 1l+n’ T P=1+n

The primed fields can be transformed to the fixed frame S using the inverse of the
Lorentz transformation equations (K.31), that is,

Ex =y (Ex + BcB}) = y (Ex + BnoH,)

, , , , (5.8.8)
Hy = y(H}, + cBD}) =y (H}, + cBeEy)

where we replaced B, = poH;, cto = no, and D} = €Ey (of course, € = € in the left
medium). Using the invariance of the propagation phases, we find for the fields at the
left side of the interface:

Ex = y[Ei (/% 4 pe/®r) + BE[ (/P —pe/®r)] = Ejy[(1+B) /P + p(1-B) /] (5.8.9)
Similarly, for the right side of the interface we use the property no/n = n to get:
Ex = y[TE/e/* + BnTE|e/*] = yTE] (1 + Bn) e/ (5.8.10)

Comparing these with Eq. (5.8.1), we find the incident, reflected, and transmitted
electric field amplitudes:

Ei=yE;(1+B), Er=pyE(1-B), E =TyE(1+pBn) (5.8.11)



5.9. Problems 181

from which we obtain the reflection and transmission coefficients in the fixed frame S:

E, 1- B E; 1+ Bn

— = , — =T 5.8.12

E; p 1+ B E; 1+ B ( )
The case of a perfect mirror is also covered by these expressions by setting p = —1

and T = 0. Eq. (5.8.5) is widely used in Doppler radar applications. Typically, the
boundary (the target) is moving at non-relativistic speeds so that § = v/c < 1. In such
case, the first-order approximation of (5.8.5) is adequate:
% A v
fo=fa-2p)=f-2Y) = AL_ Y (5.8.13)
c f c
where Af = f, — f is the Doppler shift. The negative sign means that f; < f if the target
is receding away from the source of the wave, and f, > f if it is approaching the source.

As we mentioned in Sec. 2.12, if the source of the wave is moving with velocity v,; and
the target with velocity v, (with respect to a common fixed frame, such as the ground),
then one must use the relative velocity v = v, — v, in the above expression:

frae

A _ _

Tf - f’f r_ ez T (5.8.14)
Va Vb

5.9 Problems

5.1 Fill in the details of the equivalence between Eq. (5.2.2) and (5.2.3), that is,

X E++E,:El++E, O [ET_1[ o][E
E(E+—E,)——,(E’+—E’,) E_| t|p 1 E"

n

5.2 Fill in the details of the equivalences stated in Eq. (5.2.9), that is,

7-7 o r=P*L o p_P+L
1+ pl” 1+pT

Show that if there is no left-incident field from the right, then I' = p, and if there is no
right-incident field from the left, then, I” = 1/p’. Explain the asymmetry of the two cases.

5.3 Let p, T be the reflection and transmission coefficients from the left side of an interface and
let p’, T’ be those from the right, as defined in Eq. (5.2.5). One of the two media may be
lossy, and therefore, its characteristic impedance and hence p, T may be complex-valued.
Show and interpret the relationships:

1-pl?= Re(%)ITI2 =Re(T*T')

5.4 Show that the reflection and transmission responses of the single dielectric slab of Fig. 5.4.1
are given by Eq. (5.4.6), that is,

_p1+ poe kil By, TiTeekil
1+ p1pre-kili’ Eiy 1+ pipre-?kih
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Moreover, using these expressions show and interpret the relationship:
1 1 .
(1= = TP
a Ny
5.5 A 1-GHz plane wave is incident normally onto a thick copper plate (o = 5.8x107 S/m.) Can
the plate be considered to be a good conductor at this frequency? Calculate the percentage
of the incident power that enters the plate. Calculate the attenuation coefficient within the
conductor and express it in units of dB/m. What is the penetration depth in mm?

5.6 With the help of Fig. 5.5.1, argue that the 3-dB width Aw is related to the 3-dB frequency
w3 by Aw = 2w3 and Aw = w( — 2ws, in the cases of half- and quarter-wavelength slabs.
Then, show that w3 and Aw are given by:

2p3 AwT 1-pi

coswsT = + p14’ ta (L> = p%

1+p] 4 1+ p7

5.7 Afiberglass (€ = 4€() radome protecting a microwave antenna is designed as a half-wavelength
reflectionless slab at the operating frequency of 12 GHz.

a. Determine three possible thicknesses (in cm) for this radome.

b. Determine the 15-dB and 30-dB bandwidths in GHz about the 12 GHz operating fre-
quency , defined as the widths over which the reflected power is 15 or 30 dB below the
incident power.

5.8 A 5 GHz wave is normally incident from air onto a dielectric slab of thickness of 1 cm and
refractive index of 1.5, as shown below. The medium to the right of the slab has an index of
2.25.

a. Write an analytical expression of the reflectance |I'(f)|? as a function of frequency
and sketch it versus f over the interval 0 < f < 15 GHz. What is the value of the
reflectance at 5 GHz?

b. Next, the 1-cm slab is moved to the left by a distance of 3 cm, creating an air-gap
between it and the rightmost dielectric. Repeat all the questions of part (a).

c. Repeat part (a), if the slab thickness is 2 cm.

€| € € € | € €o €
1 —» 1
I - r
3cm
e e
lem lcm

5.9 A single-frequency plane wave is incident obliquely from air onto a planar interface with
a medium of permittivity € = 2€(, as shown below. The incident wave has the following
phasor form:

E(z)= (x tz +j§,) eikz=x)112 (5.9.1)
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a. Determine the angle of incidence 0 in degrees and decide which of the two dashed lines
in the figure represents the incident wave. Moreover, determine the angle of refraction
0’ in degrees and indicate the refracted wave’s direction on the figure below.

b. Write an expression for the reflected wave that is similar to Eq. (5.9.1), but also includes
the dependence on the TE and TM Fresnel reflection coefficients (please evaluate these
coefficients numerically.) Similarly, give an expression for the transmitted wave.

c. Determine the polarization type (circular, elliptic, left, right, linear, etc.) of the incident
wave and of the reflected wave.

5.10 A uniform plane wave is incident normally on a planar interface, as shown below. The
medium to the left of the interface is air, and the medium to the right is lossy with an
effective complex permittivity €., complex wavenumber k' = B’ — j&’ = w,/Ho€, and
complex characteristic impedance n. = /to/€c. The electric field to the left and right of the
interface has the following form:

X
Eoe % + pEge*?, 7z <0 Eo | TE
x = o,
TEge X'z, z=0 PE
€o e

where p, T are the reflection and transmission coefficients.

1. Determine the magnetic field at both sides of the interface.

2. Show that the Poynting vector only has a z-component, given as follows at the two
sides of the interface:

2 2
|Eo| (1-1pl?), P = |Eo|

_ B/|T|2€—2tx’z
2o 2wHo

P =

3. Moreover, show that P = P’ at the interface, (i.e., at z = 0).

5.11 Consider a lossy dielectric slab of thickness d and complex refractive index n. = n, — jn; at
an operating frequency w, with air on both sides as shown below.

a. Letk = B—j = konc and ne = no/nc be the corresponding complex wavenumber and
characteristic impedance of the slab, where kg = w.,/Hio€y = w/co and Ng = +/Uo/€Ep.
Show that the transmission response of the slab may be expressed as follows:

air [ p. | air
| — T
T = 1 ! 1 I -—
coskd+j§(nc+n—>sinkd —d —
‘ — a "F

b. At the cell phone frequency of 900 MHz, the complex refractive index of concrete is
ne = 2.5 — 0.14j. Calculate the percentage of the transmitted power through a 20-cm
concrete wall. How is this percentage related to T and why?

c. Is there anything interesting about the choice d = 20 cm? Explain.
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5.12 Consider the slab of the previous problem. The tangential electric field has the following
form in the three regions z <0, 0 <z <d,and z > d:
eJkoz 4 reikoz - if 7z <0
E(z)=1Ae /%2 + Belkz  if 0<z<d
Te Jko(z=d) | if z>d

where k( and k were defined in the previous problem.

a. What are the corresponding expressions for the magnetic field H (z)?

b. Set up and solve four equations from which the four unknowns I', A, B, T may be
determined.

c. If the slab is lossless and is designed to be a half-wave slab at the frequency w, then
what is the value of T?

d. If the slab is is lossy with n. = n, — jn; and is designed to be a half-wave slab with
respect to the real part f of k, that is, fd = 1T, then, show that T is given by:

1

cosh od + 1 (nc + i) sinh oed
2 ne

T=—

5.13 Consider a two-layer dielectric structure as shown in Fig. 5.7.1, and let ng4, ny, n,, ny, be the
refractive indices of the four media. Consider the four cases: (a) both layers are quarter-
wave, (b) both layers are half-wave, (c) layer-1 is quarter- and layer-2 half-wave, and (d) layer-1
is half- and layer-2 quarter-wave. Show that the reflection coefficient at interface-1 is given
by the following expressions in the four cases:

ngn3 — npn? Ng — Np nghp — N3 nanp — n3
h=——7—, h=——, s —, IN=———%
Nah + npn’ ng + ny Nahp + 13 NaNp + N3

5.14 Consider the lossless two-slab structure of Fig. 5.7.1. Write down all the transfer matrices
relating the fields E;., i = 1,2,3 at the left sides of the three interfaces. Then, show the
energy conservation equations:

1 1 1 1,
E(‘EIJr‘Z - |E1-?) = a(\EZHZ — |Ep-|?) = E(|Es+|2 — |E3-|?) = ™ |E3, |°

5.15 An alternative way of representing the propagation relationship Eq. (5.1.12) is in terms of the
hyperbolic w-plane variable defined in terms of the reflection coefficient I', or equivalently,
the wave impedance Z as follows:

I'=e™® < Z=ncoth(w) (5.9.2)

Show the equivalence of these expressions. Writing I'} = e™?*1 and I'» = e~?"2, show that
Eg. (5.1.12) becomes equivalent to:

wy = Wy + jkI (propagation in w-domain) (5.9.3)

This form is essentially the mathematical (as opposed to graphical) version of the Smith
chart and is particularly useful for numerical computations using MATLAB.
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5.16 Plane A flying at a speed of 900 km/hr with respect to the ground is approaching plane B.
Plane A’s Doppler radar, operating at the X-band frequency of 10 GHz, detects a positive
Doppler shift of 2 kHz in the return frequency. Determine the speed of plane B with respect
to the ground. [Ans. 792 km/hr.]

5.17 The complete set of Lorentz transformations of the fields in Eq. (5.8.8) is as follows (see also
Eq. (K.31) of Appendix K):

‘ , , ; N P P
Ey = y(Ey + BcBy), H, =y(H, +cBD,), Dx=y(DX+EBHy), By=y(By+EBEX>

The constitutive relations in the rest frame S’ of the moving dielectric are the usual ones, that
is, B}, = pHy, and D} = €Ey. By eliminating the primed quantities in terms of the unprimed
ones, show that the constitutive relations have the following form in the fixed system S:

_ (A -BeEx—B(n* —1)H,/c _ (0 =p)HuHy, - B(n* - 1E/c

Dy 1— B2n? Y 1— B2n2

where n is the refractive index of the moving medium, n = \/eu/€eguy. Show that for free
space, the constitutive relations remain the same as in the frame S’.

6

Multilayer Structures

Higher-order transfer functions of the type of Eq. (5.7.2) can achieve broader reflection-
less notches and are used in the design of thin-film antireflection coatings, dielectric
mirrors, and optical interference filters [632-694,754-787], and in the design of broad-
band terminations of transmission lines [822-832].

They are also used in the analysis, synthesis, and simulation of fiber Bragg gratings
[788-808], in the design of narrow-band transmission filters for wavelength-division
multiplexing (WDM), and in other fiber-optic signal processing systems [818-821].

They are used routinely in making acoustic tube models for the analysis and synthe-
sis of speech, with the layer recursions being mathematically equivalent to the Levinson
lattice recursions of linear prediction [833-839]. The layer recursions are also used in
speech recognition, disguised as the Schur algorithm.

They also find application in geophysical deconvolution and inverse scattering prob-
lems for oil exploration [840-849].

The layer recursions—known as the Schur recursions in this context—are intimately
connected to the mathematical theory of lossless bounded real functions in the z-plane
and positive real functions in the s-plane and find application in network analysis, syn-
thesis, and stability [853-867].

6.1 Multiple Dielectric Slabs

The general case of arbitrary number of dielectric slabs of arbitrary thicknesses is shown
in Fig. 6.1.1. There are M slabs, M + 1 interfaces, and M + 2 dielectric media, including
the left and right semi-infinite media n, and np.

The incident and reflected fields are considered at the Ileft of each interface. The
overall reflection response, I'y = E1_/E;, can be obtained recursively in a variety of
ways, such as by the propagation matrices, the propagation of the impedances at the
interfaces, or the propagation of the reflection responses.

The elementary reflection coefficients p; from the left of each interface are defined
in terms of the characteristic impedances or refractive indices as follows:

ni—nNi-1 _ Ni-1 — N

pi = = , 1=1,2,...,.M+1 (6.1.1)
ni+nNi-1 nj-1 + N;
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Fig. 6.1.1 Multilayer dielectric slab structure.

where n; = no/n;, and we must use the convention ny = ng and ny4+; = hnp, so that
p1 = (ng—ny)/(ng +ny) and pp41 = (ny — np) / (npy + np) . The forward/backward
fields at the left of interface i are related to those at the left of interface i + 1 by:

E | 1 [ ekl pedkili T Eppy o
|iEi7 :| = ?l |:p,-ejk"l" e*jkili Ei+17 , 1 —M,M— 1,...,1 (612)

where T; = 1 + p; and k;l; is the phase thickness of the ith slab, which can be expressed
in terms of its optical thickness n;l; and the operating free-space wavelength by k;l; =
21t (n;l;) /A. Assuming no backward waves in the right-most medium, these recursions
are initialized at the (M + 1) st interface as follows:

EM+1,+ _ 1 1 PM+1 E]’\4+1'+ _ 1 1 E!
Epq1,- TM+1 | PM+1 1 0 Tare1 | Pmer | MTLT

It follows that the reflection responses I'; = E;_/E; will satisfy the recursions:

_ pi + Tiye=kili .
Ti= o e | P=MM (6.1.3)

and initialized by I'nyj+1 = pm+1- Similarly the recursions for the total electric and
magnetic fields, which are continuous across each interface, are given by:

E; _ COSkili an Sil’lkili i Eiy .
[H,-] = [jn,—‘lsink,-l,- coskil, o | i=MM =T, (6.1.4)

and initialized at the (M + 1) st interface as follows:

Eva | _[ 1 "
HMH 7),’;1 M+1,+

It follows that the impedances at the interfaces, Z; = E;/H;, satisfy the recursions:
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Zix1 +jnitank;li

Zi =
= Ni +JjZiw1 tank;l;

, I=MM-1,...,1 (6.1.5)

and initialized by Zy 41 = np. The objective of all these recursions is to obtain the
overall reflection response I'; into medium n,.

The MATLAB function multidiel implements the recursions (6.1.3) for such a multi-
dielectric structure and evaluates I'; and Z; at any desired set of free-space wavelengths.
Its usage is as follows:

[Gammal,Z1] = multidiel(n,L,Tambda); % multilayer dielectric structure

where n, L are the vectors of refractive indices of the M + 2 media and the optical
thicknesses of the M slabs, that is, in the notation of Fig. 6.1.1:

n = [ng,ni,ny,...,np,npl, L= [ml,nl,... nylyl

and A is a vector of free-space wavelengths at which to evaluate I';. Both the optical
lengths L and the wavelengths A are in units of some desired reference wavelength, say
Ao, typically chosen at the center of the desired band. The usage of multidiel was
illustrated in Example 5.5.2. Additional examples are given in the next sections.

The layer recursions (6.1.2)-(6.1.5) remain essentially unchanged in the case of oblique
incidence (with appropriate redefinitions of the impedances n;) and are discussed in
Chap. 7.

Next, we apply the layer recursions to the analysis and design of antireflection coat-
ings and dielectric mirrors.

6.2 Antireflection Coatings

The simplest example of antireflection coating is the quarter-wavelength layer discussed
in Example 5.5.2. Its primary drawback is that it requires the layer’s refractive index to
satisfy the reflectionless condition n, = \/ngnp.

For a typical glass substrate with index n, = 1.50, we have n; = 1.22. Materials with
n; near this value, such as magnesium fluoride with n; = 1.38, will result into some,
but minimized, reflection compared to the uncoated glass case, as we saw in Example
5.5.2.

The use of multiple layers can improve the reflectionless properties of the single
quarter-wavelength layer, while allowing the use of real materials. In this section, we
consider three such examples.

Assuming a magnesium fluoride film and adding between it and the glass another
film of higher refractive index, it is possible to achieve a reflectionless structure (at a
single wavelength) by properly adjusting the film thicknesses [634,659].

With reference to the notation of Fig. 5.7.1, we have n, = 1, n; = 1.38, n» to be
determined, and np = Nglass = 1.5. The reflection response at interface-1 is related to
the response at interface-2 by the layer recursions:

p1 + e ¥kl pa + pse 2kl
1 = 7' 2 =

T 1+ pile2kih T 1+ papye kel
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The reflectionless condition is I'; = 0 at an operating free-space wavelength Aq. This
requires that p; + I'>e~%%1li = (0, which can be written as:

ez _ _1T2 6.2.1)
P

Because the left-hand side has unit magnitude, we must have the condition || =
|p1l, or, |I'2|% = p?, which is written as:

_ p% + p% + 2p2p3 cos 2kl _ 2
1+ p%p% + 2p2p3 cos 2kal; !

P2 + pye kel
1+ papze=klz

This can be solved for cos 2k»I>:

2 22\ (2. A2
o 2koly = pi (1 + p5p3) (pg*‘p3)
2p2p3(1 = p1)

Using the identity, cos 2kal, = 2 cos? ka1, — 1, we also find:

pi(1 = p2p3)®—(p2 — p3)?
4prp3(1 — p?)

cos® kylp =
(6.2.2)
(P2 + p3)°=pi (1 + pap3)*
4pap3 (1 — p?)

It is evident from these expressions that not every combination of pq, p2, p3 will
admit a solution because the left-hand sides are positive and less than one. If we assume
that n, > n; and np > nyp, then, we will have p, < 0 and p3 > 0. Then, it is necessary
that the numerators of above expressions be negative, resulting into the conditions:

sin® kylp =

2

2
3+
‘M cpr | PP

1+ p2p3 1—-pop3

The left inequality requires that \/n, < n; < np, which is satisfied with the choices
n; = 1.38 and np = 1.5. Similarly, the right inequality is violated—and therefore there
is no solution—if ,/np < ny < n;,/Np, which has the numerical range 1.22 < n, < 1.69.

Catalan [634,659] used bismuth oxide (Bi»O3) with n, = 2.45, which satisfies the
above conditions for the existence of solution. With this choice, the reflection coeffi-
cients are p; = —0.16, p» = —0.28, and p3 = 0.24. Solving Eq. (6.2.2) for k,I, and then
Eq. (6.2.1) for k;1;, we find:

2 ‘ pP3 — P2

kil; = 2.0696, kI, = 0.2848 (radians)
Writing k11, = 21t(n111) /Ag, we find the optical lengths:
1’1111 = 03294/\0, nzlz = 00453A0

Fig. 6.2.1 shows the resulting reflection response I'; as a function of the free-space
wavelength A, with Ag chosen to correspond to the middle of the visible spectrum,
Ag = 550 nm. The figure also shows the responses of the single quarter-wave slab of
Example 5.5.2.

The reflection responses were computed with the help of the MATLAB function mul-
tidiel. The MATLAB code used to implement this example was as follows:
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Antireflection Coatings on Glass

— air | 1.38 | 2.45 | glass
--- air | 1.38 | glass
air | 1.22 | glass

w

I ;W) 12 (percent)

—

200 450 500 550 600 650 700
A (nm)

Fig. 6.2.1 Two-slab reflectionless coating.

na=1l; nb=1.5; nl=1.38; n2=2.45;
n = [na,nl,n2,nb]; Ta0 = 550;

r = n2r(n);

c = sqre((r(A2*(1-r(2)*r(3))A2 - (r(2)-r(3))A2)/(4*r(2)*r(3)*(1-r(1)A2)));
k212 = acos(c);

G2 = (r2)+r(3)*exp(-2*j*k212))/( + r(2)*r(3)*exp(-2*j*k212));

k111 = (angle(G2) - pi - angle(r(1)))/2;

if k111 <0, k111 = k111 + 2*pi; end

L = [k111,k212]1/2/pi;

la = linspace(400,700,101);

Ga = abs(multidiel(n, L, la/1a0)).A2 * 100;

Gb = abs(multidiel([na,nl,nb], 0.25, 1a/1a0)).A2 * 100;

Gc = abs(multidiel([na,sqrt(nb),nb], 0.25, 1a/1a0)).A2 * 100;

plot(la, Ga, la, Gb, la, Gc);

The dependence on A comes through the quantities k11, and kI, for example:

Vl1l] 03294/\0
kil =2m—— =2m—"1—
r A A
Essentially the same method is used in Sec. 13.7 to design 2-section series impedance
transformers. The MATLAB function twosect of that section implements the design.
It can be used to obtain the optical lengths of the layers, and in fact, it produces two
possible solutions:

.3294 .04
Ly» = twosect(1, 1/1.38, 1/2.45, 1/1.5)= [8?786 82;;]

where each row represents a solution, so that L; = njl;/A¢ = 0.1706 and L, =
nala/Ag = 0.4547 is the second solution. The arguments of twosect are the inverses
of the refractive indices, which are proportional to the characteristic impedances of the
four media.
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Although this design method meets its design objectives, it results in a narrower
bandwidth compared to that of the ideal single-slab case. Varying n» has only a minor
effect on the shape of the curve. To widen the bandwidth, and at the same time keep
the reflection response low, more than two layers must be used.

A simple approach is to fix the optical thicknesses of the films to some prescribed
values, such as quarter-wavelengths, and adjust the refractive indices hoping that the
required index values come close to realizable ones [634,660]. Fig. 6.2.2 shows the
two possible structures: the quarter-quarter two-film case and the quarter-half-quarter
three-film case.

ng ny nyp np ng ny nyp n3 np
nili= | mh= nili= | noly= | n3lz=
Ao/d | Agld Ao/d | Agl2 | Agl4

P1 P2 P3 P P2 P3 P4
Z Z, 7 Zy 4, Z Zy

Fig. 6.2.2 Quarter-quarter and quarter-half-quarter antireflection coatings.

The behavior of the two structures is similar at the design wavelength. For the
quarter-quarter case, the requirement Z, = n, implies:

_ni_ o on o_nt
Zy m3lZz n

na = ", (6.2.3)

The optical thicknesses are nyl; = nyl, = Ag/4. In the quarter-half-quarter case,
the half-wavelength layer acts as an absentee layer, that is, Z, = Z3, and the resulting
design condition is the same:

oMo _mi_ mio_ni

nt_nt_ L
Z, 73 niizy pit e

yielding in the condition:

ng = np (6.2.4)

The optical thicknesses are now n;l; = n3l3 = Ag/4 and nol, = Ag/2. Conditions
(6.2.3) and (6.2.4) are the same as far as determining the refractive index of the second
quarter-wavelength layer. In the quarter-half-quarter case, the index n» of the half-
wavelength film is arbitrary.
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In the quarter-quarter case, if the first quarter-wave film is magnesium fluoride with
n; = 1.38 and the glass substrate has ng.ss = 1.5, condition (6.2.3) gives for the index
for the second quarter-wave layer:

2
n, _J \/1 38 X150 69 (6.2.5)

The material cerium fluoride (CeF3) has an index of n, = 1.63 at Ag = 550 nm and
can be used as an approximation to the ideal value of Eq. (6.2.5). Fig. 6.2.3 shows the
reflectances |I'1]? for the two- and three-layer cases and for the ideal and approximate
values of the index of the second quarter-wave layer.

Quarter—Quarter Coating Quarter—-Half-Quarter Coating

4 4n

N '

\\\ — air | 1.38 | 1.63 | glass \ — air | 1.38 1 2.20 | 1.63 | glass
~ 3 Y --- air | 1.38 | 1.69 | glass =l \ ---air | 1.38 1 2.20 | 1.69 | glass
g \ air | 1.22 | glass = \ air | 1.22 | glass
8 8
3 3
2 =
~2r 2r
o Bl
2 2
< <
—1f —1f

0 L L S L L 0 L ES == L = v
400 450 500 550 600 650 700 400 450 500 550 600 650 700
A (nm) A (nm)

Fig. 6.2.3 Reflectances of the quarter-quarter and quarter-half-quarter cases.

The design wavelength was Ay = 550 nm and the index of the half-wave slab was
np, = 2.2 corresponding to zirconium oxide (ZrQO»). We note that the quarter-half-quarter
case achieves a much broader bandwidth over most of the visible spectrum, for either
value of the refractive index of the second quarter slab.

The reflectances were computed with the help of the function muTtidiel. The typ-
ical MATLAB code was as follows:

1a0 = 550; Tla = Tinspace(400,700,101);

Ga = 100*abs(multidiel([1,1.38,2.2,1.63,1.5], [0.25,0.5,0.25], Ta/1a0)).A2;
Gb = 100*abs(multidiel([1,1.38,2.2,1.69,1.5], [0.25,0.5,0.25], Ta/1a0)).A2;
Gc = 100*abs(multidiel([1,1.22,1.5], 0.25, la/T1a0)).A2;

plot(la, Ga, la, Gb, la, Gc);

These and other methods of designing and manufacturing antireflection coatings for
glasses and other substrates can be found in the vast thin-film literature. An incomplete

set of references is [632-692]. Some typical materials used in thin-film coatings are given
below:
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material n material n

cryolite (NazAlFg) 1.35 || magnesium fluoride (MgF,) | 1.38
Silicon dioxide SiO» 1.46 || polystyrene 1.60
cerium fluoride (CeF3) | 1.63 || lead fluoride (PbF;) 1.73
Silicon monoxide SiO 1.95 || zirconium oxide (ZrO,) 2.20
zinc sulfide (ZnS) 2.32 || titanium dioxide (TiO») 2.40
bismuth oxide (Bi»O3) | 2.45 || silicon (Si) 3.50
germanium (Ge) 4.20 || tellurium (Te) 4.60

Thin-film coatings have a wide range of applications, such as displays; camera lenses,
mirrors, and filters; eyeglasses; coatings for energy-saving lamps and architectural win-
dows; lighting for dental, surgical, and stage environments; heat reflectors for movie
projectors; instrumentation, such as interference filters for spectroscopy, beam split-
ters and mirrors, laser windows, and polarizers; optics of photocopiers and compact
disks; optical communications; home appliances, such as heat reflecting oven windows;
rear-view mirrors for automobiles.

6.3 Dielectric Mirrors

The main interest in dielectric mirrors is that they have extremely low losses at optical
and infrared frequencies, as compared to ordinary metallic mirrors. On the other hand,
metallic mirrors reflect over a wider bandwidth than dielectric ones and from all incident
angles. However, omnidirectional dielectric mirrors are also possible and have recently
been constructed [777,778]. The omnidirectional property is discussed in Sec. 8.8. Here,
we consider only the normal-incidence case.

A dielectric mirror (also known as a Bragg reflector) consists of identical alternating
layers of high and low refractive indices, as shown in Fig. 6.3.1. The optical thicknesses
are typically chosen to be quarter-wavelength long, that is, ngly = nyl; = Ag/4 at some
operating wavelength Ay. The standard arrangement is to have an odd number of layers,
with the high index layer being the first and last layer.

fFyr— F st F —e— F s F —n—Fy—
Rgq | Ny ny ny ny ny ny ny ny ny ﬂb
I

ly | I b\ g | b | iy

e
Eyy
-

Ery

ly ly
> > —> >
- - - - 10+
Eqy Ee+ Egy Ejo4

ol | -p| p| -p| p| -p| | P P
Zy Zy Zy Z4 Zg Zg Z10=Zyns2
1‘*1—'{

NI |

Fig. 6.3.1 Nine-layer dielectric mirror.

Fig. 6.3.1 shows the case of nine layers. If the number of layers is M = 2N + 1, the
number of interfaces will be 2N + 2 and the number of media 2N + 3. After the first
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layer, we may view the structure as the repetition of N identical bilayers of low and high
index. The elementary reflection coefficients alternate in sign as shown in Fig. 6.3.1 and
are given by

ng —ng np —ng Ng — Ny ng — Ny
=, —p=—, =, pPr=——"— 6.3.1
p ng + ng p ny + ng 1 Nng + Ny P2 ng + Np ( )
The substrate nj can be arbitrary, even the same as the incident medium n,. In
that case, p» = —p;. The reflectivity properties of the structure can be understood by
propagating the impedances from bilayer to bilayer. For the example of Fig. 6.3.1, we
have for the quarter-wavelength case:

2 2 2 4 6 8
7=z () a= () 2= () - ()
Zo=-L L 7 _ (2} 7 (22} 7. - (Z2) 7, = (=2
2 Zs '7%1 4 n; 4 n; 6 n; 8 n; nNp
Therefore, after each bilayer, the impedance decreases by a factor of (nr/ng)?2.
After N bilayers, we will have:

ny \ 2N
Z) = (—) Ny (6.3.2)
ny

Using Z, = n%{/Zz, we find for the reflection response at Ag:

_Z1—Na _ np Nagnp
1= = b

Zy+n ng \*N nj

R (—H> H

nr NaNp

(6.3.3)

It follows that for large N, I'y will tend to —1, that is, 100 % reflection.

Example 6.3.1: For nine layers, 2N + 1 = 9, or N = 4, and ng = 2.32, n; = 1.38, and n, =
nyp = 1, we find:

= -0.9942 = |I']®> = 98.84 percent

For N = 8, or 17 layers, we have I'1 = —0.9999 and |I';|? = 99.98 percent. If the substrate
is glass with n, = 1.52, the reflectances change to |I';|?> = 98.25 percent for N = 4, and
|I'1]% = 99.97 percent for N = 8. o

To determine the bandwidth around A for which the structure exhibits high reflec-
tivity, we work with the layer recursions (6.1.2). Because the bilayers are identical, the
forward/backward fields at the left of one bilayer are related to those at the left of the
next one by a transition matrix F, which is the product of two propagation matrices of
the type of Eq. (6.1.2). The repeated application of the matrix F takes us to the right-most
layer. For example, in Fig. 6.3.1 we have:

E>, Eqy > | Eo+r 3| Es+ 4| E1o+
=F =F =F =F
[ E27 :| |: E47 :| |: E67 :| E87 E107
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where F is the matrix:

1 eJkilL pe—jkLIL 1 elkulu _pe—jkulu
1-p

= 1+p pejkLIL e—JkilL _peijIH e~Jkulu (6.3.4)

Defining the phase thicknesses 6y = kylg and 8; = k;l;, and multiplying the
matrix factors out, we obtain the expression for F:

1 e/ (6u+61) _ n20j(6n—61L)
[ p (6.3.5)

P —2jpe /% sin §;
-1

ijej5H sin oy e J(Bu+oL) _ pze*j(lsH*éL)
By an additional transition matrix F; we can get to the left of interface-1 and by an
additional matching matrix F» we pass to the right of the last interface:

Eir | Exr | 4| Ero+ | _ 4 Ejos |
o -n B e B e 5

where F; and F, are:

1 efkulu ple*ijlH 1 1 p ]
Fl = ?1 |:pleijlH e*ijlH ) Fz = ?2 p2 1 (636)

where T = 1+ p1, T2 = 1 + py, and p;, p» were defined in Eq. (6.3.1). More generally,
for 2N + 1 layers, or N bilayers, we have:

E>., N | E2n+2,+ Ey N Eonqo s
_F - - F,FNF, ' 6.3.7
[Ez— ] |:E2N+2,— ] |:E1— ] ! : 0 ( )

Thus, the properties of the multilayer structure are essentially determined by the
Nth power, FN, of the bilayer transition matrix F. In turn, the behavior of FV is deter-
mined by the eigenvalue structure of F.

Let {A,,A_} be the two eigenvalues of F and let V be the eigenvector matrix. Then,
the eigenvalue decomposition of F and FN willbe F = VAV~ and FN = VANV~! where
A = diag{A ,A_}. Because F has unit determinant, its two eigenvalues will be inverses
of each other, thatis, A_ = 1/A,,or, A;A_ = 1.

The eigenvalues A. are either both real-valued or both complex-valued with unit
magnitude. We can represent them in the equivalent form:

Ay =Kl AL =g/ (6.3.8)

where [ is the length of each bilayer, I = I} + lg. The quantity K is referred to as the
Bloch wavenumber. If the eigenvalues A. are unit-magnitude complex-valued, then K
is real. If the eigenvalues are real, then K is pure imaginary, say K = —j«, so that
Ai — e:jKl — eto(l'

The multilayer structure behaves very differently depending on the nature of K. The
structure is primarily reflecting if K is imaginary and the eigenvalues A. are real, and
it is primarily transmitting if K is real and the eigenvalues are pure phases. To see this,
we write Eq. (6.3.7) in the form:
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E>. Ny/—1 Eons2,+ -1 Ezy Ny/—1 Eons2,+
= VAV ’ > V =A"V ’ , Or,
[Ez— } E>nqo, - E> Eonio -
Voy AN Voniz,+
Voo Vonio,-
where we defined

Vs _ V_l E>, V2N+2,+ _ V_l EZN+2,+
Vo E,_ |’ Vonio,- Eonyo, -
We have Vo, = AVVoni24 and Voo = ANVonio - = AZNVon,2,- because AN is
diagonal. Thus,

Vontzs = ANV, = e KN, 0 Vonis - = ANV, = /KNy, (6.3.9)

The quantity N1 is recognized as the total length of the bilayer structure, as depicted
in Fig. 6.3.1. It follows that if K is real, the factor A7N = e /KNI acts as a propagation
phase factor and the fields transmit through the structure.

On the other hand, if K is imaginary, we have A7V = ¢~*N! and the fields attenuate
exponentially as they propagate into the structure. In the limit of large N, the trans-
mitted fields attenuate completely and the structure becomes 100% reflecting. For finite
but large N, the structure will be mostly reflecting.

The eigenvalues A. switch from real to complex, as K switches from imaginary to
real, for certain frequency or wavenumber bands. The edges of these bands determine
the bandwidths over which the structure will act as a mirror.

The eigenvalues are determined from the characteristic polynomial of F, given by
the following expression which is valid for any 2x2 matrix:

det(F — AI)= A> — (tr F)A + detF (6.3.10)

where [ is the 22 identity matrix. Because (6.3.5) has unit determinant, the eigenvalues
are the solutions of the quadratic equation:

A— (rF)A+1=A%2-2aA+1=0 (6.3.11)

where we defined a = (tr F) /2. The solutions are:

A =ax+Va?2-1 (6.3.12)

where it follows from Eq. (6.3.5) that a is given by:

cos(Sy + 81) —p?cos(Sy — O1)
1-p2

a-= %trF - (6.3.13)

Using Ay = Xl = g+ /a? =1 = a + j/1 — a2, we also find:
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a=cosKl = K= %acos(a) (6.3.14)

The sign of the quantity a® — 1 determines whether the eigenvalues are real or com-
plex. The eigenvalues switch from real to complex—equivalently, K switches from imag-
inary to real—when a? = 1, or, a = +1. These critical values of K are found from
Eq. (6.3.14) to be:

1
K = acos(+1)= @ (6.3.15)
where m is an integer. The lowest value is K = 71/I and corresponds to a = —1 and to
Ay = e/Kl = /™ — _1. Thus, we obtain the bandedge condition:
_cos(by + 61)—p*cos(by —6L) 1
= L =
It can be manipulated into:
- —+ - - —
cosz(w) = p? cosz(w) (6.3.16)

The dependence on the free-space wavelength A or frequency f = c¢/A comes
through 6y = 2m(nyly)/A and 6; = 2m(ngly)/A. The solutions of (6.3.16) in A
determine the left and right bandedges of the reflecting regions.

These solutions can be obtained numerically with the help of the MATLAB function
omniband, discussed in Sec. 8.8. An approximate solution, which is exact in the case of
quarter-wave layers, is given below.

If the high and low index layers have equal optical thicknesses, ngly = nrly, such as
when they are quarter-wavelength layers, or when the optical lengths are approximately
equal, we can make the approximation cos((Sy — 61)/2) = 1. Then, (6.3.16) simplifies
into:

oy + 01

> ) =p? (6.3.17)

cos? (
with solutions:

) —xp > 6H + 5L _ w(nyly + nylp)

2 A

5H+6L
2

cos ( = acos(xp)

The solutions for the left and right bandedges and the bandwidth in A are:

Ay = lala ) o 0wl ) (6.3.18)
acos(—p) acos(p)

Similarly, the left/right bandedges in frequency are f1 = co/A» and f> = co/A1:

acos(—p)
0 1T(VlHIH + l’lLlL)

acos(p)
Ot (nply + nelp)’

fi=c fo=c (6.3.19)
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Noting that acos(—p) = 11/2 + asin(p) and acos(p)= 11/2 — asin(p), the frequency
bandwidth can be written in the equivalent forms:
acos(—p)—acos(p) _ 2 asin(p)

Af=f2 _fl = Co 1T(I’IHIH+HLIL) _COTF(}’IHIH+I1L1L) (6.3.20)

Relative to some desired wavelength Ay = co/fo, the normalized bandwidths in
wavelength and frequency are:

AA w(nygly + nily) 1 1
— = - .3.21
Ao Ao [acos(p) acos(—p) ] (6.3.21)
Af 2Ap asin(p)
—_—= 6.3.22
fo  mngly +nilp) ( )
Similarly, the center of the reflecting band f. = (f1 + f2) /2 is:
E = # (6.3.23)

fo  2(nulg +nclp)
If the layers have equal quarter-wave optical lengths at Ag, that is, hgyly = nyly =
Ao/4, then, f; = fo and the matrix F takes the simplified form:

1 e _p?2  _2jpe~idging
T 1-p2| 2jpeldsing e ¥ - p?
where 6 = 6y = 61 =2 (ngly) /A =21 (Ag/4) /A = (11/2)Ag/A = (11/2)f /fo. Then,
Egs. (6.3.21) and (6.3.22) simplify into:

@ _n [ 1 - 1 ] A—f = 4 asin(p) (6.3.25)

Ao 2 [acos(p) acos(—p) fo m

Example 6.3.2: Dielectric Mirror With Quarter-Wavelength Layers. Fig. 6.3.2 shows the reflec-
tion response |I';|? as a function of the free-space wavelength A and as a function of
frequency f = co/A. The high and low indices are ny = 2.32 and n; = 1.38, correspond-
ing to zinc sulfide (ZnS) and magnesium fluoride. The incident medium is air and the
substrate is glass with indices n,; = 1 and np = 1.52. The left graph depicts the response
for the cases of N = 2,4, 8 bilayers, or 2N + 1 = 5,9,17 layers, as defined in Fig. 6.3.1.
The design wavelength at which the layers are quarter-wavelength long is Ay = 500 nm.

(6.3.24)

The reflection coefficient is p = 0.25 and the ratio ny/n; = 1.68. The wavelength band-
width calculated from Eq. (6.3.25) is AA = 168.02 nm and has been placed on the graph at
an arbitrary reflectance level. The left/right bandedges are A, = 429.73, A, = 597.75 nm.
The bandwidth covers most of the visible spectrum. As the number of bilayers N increases,
the reflection response becomes flatter within the bandwidth AA, and has sharper edges
and tends to 100%. The bandwidth AA represents the asymptotic width of the reflecting
band.

The right figure depicts the reflection response as a function of frequency f and is plotted
in the normalized variable f/f. Because the phase thickness of each layer is § = 7w /2f,
and the matrix F is periodic in §, the mirror behavior of the structure will occur at odd
multiples of f (or odd multiples of 17/2 for §.) As discussed in Sec. 6.6, the structure acts
as a sampled system with sampling frequency fs = 2fy, and therefore, fy = fs/2 plays the
role of the Nyquist frequency.
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Fig. 6.3.2 Dielectric mirror with quarter-wavelength layers.

The typical MATLAB code used to generate these graphs was:

na=1; nb =1.52; nH = 2.32; nL = 1.38;
LH = 0.25; LL = 0.25;

% refractive indices
% optical thicknesses in units of A

1a0 = 500; % A in units of nm
rho = (nH-nL)/(nH+nL); % reflection coefficient p
T1a2 = pi*(LL+LH)*1/acos(rho) * T1a0; % right bandedge

Tlal = pi*(LL+LH)*1/acos(-rho) * 1a0; % left bandedge

Dla = Ta2-Tal; % bandwidth

N = 8;
[na, nH, repmat([nL,nH], 1, N), nbl;
L = [LH, repmat([LL,LH], 1, N)];

% number of bilayers
% indices for the layers A\H(LH)NIG
% lengths of the layers H (LH)N

=1
[

Ta = linspace(300,800,501);
Gla = 100*abs(multidiel(n,L,1a/1a0)).A2;
figure; plot(la,Gla);

% plotting range is 300 < A < 800 nm
% reflectance as a function of A

f = Tinspace(0,6,1201);
Gf = 100*abs(multidiel(n,L,1./f)).A2;
figure; plot(f,Gf);

% frequency plot over 0 < f < 6f¢
% reflectance as a function of [

Note that the function repmat replicates the LH bilayer N times. The frequency graph
shows only the case of N = 8. The bandwidth Af, calculated from (6.3.25), has been
placed on the graph. The maximum reflectance (evaluated at odd multiples of fy) is equal
t0 99.97%. o

Example 6.3.3: Dielectric Mirror with Unequal-Length Layers. Fig. 6.3.3 shows the reflection

response of a mirror having unequal optical lengths for the high and low index films.

The parameters of this example correspond very closely to the recently constructed om-
nidirectional dielectric mirror [777], which was designed to be a mirror over the infrared
band of 10-15 um. The number of layers is nine and the number of bilayers, N = 4. The in-
dices of refraction are ny = 4.6 and n; = 1.6 corresponding to Tellurium and Polystyrene.
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Fig. 6.3.3 Dielectric mirror with unequal optical thicknesses.

Their ratio is ny /nyp = 2.875 and the reflection coefficient, p = 0.48. The incident medium
and substrate are air and NaCl (n = 1.48.)

The center wavelength is taken to be at the middle of the 10-15 yum band, that is, Ao =
12.5 ym. The lengths of the layers are Iy = 0.8 and I; = 1.65 um, resulting in the
optical lengths (relative to Ag) nyly = 0.2944Aq and nyl; = 0.2112A,. The wavelength
bandwidth, calculated from Eq. (6.3.21), is AA = 9.07 um. The typical MATLAB code for
generating the figures of this example was as follows:

1a0 = 12.5;

na =1; nb = 1.48; % NaCl substrate

nH = 4.6; nL = 1.6; % Te and PS

TH = 0.8; 1L = 1.65 % physical lengths Ify, I

LH = nH*1H/7a0, LL = nL*1L/1a0; % optical lengths in units of Aq

rho = (nH-nL)/(nH+nL); % reflection coefficient p

1a2 = pi*(LL+LH)*1/acos(rho) * 1a0; % right bandedge
1al = pi*(LL+LH)*1/acos(-rho) * Ta0; % left bandedge
Dla = la2-1al; % bandwidth

la = linspace(5,25,401); % equally-spaced wavelengths
N = 4;

n = [na, nH, repmat([nL,nH], 1, N), nb];
L = [LH, repmat([LL,LH], 1, N)I;

G = 100 * abs(multidiel(n,L,Ta/1a0)).A2;

% refractive indices of all media
% optical lengths of the slabs
% reflectance

plot(1a,Q);

The bandwidth AA shown on the graph is wider than that of the omnidirectional mirror
presented in [777], because our analysis assumes normal incidence only. The condition
for omnidirectional reflectivity for both TE and TM modes causes the bandwidth to narrow
by about half of what is shown in the figure. The reflectance as a function of frequency
is no longer periodic at odd multiples of fy, because the layers have lengths that are not
equal to Ag/4. The omnidirectional case is discussed in Example 8.8.3.
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The maximum reflectivity achieved within the mirror bandwidth is 99.99%, which is better
than that of the previous example with 17 layers. This can be explained because the ratio
ny/ny is much larger here. [}

Although the reflectances in the previous two examples were computed with the help
of the MATLAB function muTtidiel, it is possible to derive closed-form expressions for
I'y that are valid for any number of bilayers N. Applying Eq. (6.1.3) to interface-1 and
interface-2, we have:

p1 + e 0T,

I, = 1+ pre-2ionT, (6.3.26)
where I'; = E»_/E>4, which can be computed from the matrix equation (6.3.7). Thus,
we need to obtain a closed-form expression for I';.

It is a general property of any 2X2 unimodular matrix F that its Nth power can
be obtained from the following simple formula, which involves the Nth powers of its
eigenvalues A.:f

N _ 3N N-1 _ AN-1
+ T A= + A=

where Wy = (Alf —ANY/ (A, = AL). To prove it, we note that the formula holds as a
simple identity when F is replaced by its diagonal version A = diag{A,A_}:

)\N _ AN AN—I _ )\N—l
N _ 2+ - [ s S
A _<)\+7/\,)A ( A Al )I (6.3.28)

Eq. (6.3.27) then follows by multiplying (6.3.28) from left and right by the eigenvector
matrix V and using F = VAV ™! and FN = VANV ~!, Defining the matrix elements of F
and FN by

A B ~v_[Av By
F—[B* A*] F _[B?Q A;‘J’ (6.3.29)

it follows from (6.3.27) that:

AN = AWN —Wn_1, By =BWy (6.3.30)

where we defined:

e/ (Bu+6L) _ n20j(6u—6L) 2ipe~J0H gin §
A= P , B=-"Pe SO (6.3.31)
1-p 1-p

Because F and FN are unimodular, their matrix elements satisfy the conditions:

|AI>=|BI? =1, |ANI?—IByI°=1 (6.3.32)

The first follows directly from the definition (6.3.29), and the second can be verified
easily. It follows now that the product FNF, in Eq. (6.3.7) is:

TThe coefficients Wy are related to the Chebyshev polynomials of the second kind Uy, (x) through
WN = UNn-1(a)=sin(Nacos(a))/~/1 — a2 = sin(NKI)/sin(KI).
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ENE, - 1 | AN+ p2Bn BN + p2AN
T T | B+ pAf AX+ paBY
Therefore, the desired closed-form expression for the reflection coefficient I'; is:

B + p2Af;  B*Win + po(A*Wy — Wy_1)
Iy = - (6.3.33)
AN + p2BN AWN —Wn-1 + p2BWN

Suppose now that a® < 1 and the eigenvalues are pure phases. Then, Wy are oscil-
latory as functions of the wavelength A or frequency f and the structure will transmit.

On the other hand, if f lies in the mirror bands, so that a > 1, then the eigenvalues
will be real with [A;| > 1 and |A_| < 1. In the limit of large N, W and Wy_; will
behave like:

AN AN-1
W= 2a v oA

In this limit, the reflection coefficient I, becomes:

B* + py(A* —ATY)

T UA-AT'+puB
where we canceled some common diverging factors from all terms. Using conditions
(6.3.32) and the eigenvalue equation (6.3.11), and recognizing that Re (A) = a, it can be
shown that this asymptotic limit of I', is unimodular, |I'2| = 1, regardless of the value
of po.

This immediately implies that I'; given by Eq. (6.3.26) will also be unimodular, |I'{| =
1, regardless of the value of p;. In other words, the structure tends to become a perfect
mirror as the number of bilayers increases.

Next, we discuss some variations on dielectric mirrors that result in (a) multiband
mirrors and (b) longpass and shortpass filters that pass long or short wavelengths, in
analogy with lowpass and highpass filters that pass low or high frequencies.

I

(6.3.34)

Example 6.3.4: Multiband Reflectors. The quarter-wave stack of bilayers of Example 6.3.2 can
be denoted compactly as AH (LH)3G (for the case N = 8), meaning 'air’, followed by
a “high-index” quarter-wave layer, followed by four “low/high” bilayers, followed by the
“glass” substrate.

Similarly, Example 6.3.3 can be denoted by A (1.18H) (0.85L 1.18H)“G, where the layer
optical lengths have been expressed in units of Ay/4, that is, nyl; = 0.85(A¢/4) and
nyly = 1.18(A¢/4).

Another possibility for a periodic bilayer structure is to replace one or both of the L or
H layers by integral multiples thereof [636]. Fig. 6.3.4 shows two such examples. In the
first, each H layer has been replaced by a half-wave layer, that is, two quarter-wave layers
2H, so that the total structure is A (2H) (L 2H)8G, where ng,np,ng,n;, are the same as in
Example 6.3.2. In the second case, each H has been replaced by a three-quarter-wave layer,
resulting in A (3H) (L 3H)8G.

The mirror peaks at odd multiples of f, of Example 6.3.2 get split into two or three peaks
each. m]
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Fig. 6.3.4 Dielectric mirrors with split bands.

Example 6.3.5: Shortpass and Longpass Filters. By adding an eighth-wave low-index layer, that
is, a (0.5L), at both ends of Example 6.3.2, we can decrease the reflectivity of the short
wavelengths. Thus, the stack AH (LH)®G is replaced by A (0.5L)H (LH)®(0.5L)G.

For example, suppose we wish to have high reflectivity over the [600, 700] nm range and
low reflectivity below 500 nm. The left graph in Fig. 6.3.5 shows the resulting reflectance
with the design wavelength chosen to be Ay = 650 nm. The parameters ng, hp, hy, Ny are
the same as in Example 6.3.2

A(0.5L)H(LH)®(0.5L)G A(0.5H)L(HL)®(0.5H)G
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Fig. 6.3.5 Short- and long-pass wavelength filters.

The right graph of Fig. 6.3.5 shows the stack A (0.5H)L (HL)®(0.5H) G obtained from the
previous case by interchanging the roles of H and L. Now, the resulting reflectance is low
for the higher wavelengths. The design wavelength was chosen to be Ay = 450 nm. It can
be seen from the graph that the reflectance is high within the band [400, 500] nm and low
above 600 nm.

Superimposed on both graphs is the reflectance of the original AH (LH)8G stack centered
at the corresponding A (dotted curves.)
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Both of these examples can also be thought of as the periodic repetition of a symmetric
triple layer of the form A (BCB)NG. Indeed, we have the equivalences:

A(0.5L)H(LH)®(0.5L)G = A(0.5LH0.5L)°G
A(0.5H)L(HL)®(0.5H)G = A(0.5HL0.5H)°G

The symmetric triple combination BCB can be replaced by an equivalent single layer, which
facilitates the analysis of such structures [634,662-664,666]. [}

6.4 Propagation Bandgaps

There is a certain analogy between the electronic energy bands of solid state materials
arising from the periodicity of the crystal structure and the frequency bands of dielectric
mirrors arising from the periodicity of the bilayers. The high-reflectance bands play the
role of the forbidden energy bands (in the sense that waves cannot propagate through
the structure in these bands.) Such periodic dielectric structures have been termed
photonic crystals and have given rise to the new field of photonic bandgap structures,
which has grown rapidly over the past ten years with a large number of potential novel
applications [761-787].

Propagation bandgaps arise in any wave propagation problem in a medium with
periodic structure [754-760]. Waveguides and transmission lines that are periodically
loaded with ridges or shunt impedances, are examples of such media [884-888].

Fiber Bragg gratings, obtained by periodically modulating the refractive index of
the core (or the cladding) of a finite portion of a fiber, exhibit high reflectance bands
[788-808]. Quarter-wave phase-shifted fiber Bragg gratings (discussed in the next sec-
tion) act as narrow-band transmission filters and can be used in wavelength multiplexed
communications systems.

Other applications of periodic structures with bandgaps arise in structural engineer-
ing for the control of vibration transmission and stress [809-811], in acoustics for the
control of sound transmission through structures [812-817], and in the construction of
laser resonators and periodic lens systems [913,915]. A nice review of wave propagation
in periodic structures can be found in [755].

6.5 Narrow-Band Transmission Filters

The reflection bands of a dielectric mirror arise from the N-fold periodic replication of
high/low index layers of the type (HL)YN, where H, L can have arbitrary lengths. Here,
we will assume that they are quarter-wavelength layers at the design wavelength Aq.

A quarter-wave phase-shifted multilayer structure is obtained by doubling (HL)N
to (HL)N (HL)N and then inserting a quarter-wave layer L between the two groups,
resulting in (HL)NL(HL)N. We are going to refer to such a structure as a Fabry-Perot
resonator (FPR)—it can also be called a quarter-wave phase-shifted Bragg grating.

An FPR behaves like a single L-layer at the design wavelength Ag. Indeed, noting that
at Ao the combinations LL and HH are half-wave or absentee layers and can be deleted,
we obtain the successive reductions:
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(H)NL(HL)N — (HL)N-'HLLHL(HL)N-!
— (HL)N-'HHL(HL)N™!
- (HL)N-'L(HL)N-!

Thus, the number of the HL layers can be successively reduced, eventually resulting
in the equivalent layer L (at Ag):

(HONL(HL)N - (HD)N'L(HL)N-' - (HL)N?2L(HL)N 2 - ... =~ L

Adding another L-layer on the right, the structure (HL)NL(HL)NL will act as 2L,
that is, a half-wave absentee layer at Ag. If such a structure is sandwiched between the
same substrate material, say glass, then it will act as an absentee layer, opening up a
narrow transmission window at Ag, in the middle of its reflecting band.

Without the quarter-wave layers L present, the structures G|(HL)N (HL)N |G and
G|(HL)N|G act as mirrors, but with the quarter-wave layers present, the structure
G|(HL)NL(HL)NL|G acts as a narrow transmission filter, with the transmission band-
width becoming narrower as N increases.

By repeating the FPR (HL)NL(HL)"N several times and using possibly different
lengths N, it is possible to design a very narrow transmission band centered at Ao having
a flat passband and very sharp edges.

Thus, we arrive at a whole family of designs, where starting with an ordinary dielec-
tric mirror, we may replace it with one, two, three, four, and so on, FPRs:

0. GI(HLM|G

1. GIHLMLHLM|LIG

2. GIHL)MLHL)N|(HL)N:L(HL)N:|G

3. GI(HL)MLHL)N|(HL)N:L(HL)N2|(HL)N:L(HL)™*|L|G

4. GI(HLYMLHL)N | (HL)N:L(HL)N|(HL)NL(HL)™* | (HL)NL(HL)™|G
(6.5.1)

Note that when an odd number of FPRs (HL)NL(HL)N are used, an extra L layer
must be added at the end to make the overall structure absentee. For an even number
of FPRs, this is not necessary.

Such filter designs have been used in thin-film applications [637-643] and in fiber
Bragg gratings, for example, as demultiplexers for WDM systems and for generating very-
narrow-bandwidth laser sources (typically at A; = 1550 nm) with distributed feedback
lasers [798-808]. We discuss fiber Bragg gratings in Sec. 12.4.

In a Fabry-Perot interferometer, the quarter-wave layer L sandwiched between the
mirrors (HL)Y is called a “spacer” or a “cavity” and can be replaced by any odd multiple
of quarter-wave layers, for example, (HL)N (5L) (HL)N.

TG denotes the glass substrate.
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Several variations of FPR filters are possible, such as interchanging the role of H
and L, or using symmetric structures. For example, using eighth-wave layers L/2, the
following symmetric multilayer structure will also act like as a single L at Ag:

N N

(£ H£> I (£ H£>
2 2 2 2

To create an absentee structure, we may sandwich this between two L/2 layers:

N N
L(Lub)" s (Lat)E
2\2 2 2 2 2

This can be seen to be equivalent to (HL)N (2L) (LH)N, which is absentee at Ao.
This equivalence follows from the identities:

L (L L\N _ NI’

s (5m3) = amn;
N

(£H£> EEE(HL)N

2772) 272

(6.5.2)

Example 6.5.1: Transmission Filter Design with One FPR. This example illustrates the basic
transmission properties of FPR filters. We choose parameters that might closely emu-
late the case of a fiber Bragg grating for WDM applications. The refractive indices of the
left and right substrates and the layers were: n, = np = 1.52, n; = 1.4, and ng = 2.1. The
design wavelength at which the layers are quarter wavelength is taken to be the standard
laser source Ay = 1550 nm.

First, we compare the cases of a dielectric mirror (HL)" and its phase-shifted version using
a single FPR (cases 0 and 1 in Eq. (6.5.1)), with number of layers N; = 6. Fig. 6.5.1 shows the
transmittance, that is, the quantity (1—|I'; (A) |?) plotted over the range 1200 < A < 2000
nm.

Fabry—Perot Resonator Phase-Shifted FPR

| — GEHLP0.6L)HLFLG

--- GHLS(1.3L)(HL)’LG
G(HLSG

Transmittance (percent)
Transmittance (percent)

1600 1800 2000 1%00 1400 1600
A (nm) A (nm)

2000

Fig. 6.5.1 Narrowband FPR transmission filters.

We observe that the mirror (case 0) has a suppressed transmittance over the entire reflect-
ing band, whereas the FPR filter (case 1) has a narrow peak at A,. The asymptotic edges of
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the reflecting band are calculated from Eq. (6.3.18) tobe A; = 1373.9nmand A, = 1777.9
nm, resulting in a width of AA = 404 nm. The MATLAB code used to generated the left
graph was:

na = 1.52; nb
LH = 0.25; LL =

1.52; nH = 2.1; nL = 1.4;
0.25;

% optical thicknesses

Ta0 = 1550;
la = Tinspace(1200, 2000, 8001); % 1200 < A < 2000 nm
N1 = 6;

nl = repmat([nH,nL],1,N1);

L1 = repmat([LH,LL],1,N1);

n = [na, nl, nbl;

= L1;

GO = 100*(1 - abs(multidiel(n,L,Ta/1a0)).A2);

-

% no phase shift

nl = [repmat([nH,nL],1,N1), nL, repmat([nH,nL],1,N1)];
L1 = [repmat([LH,LL],1,N1), LL, repmat([LH,LL],1,N1)];
n = [na, nl, nL, nb];

L = [L1, LL];

Gl = 100*(1 - abs(multidiel(n,L,Ta/1a0)).A2); % one phase shift

plot(1a,Gl,1a,G0);

The location of the peak can be shifted by making the phase-shift different from A /4. This
can be accomplished by changing the optical thickness of the middle L-layer to some other
value. The right graph of Fig. 6.5.1 shows the two cases where that length was chosen to
be nplp = (0.6)A¢/4 and (1.3) Ag/4, corresponding to phase shifts of 54° and 117°. O

Example 6.5.2: Transmission Filter Design with Two FPRs. Fig. 6.5.2 shows the transmittance

Transmittance (percent)

of a grating with two FPRs (case 2 of Eq. (6.5.1)). The number of bilayers were N; = N, = 8
in the first design, and N; = N, = 9 in the second.

Two-FPR Transmission Filter

Full Reflecting Band

. , : .
1001 100(y
=
g
8ot S 80
3
B
60[ g 6o
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=]
g
20 & 200
1549 1549.5 1550 1550.5 1551 1200 1400 1600 1800 2000
A (nm) A (nm)

Fig. 6.5.2 Narrow-band transmission filter made with two FPRs.

The resulting transmittance bands are extremely narrow. The plotting scale is only from
1549 nm to 1551 nm. To see these bands in the context of the reflectance band, the
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transmittance (for N; = N, = 8) is plotted on the right graph over the range [1200, 2000]
nm, which includes the full reflectance band of [1373.9,1777.9] nm.

Using two FPRs has the effect of narrowing the transmittance band and making it somewhat
flatter at its top. m]

Example 6.5.3: Transmission Filter Design with Three and Four FPRs. Fig. 6.5.3 shows the trans-

mittance of a grating with three FPRs (case 3 of Eq. (6.5.1)). A symmetric arrangement of
FPRs was chosen such that N3 = Nj.

Three-FPR Filter with Equal Lengths Three-FPR Filters with Unequal Lengths

100} 100}

= =
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0 w0
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& 200 & 200 \
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1549 1549.5 1550 1550.5 1551 1549 1549.5 1550 1550.5 1551
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Fig. 6.5.3 Transmission filters with three FPRs of equal and unequal lengths.

The left graph shows the transmittances of the two design cases Ny = N, = N3 = 8 and
N; = N = N3 =9, so that all the FPRs have the same lengths. The transmission band is
now flatter but exhibits some ripples. To get rid of the ripples, the length of the middle
FPR is slightly increased. The right graph shows the case Ny = N3 = 8 and N, = 9, and
the case N; = N3 =9 and N, = 10.

Fig. 6.5.4 shows the case of four FPRs (case 4 in Eq. (6.5.1).) Again, a symmetric arrangement
was chosen with N1 = Ny and N, = N3.

Four-FPR Filters with Equal Lengths Four-FPR Filters with Unequal Lengths
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Fig. 6.5.4 Transmission filters with four FPRs of equal and unequal lengths.
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The left graph shows the two cases of equal lengths Ny = N, = N3 = Ny = 8 and
N; = N; = N3 = Ny = 9. The right graphs shows the case Ny = Ny = 8and N, = Ny =9,
and the case N; = N4y = 9 and N, = N3 = 10. We notice again that the equal length cases
exhibit ripples, but increasing the length of the middle FPRs tends to eliminate them. The
typical MATLAB code for generating the case Ny = Ny = 9 and N, = N3 = 10 was as

follows:
na = 1.52; nb = 1.52; nH = 2.1; nL = 1.4;
LH = 0.25; LL = 0.25;
Ta0 = 1550;

Ta = Tinspace(1549, 1551, 501);

N1 = 9; N2 = 10; N3 = N2; N4 = N1;

nl = [repmat([nH,nL],1,N1), nL, repmat([nH,nL],1,N1)];
n2 = [repmat([nH,nL],1,N2), nL, repmat([nH,nL],1,N2)];
n3 = [repmat([nH,nL],1,N3), nL, repmat([nH,nL],1,N3)];
n4 = [repmat([nH,nL],1,N4), nL, repmat([nH,nL],1,N4)];
L1 = [repmat([LH,LL],1,N1), LL, repmat([LH,LL],1,N1)];
L2 = [repmat([LH,LL],1,N2), LL, repmat([LH,LL],1,N2)];
L3 = [repmat([LH,LL],1,N3), LL, repmat([LH,LL],1,N3)];
L4 = [repmat([LH,LL],1,N4), LL, repmat([LH,LL],1,N4)];

[na, nl, n2, n3, n4, nb];
[L1, L2, L3, L4];

G = 100*%(1 - abs(multidiel(n,L,la/1a0)).A2);
plot(1a,G);

The resulting transmittance band is fairly flat with a bandwidth of approximately 0.15 nm,
as would be appropriate for dense WDM systems. The second design case with N; = 8
and N, = 9 has a bandwidth of about 0.3 nm.

The effect of the relative lengths N1, N, on the shape of the transmittance band has been
studied in [804-806]. The equivalence of the low/high multilayer dielectric structures to
coupled-mode models of fiber Bragg gratings has been discussed in [795]. m]

6.6 Equal Travel-Time Multilayer Structures

Here, we discuss the specialized, but useful, case of a multilayer structure whose layers
have equal optical thicknesses, or equivalently, equal travel-time delays, as for exam-
ple in the case of quarter-wavelength layers. Our discussion is based on [833] and on
[840,841].

Fig. 6.6.1 depicts such a structure consisting of M layers. The media to the left and
right are n, and np and the reflection coefficients p; at the M + 1 interfaces are as in
Eq. (6.1.1). We will discuss the general case when there are incident fields from both the
left and right media.

Let Ty denote the common two-way travel-time delay, so that,

21’1111 _ 2}’1212 _ _ ZHMIM
Co B Co B B Co

=T (6.6.1)
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Ery |  Ezx Eir| Eiy+ Eys| Eps1,+
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1 2 3 i i+l ... M M+1

Fig. 6.6.1 Equal travel-time multilayer structure.

Then, all layers have a common phase thickness, thatis, fori =1,2,...,M:

5= ky = Ml _ L (6.6.2)
Co 2
where we wrote k; = w/c; = wnj/cy. The layer recursions (6.1.2)-(6.1.5) simplify
considerably in this case. These recursions and other properties of the structure can be
described using DSP language.

Because the layers have a common roundtrip time delay T, the overall structure will
act as a sampled system with sampling period T and sampling frequency fs = 1/T;. The
corresponding “Nyquist frequency”, fo = fs/2, plays a special role. The phase thickness
O can be expressed in terms of f and f, as follows:

O0=-wTs=21f - =TT =

Therefore, at f = fy (and odd multiples thereof), the phase thickness will be 77/2 =
(217) /4, that is, the structure will act as quarter-wave layers. Defining the z-domain
variable:

‘ 4 — 026 _ pITs _ o2ikil

(6.6.3)

we write Eq. (6.1.2) in the form:

E;, zV2 11 piz? Eiv1+ ,
_ z F =M M-1,...,1 6.6.4
[Ei— } T piz! Eiv1,- ( !

We may rewrite it compactly as:

Ei(z)= Fi(2)Ei11(2) (6.6.5)
where we defined:
z'2 11 piz! Eiy (2)
Fi(z)= P [p,— Sl }, Ei(z)= [E,-, (2) } (6.6.6)

The transition matrix F;(z) has two interesting properties. Defining the complex
conjugate matrix F; (z) = Fi(z™'), we have:
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- 1-pi Ni-1
Fi(2)TJ3Fi(2)= Js = Js

L+ pi ni (6.6.7)
Fi(z)=J1Fi(2) ],

where J, J3 are the 2x2 matrices:t

0 1 1 0
[0 e r )

In proving Eq. (6.6.7), we used the result (1—p?) /77 = (1—-p;)/ (1+p;)=ni_1/Nni =
n;/nj_i. The first of Egs. (6.6.7) implies energy conservation, that is, the energy flux into
medium i is equal to the energy flux into medium i + 1, or,

1
2ni-1
This can be expressed compactly in the form:

_ _ 1 _ _
(Ei+Ei+ - Ei—Ei—) = ﬁ (Ei+1,+Ei+1,+ - Ei+1,—Ei+1,—> (6.6.9)
i

EinsEi = % EiT+1J3Ei+1
1

which follows from Eq. (6.6.7):

ni

T ST - -1 2T
E; J3Ei = Ei F] J3Fi By = i Ei 1 J3Ein
1

The second of Egs. (6.6.7) expresses time-reversal invariance and allows the con-
struction of a second, linearly independent, solution of the recursions (6.6.5):

N 3 E;_ o _ .
E; = 1E = [E;,+ ] = J1Fi(2)Eiy1 = Fi(2) J1Eis1 = Fi(2)Eipy

The recursions (6.6.5) may be iterated now to the rightmost interface. By an addi-
tional boundary match, we may pass to the right of interface M + 1:

Ei = Fi(2)Fiz1(2) - - - Fu (2) FM+1Epq

where we defined the last transition matrix as

1 1 PM+1
F = 6.6.10
M+1 Tael |: PM+1 1 j| ( )

More explicitly, we have:

Ei. _Z(M+]—i)/2 1 pizfl 1 lezfl
Eio |~ Vi pi z! Pi+1 z7!

. 1 puz! 1 PM+1 EI,VI+1,+
197% z! PM+1 1 E;WH,—

TThey are recognized as two of the three Pauli spin matrices.

(6.6.11)
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where we defined v; = T;T;j+1 - - - TMTm+1- We introduce the following definition for
the product of these matrices:

Ai(z) Cilz) | _[1 piz' | | 1 puz’! 1 pun (6.6.12)
Bi(z) Di(2) pi z! py  z7! pmer 1 o
Because there are M + 1 — [ matrix factors that are first-order in z~!, the quantities

Ai(z), Bj(z), Ci(z), and D;(z) will be polynomials of order M + 1 — i in the variable
z~!'. We may also express (6.6.12) in terms of the transition matrices F; (z):

Ai(z) Ci(z2)
Bi(z) Di(z)

It follows from Eq. (6.6.7) that (6.6.13) will also satisfy similar properties. Indeed, it
can be shown easily that:

} =7 MHL=D/2y, F(7)« - - Far(2) Fys (6.6.13)

M+1
Gi(2)TJ3Gi(2)= 0%J3,  where o} = [](1-pk)
m=i (6.6.14)
GR(z)= 1Gi(2) ]
where G;(z) and its reverse Gf2 (z) consisting of the reversed polynomials are:
| A Ci R | AR C(2)
Gi(z)= [B,»(z) Di(z2) } Gi(2)= [Bf (2) Df (2) (6.6.15)

The reverse of a polynomial is obtained by reversing its coefficients, for example, if
A (z) has coefficient vector a = [ao, a1, d2,az], then AR (z) will have coefficient vector
ak = [as,a»,a1,ap]. The reverse of a polynomial can be obtained directly in the z-
domain by the property:

AR ()= 7z9A(z"H=2"9A(2)

where d is the degree of the polynomial. For example, we have:

Az)=ap+az ' +az7? + azz™®

3

ARy =as+arz ' + a1z % +apz 3 =23 (ag + a1z + a7 + asz%) = z 3 A(2)

Writing the second of Egs. (6.6.14) explicitly, we have:
Afz) cf@ ] _[o 1][Ai(» Ci ][0 1] [Di(2) Bil2)
BR(z) DR(z) | |1 0| Bi(2) Di(z) ||1 0| | Ci(2) Ai(z)
This implies that the polynomials C;(z), D;(z) are the reverse of B;(z), A;(z), that

is, Ci(z)= BX (z), Di(z) = AR (z). Using this result, the first of Egs. (6.6.14) implies the
following constraint between A;(z) and B;(z):

‘ Ai(z)Ai(z)-Bi(z)Bi(z) = 0? (6.6.16)
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Thus, the product of matrices in Eq. (6.6.12) has the form:

Ai(z) B | _[1 piz’! 1 puz! 1 pu+
[B,—(z) Af(z)]—[pi el ]...[pM e :||:PM+1 ! ] (6.6.17)

This definition implies also the recursion:

) R L . R
[A,(Z) B} (2) ] _ [ 1 piz 1] [AHl(Z) Bi, (2) ] (6.6.18)

Bi(z) AR(2) pi  z7t Biii(z) AR, (2)
Therefore, each column will satisfy the same recursion:’
Ai(z) 1 piz7! Ais1(2) .
[B;(Z) ] = [Pi ;,1 B::l (2) (forward recursion) (6.6.19)
fori=M,M —1,...,1, and initialized by the Oth degree polynomials:
Apm+1(2) 1
= 6.6.20
[ Bas1 (2) ] [ Prt ] (6.6.20
Eq. (6.6.11) reads now:
Ei ]| _ Z2M+1-072 [ A (z) B{é(z) EJ}HM 6.6.21)
E;- Vi Bi(z) A (2) EM'*'L—

Setting i = 1, we find the relationship between the fields incident on the dielectric
structure from the left to those incident from the right:

Ev. | 22| Ai(2) BR(z) Ejars
[El—}_ Vi |:B1(Z) AR2) || Ejer - (6.6.22)

where vi{ = T1T2- - Tym+1. The polynomials A;(z) and B;(z) have degree M and
are obtained by the recursion (6.6.19). These polynomials incorporate all the multiple
reflections and reverberatory effects of the structure.

In referring to the overall transition matrix of the structure, we may drop the sub-
scripts 1 and M + 1 and write Eq. (6.6.22) in the more convenient form:

E ZM2 [ A(z) BR(z) F’ .
[Ei ] = [ B(z) AR(2) Ei (transfer matrix) (6.6.23)

Fig. 6.6.2 shows the general case of left- and right-incident fields, as well as when
the fields are incident only from the left or only from the right.

For both the left- and right-incident cases, the corresponding reflection and trans-
mission responses I', T and I, T’ will satisfy Eq. (6.6.23):

1| zM2] A(z) BR(2) T
Il v | Blz) AR(2) 0

0| zM2| A(z) BR(2) I
T | v | B(z) AR(2) 1

TForward means order-increasing: as the index i decreases, the polynomial order M + 1 — i increases.

(6.6.24)
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Fig. 6.6.2 Reflection and transmission responses of a multilayer structure.

Solving for I', T, we find:

B(z) vz M2
r = T = 6.6.2
() A2)’ () A2) ( 5)
Similarly, we find for I'’, T":
, 3 BR (Z) , B V/Z—M/Z
Z)=— Alz) T'(2)= TAG) (6.6.26)

where the constants v and v’ are the products of the left and right transmission coeffi-
cients T; = 1 + p; and T; = 1 — p;, that is,

M+1 M+1 M+1 M+1
v=[]ri=]]a+p), v =]][7i=]]Q-p» (6.6.27)
i=1 i=1 i=1 i=1
In deriving the expression for 7', we used the result (6.6.16), which for i = 1 reads:
M+1
A(z)A(z)-B(2)B(2)= 0%,  where o’=[](1-p}) (6.6.28)
i=1

Because AR (z)= z7M A (z), we can rewrite (6.6.28) in the form:

A(z)AR(2)-B(z)BR(z)= 0%z ™ (6.6.29)
Noting that vV’ = ¢ and that

’

o 1+

p M+1 n n
_ i _ i-1 _ a
v Pi ,11 ni np

we may replace v and v’ by the more convenient forms:

v=o [T v _qg [Na (6.6.30)
Na np

Then, the transmission responses 7 and 7’ can be expressed as:
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-M/2
Tz)= "1, T@=_[""T), Tz)=22 (6.6.31)
Na Np A(z)

The magnitude squared of T (z) represents the transmittance, that is, the ratio of
the transmitted to incident powers, whereas 7 is the corresponding ratio of the electric
fields. Indeed, assuming E” = 0, we have 7 = E’, /E, and find:

1

— |E}|?
P ransmitted _ 2np - _ Na |f1”|Z = |T|2 (6.6.32)
Pincident 1 ‘E+‘2 Ny
2Na

where we used Eq. (6.6.31). Similarly, if the incident fields are from the right, then
assuming E, = 0, the corresponding transmission coefficient will be 7’ = E_/E’ , and
we find for the left-going transmittance:

1 2
P i 2 [E-| n
transmitted _ ’i’a _ T2 = |T|? (6.6.33)
Pincident — |E_ \2 Na
2np

Egs. (6.6.32) and (6.6.33) state that the transmittance is the same from either side of
the structure. This result remains valid even when the slabs are lossy.

The frequency response of the structure is obtained by setting z = ¢/®@Ts. Denoting
A (e/®Ts) simply by A (w), we may express Eq. (6.6.28) in the form:

lA(w)]? - [B(w)|*> = 0 (6.6.34)

This implies the following relationship between reflectance and transmittance:

‘ \F(w)\2+|T(w)\2:1‘ (6.6.35)

Indeed, dividing Eq. (6.6.34) by |A (w) |? and using Eq. (6.6.31), we have:

B(w) :

_ - ) ,
A(w) > 1-IN(w)]°=IT(w)]

2 ~ o2 ~ ge—IMwTs/2
[A(w)]|? A(w)

Scattering Matrix

The transfer matrix in Eq. (6.6.23) relates the incident and reflected fields at the left
of the structure to those at the right of the structure. Using Egs. (6.6.25), (6.6.26), and
(6.6.29), we may rearrange the transfer matrix (6.6.23) into a scattering matrix form that
relates the incoming fields E., E” to the outgoing fields E_, E’.. We have:

[Ei } = [ é:((zz)) {? ((ZZ)) ] [gi } (scattering matrix) (6.6.36)

The elements of the scattering matrix are referred to as the S-parameters and are
used widely in the characterization of two-port (and multi-port) networks at microwave
frequencies.
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We discuss S-parameters in Sec. 14.1. It is a common convention in the literature to
normalize the fields to the impedances of the left and right media (the generator and
load impedances), as follows:

oo Lo _ExmdH 1 ExmH (6.6.37)
JNa 2. /MNa NV TP 2./Mp

Such normalized fields are referred to as power waves [1139]. Using the results of
Eqg. (6.6.31), the scattering matrix may be written in terms of the normalized fields in
the more convenient form:

£ Iz T |[Z .
[fl}:[ﬂz) F’(z)”fg] :5<Z>[ﬂ] (6.6.38)

so that S (z) is now a symmetric matrix:

I'(z) T(z) . .
S(z)= [ T(z) I'(2) ] (scattering matrix) (6.6.39)

One can verify also that Egs. (6.6.25), (6.6.26), and (6.6.28) imply the following uni-
tarity properties of S(z):

S2)TS(z)=1, S(w)'S(w)=1, (unitarity) (6.6.40)

where I is the 2x2 identity matrix, S(z)= S(z7 '), and S(w) denotes S(z) with z =
e/®Ts 5o that S$(w) T becomes the hermitian conjugate S(w) = S(w)*T.

The unitarity condition is equivalent to the power conservation condition that the
net incoming power into the (lossless) multilayer structure is equal to the net outgoing
reflected power from the structure. Indeed, in terms of the power waves, we have:

— 1 2 1 4 2_1 2 l 712
:p"‘“_znalE’l +2nh|E+| —2|T7| +2lf+|

,1 * */ - ,1 * *77 ¢t Z, ,1 * */ E,

- 2[£—!£+]|:ff+ - 2[£+1$— ]S S f’, - 2[f+lf— ]I f’,
1 1 1 1

= SIE PP+ SIELPP = E.fP+ —|E |?="P
2| +l 2| Z| 2na| + 2m7| _| in

Layer Recursions

Next, we discuss the layer recursions. The reflection responses at the successive in-
terfaces of the structure are given by similar equations to (6.6.25). We have I';(z)=
Bi(z)/A;(z) at the ith interface and I'j;1(z)= Bj+1(2)/A;+1(z) at the next one. Us-
ing Eq. (6.6.19), we find that the responses I'; satisfy the following recursion, which is
equivalent to Eq. (6.1.3):

pi+2z T (2)

Tiz)= 1+ piz7Ti1(2)

, I=M,M-1,...,1 (6.6.41)
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It starts at I'n41(2)= pm+1 and ends with I'(z) = I'1 (z). The impedances at the
interfaces satisfy Eq. (6.1.5), which takes the specialized form in the case of equal phase
thicknesses:

 Zi1 (8)+nis

Zi(s)=
= Zi(s)

, i=M,M-1,...,1 (6.6.42)

where we defined the variable s via the bilinear transformation:

1-z71
S =
1+z1

(6.6.43)

Note that if z = €9, then s = jtan 8. It is more convenient to think of the impedances
Z;i(s) as functions of the variable s and the reflection responses I'; (z) as functions of
the variable z.

To summarize, given the characteristic impedances {ng, ni,...,Nm, Np}, equiva-
lently, the refractive indices {n, ny,...,ny} of a multilayered structure, we can com-
pute the corresponding reflection coefficients {p1, p2,..., Pm+1} and then carry out the
polynomial recursions (6.6.19), eventually arriving at the final Mth order polynomials
A(z) and B(z), which define via Eq. (6.6.25) the overall reflection and transmission
responses of the structure.

Conversely, given the final polynomials A; (z)= A(z) and B, (z) = B(z), we invert
the recursion (6.6.19) and “peel off” one layer at a time, until we arrive at the rightmost
interface. In the process, we extract the reflection coefficients {p1, p2,...,Pm+1}, as
well as the characteristic impedances and refractive indices of the structure.

This inverse recursion is based on the property that the reflection coefficients appear
in the first and last coefficients of the polynomials B;(z) and A;(z). Indeed, if we define
these coefficients by the expansions:

M+1-i M+1-i
Bi(z)= > bim)z™, Ai(z)= > ai(mz™
m=0 m=0

then, it follows from Eq. (6.6.19) that the first coefficients are:

bi(0)=p;, ai(0)=1 (6.6.44)

whereas the last coefficients are:

biM+1~-i)=pm+1, aiM+1-1)=pyi1pi (6.6.45)

Inverting the transition matrix in Eq. (6.6.19), we obtain the backward recursion:t

A2 | 1 1 —pi || Ai(2) )
[Bm 2) ] =1 p;? [*piz z} [B,-(z) ] (backward recursion)  (6.6.46)

TBackward means order-decreasing: as the index i increases, the polynomial order M + 1 — i decreases.
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fori=1,2,...,M,where p; = b;(0). This recursion starts with the knowledge of A; (z)
and B; (z). We note that each step of the recursion reduces the order of the polynomials
by one, until we reach the Oth order polynomials A1 (z)= 1 and By+1(Z2) = pp+1-

The reverse recursions can also be applied directly to the reflection responses I'; (z)
and wave impedances Z; (s). It follows from Eq. (6.6.41) that the reflection coefficient p;
can be extracted from I'; (z) if we set z = oo, thatis, p; = I'; (o). Then, solving Eq. (6.1.3)
for I'is1 (2), we obtain:

I'i(z)-pi

, i=1,2,....,.M (6.6.47)
1-pili(2)

T (z)=z

Similarly, it follows from Eq. (6.6.42) that the characteristic impedance n; can be
extracted from Z;(s) by setting s = 1, which is equivalent to z = co under the transfor-
mation (6.6.43). Thus, n; = Z;(1) and the inverse of (6.6.42) becomes:

Zi(s)—sni

, i=12,....M 6.6.48
ni — SZi(s) (6.648)

Ziv1(8)=n;

The necessary and sufficient condition that the extracted reflection coefficients p;
and the media impedances n; are realizable, that is, |p;j| < 1 or n; > 0, is that the
starting polynomial A (z) be a minimum-phase polynomial in z~!, that is, it must have
all its zeros inside the unit circle on the z-plane. This condition is in turn equivalent to
the requirement that the transmission and reflection responses T (z) and I' (z) be stable
and causal transfer functions.

The order-increasing and order-decreasing recursions Egs. (6.6.19) and (6.6.46) can
also be expressed in terms of the vectors of coefficients of the polynomials A;(z) and
B;(z). Defining the column vectors:

a,-(O) bi(o)
ai(l) bi(1)
a; = : ;b= :
ai(M-;l—i) bi(M-;l—l')

we obtain for Eq. (6.6.19), withi =M,M —1,...,1:

a; 0
ai:[ gl]+pi[bi+1]

a; 0
bi:pi[ lgl]-'_[bin}

and initialized at ay;+1 = [1] and by = [pm+1]. Similarly, the backward recur-
sions (6.6.46) are initialized at the Mth order polynomials a; = a and b; = b. For
i=1,2,...,M and p; = b;(0), we have:

(forward recursion) (6.6.49)
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a1 | _ ai— pib;
0 1-p7
0 _ —pia;j + b;
bis 1-p?

Example 6.6.1: Determine the number of layers M, the reflection coefficients at the M + 1
interfaces, and the refractive indices of the M + 2 media for a multilayer structure whose
overall reflection response is given by:

(backward recursion) (6.6.50)

B(z) —0.1-0.188z7'-0.352"%+0.5273
A(z) ~ 1-0.1z"!-0.064z"2 — 0.05z3

I'(z)=

Solution: From the degree of the polynomials, the number of layers is M = 3. The starting
polynomials in the backward recursion (6.6.50) are:

1.000 ~0.100
~0.100 ~0.188
a=a=| o4 |° P1=P=1 o350
~0.050 0.500

From the first and last coefficients of by, we find p; = —0.1 and p4 = 0.5. Setting i = 1,
the first step of the recursion gives:

1.000 0.000
a | a-pb | -0.120 0 | =-piag+b; | —0.200
0| 1-p} | -0100|" |ba| 1-p% [ -0.360
0.000 0.500
Thus,
1.000 —-0.200
a, =| —0.120 |, by =] —0.360
-0.100 0.500
The first coefficient of b, is p» = —0.2 and the next step of the recursion gives:
[ 1.0 0.0
as 7a2—p2b2 -~ 0.2 0 7—p2a2+b2 _ 04
o= 12,2 T S bs |~ 1-p% :
P2 00 ‘ 2 0.5
Thus,

1.0 ] -0.4
33:[_0.2 , b3:[ 0.5] => p3=-04

The last step of the recursion for i = 3 is not necessary because we have already determined
p4 = 0.5. Thus, the four reflection coefficients are:
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[p1,p2,p3,p4]= [-0.1,-0.2,-0.4,0.5]

The corresponding refractive indices can be obtained by solving Eq. (6.1.1), that is, n; =
ni_1 (1 — pi) /(1 + p;). Starting with i = 1 and ny = n,; = 1, we obtain:

[ng,ni,n2,n3,npl=[1,1.22,1.83,4.28,1.43]

The same results can be obtained by working with the polynomial version of the recursion,
Eq. (6.6.46). m]

Example 6.6.2: Consider the quarter-quarter antireflection coating shown in Fig. 6.2.2 with

refractive indices [ng, ni,ns,npl= [1,1.38,1.63,1.50]. Determine the reflection coef-
ficients at the three interfaces and the overall reflection response I'(z) of the structure.

Solution: In this problem we carry out the forward layer recursion starting from the rightmost
layer. The reflection coefficients computed from Eq. (6.1.1) are:

[p1,p2,p3]1=[-0.1597,-0.0831,0.0415]

Starting the forward recursion with a3 = [1] and b3 = [p3]= [0.0415], we build the first
order polynomials:

[ as 0] _ [ 1.0000 - 0.0000 | [ 1.0000
&= [ 0 ] TP [bg ] - [o.oooo] * 0'0831)[0.0415] - [ —0.0034]

- a o] 1.0000 0.0000 | [ —0.0831
bz = p2 [ 0 } * [b;; ] o 0'0831)[0.0000] - [0.0415] - [ 0.0415]

Then, we build the 2nd order polynomials at the first interface:

a 0 1.0000 a 0 -0.1597
alz[oz]+p1[bl= 0.0098 |, blzpl[oz]+|:b']: -0.0825
2 ~0.0066 : 0.0415

Thus, the overall reflection response is:

Bi(z)  —0.1597 — 0.0825z7" +0.04152>

) =T 2= ) = 140009821 — 0.00662-2

Applying the reverse recursion on this reflection response would generate the same reflec-
tion coefficients p1, p2, p3. [}

Example 6.6.3: Determine the overall reflection response of the quarter-half-quarter coating of
Fig. 6.2.2 by thinking of the half-wavelength layer as two quarter-wavelength layers of the
same refractive index.
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Solution: There are M = 4 quarter-wave layers with refractive indices:
[na, n1,n2,n3,n4, np 1= [1,1.38,2.20,2.20, 1.63, 1.50]
The corresponding reflection coefficients are:

[p1,p2,p3, ps,p51= [-0.1597,-0.2291,0,0.1488,0.0415]

where the reflection coefficient at the imaginary interface separating the two halves of
the half-wave layer is zero. Starting the forward recursion with a; = [1], bs = [ps]=

[0.0415], we compute the higher-order polynomials:

a4:[a5}+p4[0]:[1.0000‘ b4:p4[a5]+[0 _0.1488}
0 bs 0.0062 |’ 0 bs | 0.0415
a 0 1.0000 a 0 [ 0.0000
az = |: 0 :| + p3 |:b :| = 0.0062 [, b;=p3 |: 0 :| + |:b4 0.1488
0.0000 | | 0.0415
1.0000 7 M —0.2291 ]
(=], o]_| 00062 by a | [0 —-0.0014
L= g | TPy, —0.0341 " P2TP2] ¢ bs 0.1488
| —0.0095 | 0.0415 |
1.0000 [ —0.1597
a 0 0.0428 a 0 —0.2300
31:|:0:|+p1|:b:|: —-0.0339 |, bI:p1|:0:|+|:b2 0.0040
—-0.0333 0.1503
| —0.0066 | 0.0415 |

Thus, the reflection response will be:

Bi(z) _ —0.1597 —0.2300z"! + 0.0040z % + 0.1502z3 + 0.0415z"*

=3 =

We note that because p3 = 0, the polynomials A3(z) and A4 (z) are the same and B3 (z)
is simply the delayed version of B4 (z), that is, B3 (z) = z"'B4(z).

Example 6.6.4: Determine the reflection polynomials for the cases M = 1, M = 2, and M = 3

1+ 0.0428z~! —0.0339z72 — 0.0333z73 — 0.0066z 4

with reflection coefficients {p1, p2}, {p1, P2, p3}, and {p1, p2, P3, P4}, Tespectively.

Solution: For M = 1, we have A, (z)= 1 and B»(z) = p». Then, Eq. (6.6.19) gives:

A ]_[1 pz' [ 4@
Bi(z) | | p1 Zz! B;(2)

1 pz7!
P1 z7!

Il

P2

-l

For M = 2, we start with A3 (z) =1 and B3 (z) = p3. The first step of the recursion gives:

1+ pip2z?
p1+ p2z7!
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Ar(z) | | 1 poz! 1| [ 1+ p2p3z7!
By(z) | | p2 2z} ps | | p2+p3z’]

and the second step:

Ar@) | |1 izt [ T+pepszt | | L+ pa(pr+ps)zt +pipsz®
Bi(2) pr z! p2+p3z! p1+p2(L+p1p3)zt + p3z2

For M = 3, we have A4 (z) =1 and B4 (z) = p4. The first and second steps give:
Az(z) | | 1 p3z! 1| [ 1+p3psz7!
By(z) | | ps z! pa | | p3+paz!

Ax(z) | _| 1 p2z! 1+ p3psz? _| 1+pslpa+ P4)Z7l + papaz?
B> (2) p2  z! p3 + paz”! P2+ p3(L+paps)z™t + paz?

Then, the final step gives:

A || 1 izt || L+ ps(pe+ pa)zt + papaz?

Bi(2) pr ozt P2+ p3(1+p2ps)z™t + pyz™?
_| 1+ (p1pa+p2ps + P304) 271 + (p1p3 + P2pa + P1P2P3P4) 272 + p1paz™s
p1+ (P2 + p1p2p3 + P1P3P4) 27" + (P3 + P1P2ps + P2P3p4) 277 + pyz™?

As expected, in all cases the first and last coefficients of A;(z) are 1 and p;pp+1 and those
of Bi(z) are p; and par+1-

An approximation that is often made in practice is to assume that the p;s are small and
ignore all the terms that involve two or more factors of p;. In this approximation, we have
for the polynomials and the reflection response I'(z) = By (z) /A, (z), for the M = 3 case:

;‘:;zz)): ;1 + P2zt psztpazd T F@)=prt ozt paz 4 pyz”
This is equivalent to ignoring all multiple reflections within each layer and considering only
a singlereflection at each interface. Indeed, the term p,z~! represents the wave reflected at
interface-2 and arriving back at interface-1 with a roundtrip delay of z~!. Similarly, p3z~2
represents the reflection at interface-3 and has a delay of z~2 because the wave must make
aroundtrip of two layers to come back to interface-1, and p4z 2 has three roundtrip delays
because the wave must traverse three layers. m]

The two MATLAB functions frwrec and bkwrec implement the forward and back-

ward recursions (6.6.49) and (6.6.50), respectively. They have usage:

[A,B]

= % forward recursion - from r to A, B
[r,A,B]

frwrec(r);
= % backward recursion - from a, b to r

bkwrec(a,b);
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The input r of frwrec represents the vector of the M + 1 reflection coefficients and
A, B are the (M + 1) x (M + 1) matrices whose columns are the polynomials a; and b;
(padded with zeros at the end to make them of length M + 1.) The inputs a, b of bkwrec
are the final order-M polynomials a,b and the outputs r, A, B have the same meaning
as in frwrec. We note that the first row of B contains the reflection coefficients r.

The auxiliary functions r2n and n2r allow one to pass from the reflection coefficient
vector r to the refractive index vector n, and conversely. They have usage:

r2n(r); % reflection coefficients to refractive indices
n2r(n); % refractive indices to reflection coefficients

n
r

As an illustration, the MATLAB code:

a=[1, -0.1, -0.064, -0.05];
b =[-0.1, -0.188, -0.35, 0.5];
[r,A,B] = bkwrec(a,b);

= r2n(r);
r = n2r(n);

will generate the output of Example 6.6.1:

r =
-0.1000 -0.2000 -0.4000 0.5000

A =
1.0000 1.0000 1.0000 1.0000
-0.1000 -0.1200 -0.2000 0
-0.0640 -0.1000 0 0
-0.0500 0 0 0
B =
-0.1000  -0.2000 -0.4000 0.5000
-0.1880 -0.3600 0.5000 0
-0.3500 0.5000 0 0
0.5000 0 0 0

1.0000 1.2222 1.8333 4.2778 1.4259

-0.1000 -0.2000 -0.4000 0.5000

Conversely, if the above r is the input to frwrec, the returned matrices A, B will be
identical to the above. The function r2n solves Eq. (6.1.1) for n; and always assumes that
the refractive index of the leftmost medium is unity. Once the n; are known, the function
multidiel may be used to compute the reflection response at any set of frequencies or
wavelengths.

6.7 Applications of Layered Structures

In addition to their application in dielectric thin-film and radome design, layered struc-
tures and the corresponding forward and backward layer recursions have a number of
applications in other wave propagation problems, such as the design of broadband ter-
minations of transmission lines, the analysis and synthesis of speech, geophysical signal
processing for oil exploration, the probing of tissue by ultrasound, and the design of
acoustic reflectors for noise control.
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It is remarkable also that the same forward and backward recursions (6.6.49) and
(6.6.50) are identical (up to reindexing) to the forward and backward Levinson recursions
of linear prediction [833], with the layer structures being mathematically equivalent to
the analysis and synthesis lattice filters. This connection is perhaps the reason behind
the great success of linear prediction methods in speech and geophysical signal pro-
cessing.

Moreover, the forward and backward layer recursions in their reflection forms, Egs.
(6.6.41) and (6.6.47), and impedance forms, Egs. (6.6.42) and (6.6.48), are the essential
mathematical tools for Schur’s characterization of lossless bounded real functions in the
z-plane and Richard’s characterization of positive real functions in the s-plane and have
been applied to network synthesis and to the development of transfer function stability
tests, such as the Schur-Cohn test [853-867].

In all wave problems there are always two associated propagating field quantities
playing the roles of the electric and magnetic fields. For forward-moving waves the
ratio of the two field quantities is constant and equal to the characteristic impedance of
the particular propagation medium for the particular type of wave.

For example, for transmission lines the two field quantities are the voltage and cur-
rent along the line, for sound waves they are the pressure and particle volume velocity,
and for seismic waves, the stress and particle displacement.

A transmission line connected to a multisegment impedance transformer and a load
is shown in Fig. 6.7.1. The characteristic impedances of the main line and the seg-
ments are Z, and Z,,..., Zy, and the impedance of the load, Z;. Here, the impedances
{Za, Z1,...,ZM, Zp}, play the same role as {na, Ni,...,Nm, Np} in the dielectric stack
case.

Ly by Pl
—

. Vi—>
main line Z, i — VA Z> c o Zym | Zp) load

Fig. 6.7.1 Multisegment broadband termination of a transmission line.

The segment characteristic impedances Z; and lengths I; can be adjusted to obtain
an overall reflection response that is reflectionless over a wideband of frequencies [822-
832]. This design method is presented in Sec. 6.8.

In speech processing, the vocal tract is modeled as an acoustic tube of varying cross-
sectional area. It can be approximated by the piece-wise constant area approximation
shown in Fig. 6.7.2. Typically, ten segments will suffice.

The acoustic impedance of a sound wave varies inversely with the tube area, Z =
pc/ A, where p, ¢, and A are the air density, speed of sound, and tube area, respectively.
Therefore, as the sound wave propagates from the glottis to the lips, it will suffer reflec-
tions every time it encounters an interface, that is, whenever it enters a tube segment
of different diameter.

Multiple reflections will be set up within each segment and the tube will reverberate
in a complicated manner depending on the number of segments and their diameters.
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Ay As Aj Ay As  — speech

glottis lips

Fig. 6.7.2 Multisegment acoustic tube model of vocal tract.

By measuring the speech wave that eventually comes out of the lips (the transmission
response,) it is possible to remove, or deconvolve, the reverberatory effects of the tube
and, in the process, extract the tube parameters, such as the areas of the segments, or
equivalently, the reflection coefficients at the interfaces.

During speech, the configuration of the vocal tract changes continuously, but it does
so at mechanical speeds. For short periods of time (typically, of the order of 20-30
msec,) it may be considered to maintain a fixed configuration. From each such short
segment of speech, a set of configuration parameters, such as reflection coefficients,
is extracted. Conversely, the extracted parameters may be used to re-synthesize the
speech segment.

Such linear prediction based acoustic tube models of speech production are routinely
used in the analysis and synthesis of speech, speech recognition, speaker identification,
and speech coding for efficient data transmission, such as in wireless phones.

The seismic problem in geophysical signal processing is somewhat different. Here,
it is not the transmitted wave that is experimentally available, but rather the overall
reflected wave. Fig. 6.7.3 shows the typical case.

reflection
impulse response

L f surface

layer 1
layer 2
layer M
¢ rock bottom
transmission
response

Fig. 6.7.3 Seismic probing of earth’s multilayer structure.

An impulsive input to the earth, such as an explosion near the surface, will set up
seismic elastic waves propagating downwards. As the various earth layers are encoun-
tered, reflections will take place. Eventually, each layer will be reverberating and an
overall reflected wave will be measured at the surface. With the help of the backward
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recursions, the parameters of the layered structure (reflection coefficients and impedan-
ces) are extracted and evaluated to determine the presence of a layer that contains an
oil deposit.

The application of the backward recursions has been termed dynamic predictive de-
convolution in the geophysical context [840-852]. An interesting historical account of
the early development of this method by Robinson and its application to oil exploration
and its connection to linear prediction is given in Ref. [846]. The connection to the con-
ventional inverse scattering methods based on the Gelfand-Levitan-Marchenko approach
is discussed in [847-852].

Fiber Bragg gratings (FBG), obtained by periodically modulating the refractive index
of the core (or the cladding) of a finite portion of a fiber, behave very similarly to di-
electric mirrors and exhibit high reflectance bands [788-808]. The periodic modulation
is achieved by exposing that portion of the fiber to intense ultraviolet radiation whose
intensity has the required periodicity. The periodicity shown in Fig. 6.7.4 can have arbi-
trary shape—not only alternating high/low refractive index layers as suggested by the
figure. We discuss FBGs further in Sec. 12.4.

WDM input fiber Bragg grating WDM output

«— N periods —» u»

B
Al Ay Az Aq A3
| e | T

iod core
A2 one perio cladding

Al4
t«— N periods —» «— N periods —» #»

At Az A [ (ANEEEEE(ENENEEE | A2
<J‘—L quarter-wave phase-shifted grating

AL A

Fig. 6.7.4 Fiber Bragg gratings acting as bandstop or bandpass filters.

Quarter-wave phase-shifted fiber Bragg gratings act as narrow-band transmission
filters and can be used as demultiplexing filters in WDM and dense WDM (DWDM) com-
munications systems. Assuming as in Fig. 6.7.4 that the inputs to the FBGs consist of
several multiplexed wavelengths, A, A5, A3, ..., and that the FBGs are tuned to wave-
length A, then the ordinary FBG will act as an almost perfect reflector of A,. If its
reflecting band is narrow, then the other wavelengths will transmit through. Similarly,
the phase-shifted FBG will act as a narrow-band transmission filter allowing A, through
and reflecting the other wavelengths if they lie within its reflecting band.

A typical DWDM system may carry 40 wavelengths at 10 gigabits per second (Gbps)
per wavelength, thus achieving a 400 Gbps bandwidth. In the near future, DWDM sys-
tems will be capable of carrying hundreds of wavelengths at 40 Gbps per wavelength,
achieving terabit per second rates [808].
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6.8 Chebyshev Design of Reflectionless Multilayers

In this section, we discuss the design of broadband reflectionless multilayer structures
of the type shown in Fig. 6.6.1, or equivalently, broadband terminations of transmission
lines as shown in Fig. 6.7.1, using Collin’s method based on Chebyshev polynomials
[822-832,657,676].

As depicted in Fig. 6.8.1, the desired specifications are: (a) the operating center
frequency fo of the band, (b) the bandwidth Af, and (c) the desired amount of attenuation
A (in dB) within the desired band, measured with respect to the reflectance value at dc.

A

iren? A

A dB

Af

N S T A e

Fig. 6.8.1 Reflectance specifications for Chebyshev design.

Because the optical thickness of the layersis § = wTs/2 = (11/2) (f/fy) and van-
ishes at dc, the reflection response at f = 0 should be set equal to its unmatched value,
that is, to the value when there are no layers:

2 2
r)2=p2= ”b_”“> :(”“_”b) 6.8.1
[T (0)] Po ("Ia"""lb ng + ny ( )

Collin’s design method [822] assumes |I'(f) |? has the analytical form:

eiTh (x) nf
m X = X0 €088 = X008 (-) (6.8.2)

(=
1T ()] 2fn

where T (x) = cos (M acos(x)) is the Chebyshev polynomial (of the first kind) of order
M. The parameters M, e, X are fixed by imposing the desired specifications shown in
Fig. 6.8.1.

Once these parameters are known, the order-M polynomials A(z),B(z) are deter-
mined by spectral factorization, so that |I'(f) |2 = |B(f)|%/|A(f) |?. The backward layer
recursions, then, allow the determination of the reflection coefficients at the layer inter-
faces, and the corresponding refractive indices. Setting f = 0, or = 0, or cosd = 1, or
X = Xo, we obtain the design equation:
e3T2 (xo) e}

IT(0)|* = =
1+e2T2(xo) 1+e3

=p3 (6.8.3)
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where we defined eg = e; T (Xo). Solving for e(, we obtain:

ps (ng—np)?

1-p;  4ngnp

e(z) = (6.8.4)

Chebyshev polynomials T, (x) are reviewed in more detail in Sec. 23.9 that discusses
antenna array design using the Dolph-Chebyshev window. The two key properties of
these polynomials are that they have equiripple behavior within the interval -1 < x <1
and grow like xM for |x| > 1; see for example, Fig. 23.9.1.

By adjusting the value of the scale parameter X, we can arrange the entire equiripple
domain, —1 < x < 1, of T (x) to be mapped onto the desired reflectionless band
[f1,f2], where f1, > are the left and right bandedge frequencies about fj, as shown in
Fig. 6.8.1. Thus, we demand the conditions:

xocos(LfZ) =1, xocos(n—fl) =1

2fo 2fo

These can be solved to give:

Tl _ 1y T ein(l
20 = acos ( XO) =5+ asm(XO)
(6.8.5)
mho_ acos(i) L asin(i)
2f0 X0 2 X0
Subtracting, we obtain the bandwidth Af = f> — fi:
T Af . ( 1 )
——— = 2asin| — (6.8.6)
2 fo Xo
We can now solve for the scale parameter x( in terms of the bandwidth:
= ; (6.8.7)
X0 = Sm(ﬂﬂff) .0.
4 fo

It is evident from Fig. 6.8.1 that the maximum value of the bandwidth that one can
demand is Af .« = 2fo. Going back to Eq. (6.8.5) and using (6.8.6), we see that f; and
f2 lie symmetrically about fo, such that f; = fo — Af/2 and f> = fo + Af /2.

Next, we impose the attenuation condition. Because of the equiripple behavior over
the Af band, it is enough to impose the condition at the edges of the band, that is, we
demand that when f" = f1, or x = 1, the reflectance is down by A dB as compared to its
value at dc:

22 2
eiTy (1) e —A/10

IL(f1)I? = IT'(0) > 1074710 M =
! 1+eiTy (1) 1+ef

But, Ty (1) = 1. Therefore, we obtain an equation for e?:

e ej A/10
5 = 510 (6.8.8)
l1+e7 1+eg
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Noting that eq = e; T (Xg), we solve Eq. (6.8.8) for the ratio Ty (xg) = eg/e;:

T (xo) = cosh (M acosh (xg) ) = \/(1 +e3) 104710 — g2 (6.8.9)
Alternatively, we can express A in terms of T (xg):

M) (6.8.10)

A =10log;g ( 1+ 62

where we used the definition Ty (Xg) = cosh(M acosh(xg)) because xo > 1. Solving
(6.8.9) for M in terms of A, we obtain:

M = ceil (Mexact) (6.8.11)

acosh <\/(1 +e3)104/10 — e%)

acosh (xg)

where

Mexact =

(6.8.12)

Because Meyact is rounded up to the next integer, the attenuation will be somewhat
larger than required. In summary, we calculate eg, Xg, M from Egs. (6.8.4), (6.8.7), and
(6.8.11). Finally, e; is calculated from:

_ €o _ €o
" Tum(xo)  cosh(M acosh(xg))

€1 (6.8.13)

Next, we construct the polynomials A (z) and B(z). It follows from Egs. (6.6.25) and
(6.6.34) that the reflectance and transmittance are:

2
T = |'f;((’;))"z TR =11

Comparing these with Eq. (6.8.2), we obtain:

o2

G

JA(f)1? = 02[1 + e2T% (xo cos 8) ]
(6.8.14)
IB(f) 12 = 0%e3T% (xocos 5)

The polynomial A (z) is found by requiring that it be a minimum-phase polynomial,
that is, with all its zeros inside the unit circle on the z-plane. To find this polynomial,
we determine the 2M roots of the right-hand-side of |A(f)|? and keep only those M
that lie inside the unit circle. We start with the equation for the roots:

021+ e3T3,(xocos8)] =0 = Ty(Xocosd)= J_rei
1
Because T (X cos §) = cos (M acos (xg cos §) ), the desired M roots are given by:

acos(—ei) + mTt

1 ) m=0,1,...,. M -1 (6.8.15)

X0 COSOm = cos( M
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Indeed, these satisfy:

cos (M acos (xg cos &) = cos(acos(—i) + mrr) = cosmm=1x2
ey (] (]
Solving Eq. (6.8.15) for 8, we find:
J
acos(—~) + mm
6m=acos[—cos(e—1)] , m=0,1,.... M -1 (6.8.16)
X0 M

Then, the M zeros of A(z) are constructed by:

om0 |, ot o1

These zeros lie inside the unit circle, |z,| < 1. (Replacing —j/e; by +j/e; in
Eq. (6.8.16) would generate M zeros that lie outside the unit circle; these are the ze-
ros of A(z).) Finally, the polynomial A (z) is obtained by multiplying the root factors:

M-1
A)=[[Q-zmzHY=1+aiz ' +az 2+ +auz ™ (6.8.18)
m=0

Once A(z) is obtained, we may fix the scale factor o by requiring that the two
sides of Eq. (6.8.14) match at f = 0. Noting that A (f) at f = 0 is equal to the sum of the
coefficients of A(z) and that e; Ty (Xg) = ey, we obtain the condition:

M-1
D, am
m=0
\1+e?

Either sign of ¢ leads to a solution, but its physical realizability (i.e., n; > 1) requires
that we choose the negative sign if n; < np, and the positive one if n; > ny. (The
opposite choice of signs leads to the solution n{ = né/ni, i=a,l,...,M,b.)

The polynomial B (z) can now be constructed by taking the square root of the second
equation in (6.8.14). Again, the simplest procedure is to determine the roots of the right-
hand side and multiply the root factors. The root equations are:

2

=0?(1+e) = o==« (6.8.19)

M-1
2. am
m=0

02e?T2, (xgcos )= 0 = Twm (Xgcos 8) =0
with M roots:
6m=acos(xiocos(w#m)), m=0,1,....,.M -1 (6.8.20)
The z-plane roots are z,;, = e%m, m = 0,1,...,M — 1. The polynomial B (z) is now

constructed up to a constant by by the product:

M-1
B(z)=bo [[ 1 =zmz ™) (6.8.21)

m=0
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As before, the factor by is fixed by matching Eq. (6.8.14) at f = 0. Because 0, is
real, the zeros z,, will all have unit magnitude and B(z) will be equal to its reverse
polynomial, BX (z) = B(z).

Finally, the reflection coefficients at the interfaces and the refractive indices are
obtained by sending A (z) and B(z) into the backward layer recursion.

The above design steps are implemented by the MATLAB functions chebtr, chebtr2,
and chebtr3 with usage:

[n,a,b] = chebtr(na,nb,A,DF); % Chebyshev multilayer design
[n,a,b,A] = chebtr2(na,nb,M,DF); % specify order and bandwidth
[n,a,b,DF] = chebtr3(na,nb,M,A); % specify order and attenuation

The inputs are the refractive indices ng, np, of the left and right media, the desired at-
tenuation in dB, and the fractional bandwidth AF = Af/f,. The output is the refractive
index vectorn = [ng, ny, nNo, ..., Ny, Np] and the reflection and transmission polynomi-
als b and a. In chebtr2 and chebtr3, the order M is given. To clarify the design steps,
we give below the essential source code for chebtr:

e0 = sqrt((nb-na)A2/(4*nb*na));

x0 = 1/sin(DF*pi/4);

M = ceil(acosh(sqrt((e0A2+1)*10A(A/10) - e0A2))/acosh(x0));
el = e0/cosh(M*acosh(x0));

m=0:M-1;

delta = acos(cos((acos(-j/el)+pi*m)/M)/x0);

z = exp(2*j*delta); % zeros of A(z)

a = real(poly(2)); % coefficients of A (z)
sigma = sign(na-nb)*abs(sum(a))/sqrt(1+e0A2); % scale factor o

delta = acos(cos((m+0.5)*pi/M)/x0);

z = exp(2*j*delta); % zeros of B(z)

b = real(poly(z)); % unscaled coefficients of B(z)
b0 = sigma * e0 / abs(sum(b));

b = b0 * b; % rescaled B (z)

r = bkwrec(a,b); % backward recursion
n=na* r2n(r); % refractive indices

Example 6.8.1: Broadband antireflection coating. Design a broadband antireflection coating on
glass with n, = 1, n, = 1.5, A = 20 dB, and fractional bandwidth AF = Af/fo = 1.5.
Then, design a coating with deeper and narrower bandwidth having parameters A = 30
dB and AF = Af/fy = 1.0.

Solution: The reflectances of the designed coatings are shown in Fig. 6.8.2. The two cases have
M = 8 and M = 5, respectively, and refractive indices:

n=[1,1.0309,1.0682,1.1213,1.1879,1.2627,1.3378,1.4042,1.4550, 1.5]
n=[1,1.0284,1.1029,1.2247,1.3600, 1.4585,1.5]

The specifications are better than satisfied because the method rounds up the exact value
of M to the next integer. These exact values were Mexact = 7.474 and Mexaet = 4.728, and
were increased to M = 8 and M = 5.

[T(H)12 (dB)
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Fig. 6.8.2 Chebyshev designs. Reflectances are normalized to 0 dB at dc.

The desired bandedges shown on the graphs were computed from f,/fy = 1 — AF/2 and
fi/fo =1+ AF/2. The designed polynomial coefficients a, b were in the two cases:

[ 1.0000 7 [ —0.0152 7
0.0046 -0.0178 1.0000 —0.0140
0.0041 —0.0244
0.0074 —0.0350
0.0034 —0.0290
0.0051 —0.0526
a=] 0.0025 |, b=| -0.0307 and a= , b=
0.0027 —0.0526
0.0017 —0.0290
0.0010 —0.0350
0.0011 —0.0244 0.0002 -0.0140
0.0005 —0.0178 ’ ’
L 0.0002 | L —0.0152 |

The zeros of the polynomials a were in the two cases:

39782 +27.93°
03078, 227,03 21122 = 4515

z= o | and z=|015642180°
0.32662 + 158.76 01678 2 + 116.30°

0.33312 = 116.34° |

They lie inside the unit circle by design. The typical MATLAB code used to generate these
examples was:

chebtr(na,nb,A,DF);
M = Tength(n) - 2;

=]
I

-+
I

= linspace(0,4,1601);
L = 0.25 * ones(1,M);

GO = (na-nb)A2 / (na+nb)A2;
= abs(multidiel(n,L,1./)).A2;

o
|

plot(f, 10*10910(G/G0));
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The reflectances were computed with the functionmultidiel. The optical thickness inputs
to multidiel were all quarter-wavelength at f. m]

We note, in this example, that the coefficients of the polynomial B (z) are symmetric
about their middle, that is, the polynomial is self-reversing BX (z) = B(z). One conse-
quence of this property is that the vector of reflection coefficients is also symmetric
about its middle, that is,

[p1, 02, ., oM, PM11] = [PM41, OMy - -0, P2, P1] (6.8.22)

or, pi = Pm+2—i, fori =1,2,...,M + 1. These conditions are equivalent to the following
constraints among the resulting refractive indices:

NiNMi2-i = NgNp < Pi=Ppmio-i |, 1=1,2,....,M+1 (6.8.23)

These can be verified easily in the above example. The proof of these conditions
follows from the symmetry of B(z). A simple argument is to use the single-reflection
approximation discussed in Example 6.6.4, in which the polynomial B (z) is to first-order
in the p;s:

B(z)=p1+p2z '+ -+ pyz ™

If the symmetry property p; = pp+2—; were not true, then B (z) could not satisfy the
property BR (z) = B(z). A more exact argument that does not rely on this approximation
can be given by considering the product of matrices (6.6.17).

In the design steps outlined above, we used MATLAB’s built-in function poly.m to
construct the numerator and denominator polynomials B(z), A (z) from their zeros.
These zeros are almost equally-spaced around the unit circle and get closer to each
other with increasing order M. This causes poly to lose accuracy around order 50-60.

In the three chebtr functions (as well as in the Dolph-Chebyshev array functions of
Chap. 23, we have used an improved version, poly2.m, with the same usage as poly,
that maintains its accuracy up to order of about 3000.

Fig. 6.8.3 shows a typical pattern of zeros for Example 6.8.1 for normalized band-
widths of AF = 1.85 and AF = 1.95 and attenuation of A = 30 dB. The zeros of B(z) lie
on the unit circle, and those of A(z), inside the circle. The function poly2 groups the
zeros in subgroups such that the zeros within each subgroup are not as closely spaced.
For example, for the left graph of Fig. 6.8.3, poly2 picks the zeros sequentially, whereas
for the right graph, it picks every other zero, thus forming two subgroups, then poly
is called on each subgroup, and the two resulting polynomials are convolved to get the
overall polynomial.

Finally, we discuss the design of broadband terminations of transmission lines shown
in Fig. 6.7.1. Because the media admittances are proportional to the refractive indices,

nit = ning.L, we need only replace n; by the line characteristic admittances:

[nag,ny,...,np,p] — [Yq,Y1,...,Yp, Yp]

where Y, Y}, are the admittances of the main line and the load and Y}, the admittances
of the segments. Thus, the vector of admittances can be obtained by the MATLAB call:

Y = chebtr(Ya, Yb, A, DF); % Chebyshev transmission line impedance transformer
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AF =195, M =107

Fig. 6.8.3 Zero patterns of B(z) (open circles) and A (z) (filled circles), for A = 30 dB.

We also have the property (6.8.23), YiYpio-i = YaYyp, or, ZiZpio—i = ZaZp, for
i=1,2,...,M + 1, where Y; = 1/Z;. One can work directly with impedances—the
following call would generate exactly the same solution, where Z = [Z,, Z1,...,Zym, Zp]:

Z = chebtr(Za, Zb, A, DF); % Chebyshev transmission line impedance transformer

In this design method, one does not have any control over the resulting refractive
indices n; or admittances Y;. This can be problematic in the design of antireflection coat-
ings because there do not necessarily exist materials with the designed n;s. However,
one can replace or “simulate” any value of the refractive index of a layer by replac-
ing the layer with an equivalent set of three layers of available indices and appropriate
thicknesses [632-692].

This is not an issue in the case of transmission lines, especially microstrip lines,
because one can design a line segment of a desired impedance by adjusting the geometry
of the line, for example, by changing the diameters of a coaxial cable, the spacing of a
parallel-wire, or the width of a microstrip line.

6.9 Problems

6.1 A uniform plane wave of frequency of 1.25 GHz is normally incident from free space onto a
fiberglass dielectric slab (€ = 4€y, U = Uo) of thickness of 3 cm, as shown on the left figure

below.
€ | €] € € | €| € | €] €
—
-
[e—>] [ —— e »
3cm 3cm 6cm  3cm

a. What is the free-space wavelength of this wave in cm? What is its wavelength inside
the fiberglass?
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b. What percentage of the incident power is reflected backwards?

c. Next, an identical slab is inserted to the right of the first slab at a distance of 6 cm, as
shown on the right. What percentage of incident power is now reflected back?

6.2 Three identical dielectric slabs of thickness of 1 cm and dielectric constant € = 4¢, are
positioned as shown below. A uniform plane wave of frequency of 3.75 GHz is incident
normally onto the leftmost slab.

€l €
! |7?
Ir?
fa—>i [e—>
lem 2cm

a. Determine the power reflection and transmission coefficients, |I'|2 and |T|?, as per-
centages of the incident power.

b. Determine |I'|2 and |T|? if the three slabs and air gaps are replaced by a single slab of
thickness of 7 cm.

6.3 Three identical fiberglass slabs of thickness of 3 cm and dielectric constant € = 4¢€, are
positioned at separations d; = d> = 6 cm, as shown below. A wave of free-space wavelength
of 24 cm is incident normally onto the left slab.

a. Determine the percentage of reflected power.

b. Repeat if the slabs are repositioned such that d; = 12 cm and d, = 6 cm.

air | € air € air € | air
1
r
d, d
>
3cm

6.4 Four identical dielectric slabs of thickness of 1 cm and dielectric constant € = 4€, are posi-
tioned as shown below. A uniform plane wave of frequency of 3.75 GHz is incident normally
onto the leftmost slab.

a. Determine the reflectance |I'|? as a percentage.
b. Determine |I'|? if slabs A and C are removed and replaced by air.

¢. Determine |I'|? if the air gap B between slabs A and C is filled with the same dielectric,
so that ABC is a single slab.

€ |€ 4| B |C
1
I
Z] Zz Z3 Z4 Z5 ZG Z7 Zg
ol e :

icrﬁ 4cm 2cm 4cm
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6.5 A 2.5 GHz wave is normally incident from air onto a dielectric slab of thickness of 2 cm and
refractive index of 1.5, as shown below. The medium to the right of the slab has index 2.25.

€| € € €| €1 €o €
1 —» 1
I <— I
6cm
s s
2cm 2cm

a. Derive an analytical expression of the reflectance |I'(f)|? as a function of frequency
and sketch it versus f over the interval 0 < f < 10 GHz. What is the value of the
reflectance at 2.5 GHz?

b. Next, the 2-cm slab is moved to the left by a distance of 6 cm, creating an air-gap
between it and the rightmost dielectric. What is the value of the reflectance at 2.5
GHz?

6.6 Show that the antireflection coating design equations (6.2.2) can be written in the alternative
forms:

n5 (ny — ng) (n — nany)
na(n3 —ni) (n3 —n?)

(5 — ngnyp) (n5n, — ning)
na(n3 — np) (n3 — ni)

, SiIl2 kzlz =

cos?kyly =

Making the assumptions that n, > n; > ng, n, > np, and n, > ng,, show that for the design
to have a solution, the following conditions must be satisfied:

In
n; > /ngnp and n > n; =

Ng

6.7 Show that the characteristic polynomial of any 2x2 matrix F is expressible in terms of the
trace and the determinant of F as in Eq. (6.3.10), that is,

det(F — AI)= A? — (tr F)A + detF

Moreover, for a unimodular matrix show that the two eigenvalues are A. = e*® where
« = acosh(a) and a = trF/2.

6.8 Show that the bandedge condition a = —1 for a dielectric mirror is equivalent to the condition
of Eq. (6.3.16). Moreover, show that an alternative condition is:
1(n n
cos Oy cos O — — (71{ + fL) sindysind; = —1
2 nr ng
6.9 Stating with the approximate bandedge frequencies given in Eq. (6.3.19), show that the band-
width and center frequency of a dielectric mirror are given by:

_fi+f fo

2fp asin(p)
Af =fo—f1 = , =
f=fe-h=ri, vy 2 2(Ly +Lp)
where Ly = nyly/Ag, Ly = nilp/Ag, and Ag is a normalization wavelength, and f, the
corresponding frequency fo = co/Ao.
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Computer Experiment—Antireflection Coatings. Compute and plot over the 400-700 nm
visible band the reflectance of the following antireflection coatings on glass, defined by the
refractive indices and normalized optical thicknesses:

n=1[1,1.38,1.5], L =[0.25]

n=1[1,1.38,1.63,1.5], L =[0.25,0.50]
n=1[1,1.38,2.2,1.63,1.5], L =[0.25,0.50,0.25]
n=[1,1.38,2.08,1.38,2.08,1.5], L =[0.25,0.527,0.0828,0.0563]

e n o

The normalization wavelength is Ay = 550 nm. Evaluate and compare the coatings in terms
of bandwidth. Cases (a-c) are discussed in Sec. 6.2 and case (d) is from [639].

Computer Experiment—Dielectric Sunglasses. A thin-film multilayer design of dielectric sun-
glasses was carried out in Ref. [1845] using 29 layers of alternating TiO, (ny = 2.35) and
SiO (ng, = 1.45) coating materials. The design may be found on the web page:
www.sspectra.com/designs/sunglasses.html.

The design specifications for the thin-film structure were that the transmittance be: (a) less
than one percent for wavelengths 400-500 nm, (b) between 15-25 percent for 510-790 nm,
and (c) less than one percent for 800-900 nm.

Starting with the high-index layer closest to the air side and ending with the high-index layer
closest to the glass substrate, the designed lengths of the 29 layers were in nm (read across):

21.12 3241 73.89 12390 110.55 12947
63.17 189.07 68.53 113.66 62.56 59.58
27.17 90.29 44.78 73.58 50.14 94.82
60.40 172.27 57.75 69.00 28.13 93.12
106.07 111.15 32.68 32.82 69.95
Form the optical lengths n;l; and normalize them L; = n;l;/Ao, such that the maximum

optical length is a quarter wavelength at Ao. What is the value of Ay in nm? Assuming the
glass substrate has index n = 1.5, compute and plot the reflectance and transmittance over
the band 400-900 nm.

Computer Experiment—Dielectric Mirror. Reproduce all the results and graphs of Example
6.3.2. In addition, carry out the computations for the cases of N = 16, 32 bilayers.

In all cases, calculate the minimum and maximum reflectance within the high-reflectance
band. For one value of N, calculate the reflectance using the closed-form expression (6.3.33)
and verify that it is the same as that produced by muTtidiel.

Computer Experiment—Dielectric Mirror. Reproduce all the results and graphs of Example
6.3.3. Repeat the computations and plots when the number of bilayers is N = 8,16. Repeat
for N = 4,8, 16 assuming the layers are quarter-wavelength layers at 12.5 um. In all cases,
calculate the minimum and maximum reflectance within the high-reflectance band.

Computer Experiment—Shortpass and Longpass Filters. Reproduce all the results and graphs
of Example 6.3.5. Redo the experiments by shifting the short-pass wavelength to Ay = 750
nm in the first case, and the long-pass wavelength to Ay = 350 nm in the second case. Plot
the reflectances over the extended band of 200-1000 nm.

Computer Experiment—Wide Infrared Bandpass Filter. A 47-layer infrared bandpass filter
with wide transmittance bandwidth was designed in Ref. [1845]. The design may be found
on the web page www.sspectra.com/designs/irbp.html.

The alternating low- and high-index layers were ZnS and Ge with indices 2.2 and 4.2. The
substrate was Ge with index 4. The design specifications were that the transmittance be: (a)
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6.16

6.17

less than 0.1% for wavelengths 2-3 um, (b) greater than 99% for 3.3-5 um, and (c) less than
0.1% for 5.5-7 ym.

Starting with a low-index layer near the air side and ending with a low-index layer at the
substrate, the layer lengths were in nm (read across):

528.64 178.96 250.12 123.17 294.15 156.86 265.60 134.34
266.04 147.63 289.60 133.04 256.22 165.16 307.19 125.25
254.28 150.14 168.55 68.54 232.65 125.48 238.01 138.25
268.21 98.28 133.58 125.31 224.72 40.79 564.95 398.52
710.47  360.01 724.86 353.08 718.52 358.23 709.26 370.42
705.03 382.28 720.06 412.85 761.47 48.60 97.33

Form the optical lengths n;l; and normalize them L; = n;l;/Ag, such that the maximum

optical length is a quarter wavelength at Ao. What is the value of A in yum? Compute and
plot the reflectance and transmittance over the band 2-7 yum.

The figure below shows three multilayer structures. The first, denoted by (LH)?3, consists of
three identical bilayers, each bilayer consisting of a low-index and a high-index quarter-wave
layer, with indices n; = 1.38 and ny = 3.45. The second multilayer, denoted by (HL)?3, is
the same as the first one, but with the order of the layers reversed. The third one, denoted
by (LH)3(LL) (HL)? consists of the first two side-by-side and separated by two low-index
quarter-wave layers LL.

L\H|L\H|LH| H|L|H\L H|L LIH|L\H LHL|LH|LH|LH|L
1 —» 1 —>» 1 —»
I +— I <+— I <—

o (LH)® —~| f— (HL)>—> o (H)? 4@—[% (HLY® —~|

In all three cases, determine the overall reflection response I', as well as the percentage of
reflected power, at the design frequency at which the individual layers are quarter-wave.

A radome protecting a microwave transmitter consists of a three-slab structure as shown
below. The medium to the left and right of the structure is air. At the carrier frequency of
the transmitter, the structure is required to be reflectionless, that is, I' = 0.

air air
1 —»

T|* -—

|y | ng

a. Assuming that all three slabs are quarter-wavelength at the design frequency, what
should be the relationship among the three refractive indices n;, n»,n3 in order to
achieve a reflectionless structure?

b. What should be the relationship among the refractive indices n;, n,, ns if the middle
slab (i.e., ny) is half-wavelength but the other two are still quarter-wavelength slabs?

c. For case (a), suppose that the medium to the right has a slightly different refractive
index from that of air, say, n, = 1+¢. Calculate the small resulting reflection response
T to first order in €.
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In order to obtain a reflectionless interface between media n, and ny, two dielectric slabs
of equal optical lengths L and refractive indices ny, n, are positioned as shown below. (The
same technique can be used to connect two transmission lines of impedances Z, and Zj.)

L L
Ny | Np ng |np L L
1 —» 1] —>»
rf~— Zppe—d B B B

A plane wave of frequency f is incident normally from medium n,. Let f; be the frequency at
which the structure must be reflectionless. Let L be the common optical length normalized
to the free-space wavelength Ay = co/fo, thatis, L = ngla/Ag = nply/Ao.

a. Show that the reflection response into medium n, is given by:

1—(1+p?)e 30 440 Ng —n
r=p ( zpfg'a eas P >
1 —2p2e=20 + pZe—4

, 0 =21l
Ng + np fi

f
0

b. Show that the interface will be reflectionless at frequency f, provided the optical
lengths are chosen according to:

1 1+p?
L:—arccos< 2p>

41T

This is known as a twelfth-wave transformer because for p = 0, it gives L = 1/12.

A lossless dielectric slab of refractive index n; and thickness [, is positioned at a distance
I, from a semi-infinite dielectric of refractive index n,, as shown below.

air n, air n,
1
2
|

R

A uniform plane wave of free-space wavelength A is incident normally on the slab from the
left. Assuming that the slab n, is a quarter-wavelength slab, determine the length I, (in units
of Ag) and the relationship between n; and n, in order that there be no reflected wave into
the leftmost medium (i.e., I'; = 0).

In order to provide structural strength and thermal insulation, a radome is constructed using
two identical dielectric slabs of length d and refractive index n, separated by an air-gap of

length d,, as shown below.
air | 5 air n | air
r
d d, d
1 2 3 4

Recall that a reflectionless single-layer radome requires that the dielectric layer have half-
wavelength thickness.
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However, show that for the above dual-slab arrangement, either half- or quarter-wavelength
dielectric slabs may be used, provided that the middle air-gap is chosen to be a half-wavelength
layer, i.e., d> = Ao/2, at the operating wavelength A. [Hint: Work with wave impedances at
the operating wavelength.]

Computer Experiment—Dielectric Mirror Bands. Consider the trace function given by Eq. (6.3.13)
of the text, that is,

_cos(6y + 61) —p?cos(6y — 61)

= 2
The purpose of this problem is to study a as a function of frequency, which enters through:

5,‘:2TF(L>L,‘, Li:@
fo

i=H,L

and to identify the frequency bands where a switches from |a| < 1 to |a| > 1, that is, when
the dielectric mirror structure switches from transmitting to reflecting.

a. For the parameters given in Example 6.3.2 of the text, make a plot of a versus f over
the range 0 < f < 4f}, using f/fo as your x-axis. Place on the graph the left and right
bandedge frequencies f1, > of the reflecting bands centered at f; and odd multiples
thereof.

b. Repeat for the parameters n, = 1, ny = 4.6, ny = 1.6, Ly = 0.3, Ly = 0.2. These
parameters are close to those of Example 6.3.2. You may use the function omniband
to calculate the left and right bandedge frequencies around fj.

In plotting a versus f/fy, you will notice that a can become greater than +1 near
f = 2fy. Determine the left and right bandedge frequencies around 2f, and check to
see whether they define another reflecting band around 2fj.
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Oblique Incidence

7.1 Oblique Incidence and Snel’s Laws

With some redefinitions, the formalism of transfer matrices and wave impedances for
normal incidence translates almost verbatim to the case of oblique incidence.

By separating the fields into transverse and longitudinal components with respect
to the direction the dielectrics are stacked (the z-direction), we show that the transverse
components satisfy the identical transfer matrix relationships as in the case of normal
incidence, provided we replace the media impedances n by the transverse impedances
nr defined below.

Fig. 7.1.1 depicts plane waves incident from both sides onto a planar interface sepa-
rating two media €, €’. Both cases of parallel and perpendicular polarizations are shown.

In parallel polarization, also known as p-polarization, 7r-polarization, or TM po-
larization, the electric fields lie on the plane of incidence and the magnetic fields are

AX AX
E_ H_
k_ k-
0 2 9 0’ 2
0 0/ 8 "
k! k.
E, &k : k |
BN b
Eu k. el T+
€le Hy ¢ e
TM, parallel, p-polarization TE, perpendicular, s-polarization

Fig. 7.1.1 Oblique incidence for TM- and TE-polarized waves.
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perpendicular to that plane (along the y-direction) and transverse to the z-direction.

In perpendicular polarization, also known as s-polarization,t o-polarization, or TE
polarization, the electric fields are perpendicular to the plane of incidence (along the
y-direction) and transverse to the z-direction, and the magnetic fields lie on that plane.

The figure shows the angles of incidence and reflection to be the same on either side.
This is Snel’s law' of reflection and is a consequence of the boundary conditions.

The figure also implies that the two planes of incidence and two planes of reflection
all coincide with the xz-plane. This is also a consequence of the boundary conditions.

Starting with arbitrary wavevectors k+ = XKkx+ + ¥ ky+ + 2k, and similarly for K.,
the incident and reflected electric fields at the two sides will have the general forms:

EeJker E eik-r  F kT F enikor

The boundary conditions state that the net transverse (tangential) component of the
electric field must be continuous across the interface. Assuming that the interface is at
z = 0, we can write this condition in a form that applies to both polarizations:

Erpe kT L Ep e dkr — FL o TKer L L o7 TKT qe 220 (7.1.1)

where the subscript T denotes the transverse (with respect to z) part of a vector, that is,
Er =2 X (EXZ)= E—ZE,. Setting z = 0 in the propagation phase factors, we obtain:

ET+e*j(kx+X+ky+)’) + ET_e*j(ka*kyf)’) — ET+e*j(k§<+X+k§/+)’) + E"T_efj(k)’(—x+k;/—y) (7.1.2)

For the two sides to match at all points on the interface, the phase factors must be
equal to each other for all x and y:

o (knix+kysy) — pjkx-X+ky-y) — o=j(Ki Xk y) — o=J (K x+ky_y) (phase matching)

and this requires the x- and y-components of the wave vectors to be equal:

Kne = ke = K}, = K

o (7.1.3)
Kys = ky- =K}, = Kj_

If the left plane of incidence is the xz-plane, so that ky. = 0, then all y-components
of the wavevectors will be zero, implying that all planes of incidence and reflection will
coincide with the xz-plane. In terms of the incident and reflected angles 6., 6’,, the
conditions on the x-components read:

ksin0, =ksinf_ =k'sin0’ =k’ sin0” (7.1.4)

These imply Snel’s law of reflection:

0, =0_=90

0. -6 =0 (Snel’s law of reflection) (7.1.5)

Tfrom the German word senkrecht for perpendicular.
Tnamed after Willebrord Snel, b.1580, almost universally misspelled as Snell.



7.2. Transverse Impedance 243

And also Snel’s law of refraction, that is, k sin @ = k' sin 0. Setting k = nky, k' = n’ko,
and ko = w/cy, we have:

’

nsin@ = n’sin 0’ = s.1n 9, _n (Snel’s law of refraction) (7.1.6)
sin 8 n

It follows that the wave vectors shown in Fig. 7.1.1 will be explicitly:
k=k, =kxX+k,Z=ksinOXx+kcos0z

k. =kxX—k,Z=ksinO0x—kcos0z
(7.1.7)
K=K =kx+k,z=k'sin0 x+k'cos0' 2

K. =kx—-k,z=k'sin0' x—k'cos0'z

The net transverse electric fields at arbitrary locations on either side of the interface
are given by Eq. (7.1.1). Using Eq. (7.1.7), we have:

Er(X,z)= Ep e /%7 4 Er_eJk-" = (Ep, e /*% 4 Fr_e/ke?) e Tk
. o - - - (7.1.8)
Er(x,2)= Ep e KT 4 Fr e/ Kr = (B, e /K 4 El_e/ke?) e Tk

In analyzing multilayer dielectrics stacked along the z-direction, the phase factor
e Tk — o7k will be common at all interfaces, and therefore, we can ignore it and
restore it at the end of the calculations, if so desired. Thus, we write Eq. (7.1.8) as:

Er(z)= E]@Qijkzz + ET,eijZ
. - (7.1.9)
Er(z)= Ey, e /X?  Ep_elke?

In the next section, we work out explicit expressions for Eq. (7.1.9)

7.2 Transverse Impedance

The transverse components of the electric fields are defined differently in the two po-
larization cases. We recall from Sec. 2.10 that an obliquely-moving wave will have, in
general, both TM and TE components. For example, according to Eq. (2.10.9), the wave
incident on the interface from the left will be given by:

E. (r) = [(Rcos @ —2zsin@)A, + B, Je/*T

1 . (7.2.1)
H.(r) = E[f’fh — (kcos O —2sin0)B, Je /%"

where the A, and B, terms represent the TM and TE components, respectively. Thus,
the transverse components are:

Er.(x,2z) = [XA, cos @ + ¥y B, |e /kx+kz2)

i (7.2.2)
Hri(x,z) = —[§ Ay —XB. cos 0] e kxxtkz2)

1
n
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Similarly, the wave reflected back into the left medium will have the form:

E () =[(Xcos O +2sin0)A_ +yB_Je k7
1

i (7.2.3)
n [-VA_ + (Xcos @ +zsin@)B_Je/*"

H_(r)

with corresponding transverse parts:

Er_(x,z) = [RA_cos @ +yB_]e /kwk:2)
1 ) i (7.2.4)
Hr_(x,z) = E[_Y/L + X B_ cos 0] e KxX Kz

Defining the transverse amplitudes and transverse impedances by:

ATi :AiCOSQ, BTi :Bi
(7.2.5)

=

N =ncoso, nte=_—__,
cos 0

and noting that Ar./nm = A+/n and Br+/Ntg = B+ cos 0/n, we may write Eq. (7.2.2)
in terms of the transverse quantities as follows:

Ery(X,z) = [RArs + 9 Br, e/ kxthe2)

A B ) (7.2.6)
Hr, (x,2) = [¥ T+ _ﬁi]eﬁ(kxwkzz)

nrm nre

Similarly, Eq. (7.2.4) is expressed as:

Er-(x,2) = [RAr- + 9 By_]e/ kakas)

A 3 ) (7.2.7)
Hr_(x,2) = [-% 2r- L % —T= i tkax—ks2)

nm nrte

Adding up Egs. (7.2.6) and (7.2.7) and ignoring the common factor e kX we find for
the net transverse fields on the left side:

E7(z) = XEmM(2) +VEre(2)
(7.2.8)
H7(z) = VHm(z) - XH1e(2)

where the TM and TE components have the same structure provided one uses the ap-
propriate transverse impedance:

Erm(z) = Arre %% + Ap_elke?

1 ; . (7.2.9)
Hp(z) = —[Arre /%% — Ap_elke?]
Ntm

Ere(z) = Brye/KeZ 4 Bp_e/ke?

1 j ; (7.2.10)
Hip(z) = — [Brye7*Z — Bp_e/ke?]
nNte
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We summarize these in the compact form, where E7 stands for either E1y or Eqg:

Er(z) = ET+e’ijZ + Erfejkzz

1 s " (7.2.11)
Hr(z) = E[Eﬂe — Er_el®*]

The transverse impedance nr stands for either ny or nyg:

7.2.12
n TE, perpendicular, s-polarization ( )

{ ncos®, TM, parallel, p-polarization
nr =

cos 0’

Because n = n,/n, it is convenient to define also a transverse refractive index
through the relationship nr = no/nr. Thus, we have:

n
,  TM, parallel, p-polarization
nr = { cos 0 P pp (7.2.13)

ncos 0, TE, perpendicular, s-polarization

For the right side of the interface, we obtain similar expressions:
Ep(z) = Ep e %7 4 El. elke?

1 » » (7.2.14)
Hy(z) = ,T/(E'ne_ﬂ(zz ~Ep_e/?)
T

n’cos ', TM, parallel, p-polarization

. ‘ (7.2.15)
nr —coz 0 TE, perpendicular, s-polarization

’

n
ny =4 cos6"’
n’ cos 0, TE, perpendicular, s-polarization

™ llel, p-polarizati
, parallel, p-polarization (7.2.16)

where E7, stands for A7, = A, cos 0" or B}, = B.

For completeness, we give below the complete expressions for the fields on both
sides of the interface obtained by adding Eqgs. (7.2.1) and (7.2.3), with all the propagation
factors restored. On the left side, we have:

E(r) = Epm(r) +Eqe(r)

(7.2.17)
H(r)= Hy(¥) +Hre(r)
where
Epy(r) = (Rcos0 —2sin0) A e %7+ (RcosO + 2sin@)A_e k¥
Hpy(P) =)”1%(Am""k*"—A,ei"k*")
(7.2.18)

Erp(r) =¥ (Bye %" 4 B_e=/k-1)

Hpp(r) = %[—(i{cos@ —2sin0)B e VkT 4 (XcosO + zsinO)B_e k7]
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The transverse parts of these are the same as those given in Egs. (7.2.9) and (7.2.10).
On the right side of the interface, we have:

E'(r) = Eqy(r) +Eqg(r)

’ , , (7.2.19)
H' (r)= Hpy(r) +Hpp(1)
Ejy(r) = (Rcos 0’ —2sin0') A, e 7K 1+ (Rcos @' + zsin@')A e TK-"
1 L ’ il
Hiy(n) =y (AL — Aok
Ejp(n) =y (BLe kT4 B e ko)
1 - -
Hip(r) = ?[—(f(cos 0 —zsin0')B e kT4 (Xcos@ +zsin0')B e Kk-T]
(7.2.20)

7.3 Propagation and Matching of Transverse Fields

Eq. (7.2.11) has the identical form of Eq. (5.1.1) of the normal incidence case, but with
the substitutions:

n-nr, eiij . eijkzz _ eijkzcos@ (7.3.1)

Every definition and concept of Chap. 5 translates into the oblique case. For example,
we can define the transverse wave impedance at position z by:

Er(2) Ep,eJkiz 4 Fr_eikez
Zr(z)= = - - 7.3.2
T(Z) Hrt () T ET+e’JkAZ — ETfeJklZ ( )

and the transverse reflection coefficient at position z:

Er_ (2) Erfejkzz

I'r(z)= = —__r 2K,z s
e Eri(z) Erie ke r(0)e (7.3.3)
They are related as in Eq. (5.1.7):
1+I7(2) Zr(2)=nr
Zr@=nryTryy o Ir@= 7.3.4
7(2) T () 7(2) Zr(2)int (7.3.4)

The propagation matrices, Egs. (5.1.11) and (5.1.13), relating the fields at two posi-
tions z1, z, within the same medium, read now:

E71+ _ el 0 E7oy . .
[En—] = [ 0 ekl Ero. (propagation matrix) (7.3.5)

Er | _ cosk,l Jjntsink,l Er) . .
[ Hi ] = [J"’I%l sink,I cos k,1 Hro (propagation matrix)  (7.3.6)
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where [ = z, — z;. Similarly, the reflection coefficients and wave impedances propagate
as:

Z12 +jnr tank,l

I'ry = e~k 70 = 7.3.7
T1 T2 71 =171 Nt + jZ1s tank,I ( )

The phase thickness 6 = kl = 21t (nl) /A of the normal incidence case, where A is
the free-space wavelength, is replaced now by:

8, = k,l = klcos0 = 27" nl cos 0 (7.3.8)

At the interface z = 0, the boundary conditions for the tangential electric and mag-
netic fields give rise to the same conditions as Eqgs. (5.2.1) and (5.2.2):

Er=E}, Hr=H} (7.3.9)
and in terms of the forward/backward fields:

Er, +Er_ = E}_'_ +E§~_

1 1, , (7.3.10)
— (Er+ —Er-) = — (E7, —E7.)
nr nr
which can be solved to give the matching matrix:
E 1 1 E;
[ ET* ] = [ ) Plr ] [ E'ﬂ ] (matching matrix) (7.3.11)
T- T T T—
where pr, Tt are transverse reflection coefficients, replacing Eq. (5.2.5):
pp = Moo nT _nr-ny
nr+nr nr+ng
, (Fresnel coefficients) (7.3.12)
ZnT 2nr
Tr = — = 7
nr+nr nr+nr

where T = 1 + pr. We may also define the reflection coefficients from the right side
of the interface: pT = —pr and 77 = 1 + pT = 1 — pr. Egs. (7.3.12) are known as the
Fresnel reflection and transmission coefficients.

The matching conditions for the transverse fields translate into corresponding match-

ing conditions for the wave impedances and reflection responses:

pr +I7 . pr+IT

Zr=2p o It=+1"-T o TT’1+p’rT (7.3.13)
T

If there is no left-incident wave from the right, thatis, E” = 0, then, Eq. (7.3.11) takes

the specialized form:
Er.: 1 1 pr ET,
= — 7.3.14
[ Er- } TT [ pr 1 0 ( )

which explains the meaning of the transverse reflection and transmission coefficients:
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_ Er_ _ E,T+
= y Tr =4 —
Er, Er,
The relationship of these coefficients to the reflection and transmission coefficients
of the total field amplitudes depends on the polarization. For TM, we have EtT. =
A.cos0 and E, = A/, cos0’, and for TE, Er. = B. and E},. = B’,. For both cases,
it follows that the reflection coefficient pr measures also the reflection of the total
amplitudes, that is,

pr (7.3.15)

A_cos® A B_

Ptm = A7+c059 = A, PTE = E

whereas for the transmission coefficients, we have:
4 4 4 4 4
A’ cos 0 cos 0" A’ B,

A,cos®  cos6 A’

T™M =

In addition to the boundary conditions of the transverse field components, there are
also applicable boundary conditions for the longitudinal components. For example, in
the TM case, the component E, is normal to the surface and therefore, we must have
the continuity condition D, = D}, or €E, = €'E},. Similarly, in the TE case, we must
have B, = B,. It can be verified that these conditions are automatically satisfied due to
Snel’s law (7.1.6).

The fields carry energy towards the z-direction, as well as the transverse x-direction.
The energy flux along the z-direction must be conserved across the interface. The cor-
responding components of the Poynting vector are:

1 1
P, = ERe[ExH;‘< —EHf], Px= ERe[EyH;< 7EZH;“]

For TM, we have P, = Re[ExH;]/2 and for TE, P, = —Re[EyH}]/2. Using the
above equations for the fields, we find that P is given by the same expression for both
TM and TE polarizations:

cos 0 cos 0
P, = 2 (AL =A%), or, 2

Using the appropriate definitions for E7. and n, Eq. (7.3.16) can be written in terms

of the transverse components for either polarization:

(IB+1> = 1B_1?) (7.3.16)

1
P, = 5 (IEr+1* - [Er_|?) (7.3.17)
2nr
As in the normal incidence case, the structure of the matching matrix (7.3.11) implies

that (7.3.17) is conserved across the interface.

7.4 Fresnel Reflection Coefficients

We look now at the specifics of the Fresnel coefficients (7.3.12) for the two polarization
cases. Inserting the two possible definitions (7.2.13) for the transverse refractive indices,
we can express pr in terms of the incident and refracted angles:
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’

n n
o cos® cos@  ncos@ —n'cosb

™ = =
n n' ncos @ +n’ cos@

cos 0 * cos 0’ (74.1)

ncos@ —n’ cos 0’

[ ) e ——
ncos 0 + n’ cos 6’

We note that for normal incidence, 6 = 6’ = 0, they both reduce to the usual
reflection coefficient p = (n — n’)/(n + n’).t Using Snel’s law, nsin @ = n’sin §’, and
some trigonometric identities, we may write Egs. (7.4.1) in a number of equivalent ways.
In terms of the angle of incidence only, we have:

7N\ 2 7\ 2
<n—> —sin® 0 — <H—> cos 0
Pt™ = n n
7N\ 2 7\ 2
n_) —sin’ 0 + (n_) cos @
n n

(7.4.2)

Note that at grazing angles of incidence, & — 90°, the reflection coefficients tend to
prv — 1 and pr — —1, regardless of the refractive indices n, n’. One consequence of
this property is in wireless communications where the effect of the ground reflections
causes the power of the propagating radio wave to attenuate with the fourth (instead
of the second) power of the distance, thus, limiting the propagation range (see Exam-
ple 22.3.5.)

We note also that Egs. (7.4.1) and (7.4.2) remain valid when one or both of the media
are lossy. For example, if the right medium is lossy with complex refractive index n; =
n, — jnj, then, Snel’s law, nsin @ = n/ sin 0’, is still valid but with a complex-valued 6’
and (7.4.2) remains the same with the replacement n’ — ng. The third way of expressing
the ps is in terms of 6, 0’ only, without the n, n’:

sin20’ —sin20 _ tan(6’ - 60)
sin260’ +sin260  tan(6’ + 0)

sin(0’ — 0)

TE = sin(0’ + 0)

Pt™m =

(7.4.3)

Fig. 7.4.1 shows the special case of an air-dielectric interface. If the incident wave is
from the air side, then Eq. (7.4.2) gives with n = 1, n’ = ng, where ny is the (possibly
complex-valued) refractive index of the dielectric:

TSome references define prm with the opposite sign. Our convention was chosen because it has the
expected limit at normal incidence.

250 7. Oblique Incidence

\[n% — sin® @ — n3 cos 0 cos 0 — \n5 —sin 0

v = "= > 5 y PIE= > 5 (7.4.4)
\ng — sin® 0 + nj cos 0 cos @ + 4/n; — sin” 0
If the incident wave is from inside the dielectric, then we set n = ng and n’ = 1:
\nz* —sin? 0 — nz% cos 0 cos @ — \nz* — sin® 0
(7.4.5)

P = = — - » PTE= R
\Jhg° —sin® 0 + n; cos 0 cos 0 +4/n;” —sin” 0

ng ng

d
air
0

Fig. 7.4.1 Air-dielectric interfaces.

d
2
air
0

The MATLAB function fresnel calculates the expressions (7.4.2) for any range of
values of 0. Its usage is as follows:

[rtm,rte] = fresnel(na,nb,theta); % Fresnel reflection coefficients

7.5 Maximum Angle and Critical Angle

As the incident angle 0 varies over 0 < 6 < 90°, the angle of refraction 0’ will have
a corresponding range of variation. It can be determined by solving for 0’ from Snel’s
law, nsin @ = n’sin0":

sin 0’ = nﬁ sin 0 (7.5.1)

If n < n’ (we assume lossless dielectrics here,) then Eq. (7.5.1) implies that sin 0’ =
(n/n")sin@ < sin @, or 6’ < 0. Thus, if the incident wave is from a lighter to a denser
medium, the refracted angle is always smaller than the incident angle. The maximum
value of 0’, denoted here by 67, is obtained when 6 has its maximum, 8 = 90°:

sin 0, = nﬂ (maximum angle of refraction) (7.5.2)

’
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Thus, the angle ranges are 0 < 6 < 90° and 0 < 0’ < 0. Fig. 7.5.1 depicts this case,
as well as the case n > n’.

: 90°
90° Oc
ni|n n|n'
n<n' n>n'

Fig. 7.5.1 Maximum angle of refraction and critical angle of incidence.

On the other hand, if n > n’, and the incident wave is from a denser onto a lighter
medium, then sin@’ = (n/n")sin@ > sin@, or 8’ > 6. Therefore, 6’ will reach the
maximum value of 90° before 8 does. The corresponding maximum value of 6 satisfies
Snel’s law, nsin 0, = n’ sin(1r/2)= n’, or,

’

n
sin O, = " (critical angle of incidence) (7.5.3)

This angle is called the critical angle of incidence. If the incident wave were from the
right, 0. would be the maximum angle of refraction according to the above discussion.

If 6 < O, there is normal refraction into the lighter medium. But, if 6 exceeds 6,
the incident wave cannot be refracted and gets completely reflected back into the denser
medium. This phenomenon is called total internal reflection. Because n’/n = sin 0., we
may rewrite the reflection coefficients (7.4.2) in the form:

\/sin® 0. — sin® O — sin? O, cos O cos 0 — /sin® 0. — sin® O
P1t™M = - y PTE= ,
\/sin? 0, — sin? @ + sin? 0. cos O cos 0 + +/sin% O, — sin? 0
When 0 < 0, the reflection coefficients are real-valued. At 0 = 0., they have the

values, pry = —1 and prg = 1. And, when 0 > 6., they become complex-valued with
unit magnitude. Indeed, switching the sign under the square roots, we have in this case:

—j4/sin? O — sin® O — sin® O cos O cos 0 + ja/sin® O — sin® O

P1t™M = - - y  PTE= -
—ja/sin? 0 — sin® O + sin® O cos O cos 0 — ja/sin® O — sin® O

where we used the evanescent definition of the square root as discussed in Egs. (7.7.9)
and (7.7.10), that is, we made the replacement

/sin? @, — sin> @ — —j4/sin® @ —sin® O., for O = O,
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Both expressions for pr are the ratios of a complex number and its conjugate, and
therefore, they are unimodular, |pmm| = |p1el = 1, for all values of 6 > 0.. The interface
becomes a perfect mirror, with zero transmittance into the lighter medium.

When 6 > 0, the fields on the right side of the interface are not zero, but do not
propagate away to the right. Instead, they decay exponentially with the distance z. There
is no transfer of power (on the average) to the right. To understand this behavior of the
fields, we consider the solutions given in Egs. (7.2.18) and (7.2.20), with no incident field
from the right, that is, with A” = B” = 0.

The longitudinal wavenumber in the right medium, k’,, can be expressed in terms of
the angle of incidence 6 as follows. We have from Eq. (7.1.7):

2 012 12 _ 212
ks + k& = k* = n°k§
2 2 2 21,2
k,"” +ky'“ =k'* =n"k§
Because, kj = kx = ksin 6 = nkg sin 6, we may solve for k, to get:
k? = n"?k3 — ki? = n"?k3 — k2 = n'’k3 — n®k3sin® 0 = k3 (n'? — n®sin’ 0)

or, replacing n’ = nsin 6., we find:

k72 = nk3(sin® 0, — sin® 0) (7.5.4)

If 6 < 0., the wavenumber k/, is real-valued and corresponds to ordinary propa-
gating fields that represent the refracted wave. But if 0 > O, we have k7> < 0 and k),
becomes pure imaginary, say k;, = —j«,. The z-dependence of the fields on the right of
the interface will be:

e JKiz — o=%7 ! = nkoy/sin? @ — sin? O,

Such exponentially decaying fields are called evanescent waves because they are
effectively confined to within a few multiples of the distance z = 1/ «/, (the penetration
length) from the interface.

The maximum value of «, or equivalently, the smallest penetration length 1/, is
achieved when 0 = 90°, resulting in:

oy = Nkoy/1 — sin? O, = nkg cos 0. = kgvn2 — n’2

Inspecting Egs. (7.2.20), we note that the factor cos 0’ becomes pure imaginary be-
cause c0s? 0’ =1 —sin?0’ =1 — (n/n’)%sin° @ = 1 — sin® O/ sin® . < 0, for 6 > ..
Therefore for either the TE or TM case, the transverse components Er and Hr will
have a 90° phase difference, which will make the time-average power flow into the right
medium zero: P, = Re(ETH})/2 = 0.

Example 7.5.1: Determine the maximum angle of refraction and critical angle of reflection for
(a) an air-glass interface and (b) an air-water interface. The refractive indices of glass and
water at optical frequencies are: Ngjass = 1.5 and Nyater = 1.333.
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Solution: There is really only one angle to determine, because if n = 1 and n’ = Ngjass, then
sin(6;)= n/n’" = 1/Ngiass, and if N = Ngaes and n’ = 1, then, sin(0c)= n'/n = 1/Ngass.
Thus, 0, = 0.:

1
0. = asi (—) =41.8°
¢ = asin 15
For the air-water case, we have:

0. = asin( ) = 48.6°

L
1.333

The refractive index of water at radio frequencies and below is Nyater = 9 approximately.
The corresponding critical angle is 6, = 6.4°. O

Example 7.5.2: Prisms. Glass prisms with 45° angles are widely used in optical instrumentation
for bending light beams without the use of metallic mirrors. Fig. 7.5.2 shows two examples.

450 450

Fig. 7.5.2 Prisms using total internal reflection.

In both cases, the incident beam hits an internal prism side at an angle of 45°, which is
greater than the air-glass critical angle of 41.8°. Thus, total internal reflection takes place
and the prism side acts as a perfect mirror. m|

Example 7.5.3: Optical Manhole. Because the air-water interface has 6. = 48.6°, if we were to
view a water surface from above the water, we could only see inside the water within the
cone defined by the maximum angle of refraction.

Conversely, were we to view the surface of the water from underneath, we would see the
air side only within the critical angle cone, as shown in Fig. 7.5.3. The angle subtended by
this cone is 2x48.6 = 97.2°.

air

water .-

Fig. 7.5.3 Underwater view of the outside world.

The rays arriving from below the surface at an angle greater than 0. get totally reflected.
But because they are weak, the body of water outside the critical cone will appear dark.
The critical cone is known as the “optical manhole” [50]. [}
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Example 7.5.4: Apparent Depth. Underwater objects viewed from the outside appear to be
closer to the surface than they really are. The apparent depth of the object depends on
our viewing angle. Fig. 7.5.4 shows the geometry of the incident and refracted rays.

. 0
air ‘ x
water A

2y
L z
,,,,,, _—

Fig. 7.5.4 Apparent depth of underwater object.

Let O be the viewing angle and let z and z’ be the actual and apparent depths. Our perceived
depth corresponds to the extension of the incident ray at angle 6. From the figure, we have:
z =xcot0" and z' = xcot 6. It follows that:

, cot@ sin 0’ cos 0

z
cot9’ sin 0 cos 0’

Using Snel’s law sin 0/ sin 0" = n’/n = Nyater, we eventually find:

, cos 0
7=
N2 ater — SiN° 6
At normal incidence, we have z’ = z/nyater = 2/1.333 = 0.752Z.

Reflection and refraction phenomena are very common in nature. They are responsible for
the twinkling and aberration of stars, the flattening of the setting sun and moon, mirages,
rainbows, and countless other natural phenomena. Four wonderful expositions of such
effects are in Refs. [50-53]. See also the web page [1827]. [}

Example 7.5.5: Optical Fibers. Total internal reflection is the mechanism by which light is
guided along an optical fiber. Fig. 7.5.5 shows a step-index fiber with refractive index
ny surrounded by cladding material of index n. < ny.

N\ Mg | ne cladding
N

fiber

Fig. 7.5.5 Launching a beam into an optical fiber.

If the angle of incidence on the fiber-cladding interface is greater than the critical angle,
then total internal reflection will take place. The figure shows a beam launched into the
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fiber from the air side. The maximum angle of incidence 6, must be made to correspond to
the critical angle 6. of the fiber-cladding interface. Using Snel’s laws at the two interfaces,

we have:
ne n
sinf@, = ot sin@,, sinf,=—<
Ng ny
Noting that 0, = 90° — 6, we find:
2 2
n ny V1 — e
sin, = —L cos O, = — 1—s1n296:’7
Ng Ng Ng

For example, with n, = 1, ny = 1.49, and n. = 1.48, we find 6, = 83.4° and 6, = 9.9°. The
angle 0, is called the acceptance angle, and the quantity NA = 1/n% — n2, the numerical
aperture of the fiber.

Besides its use in optical fibers, total internal reflection has several other applications [556-
592], such as internal reflection spectroscopy, chemical and biological sensors, fingerprint
identification, surface plasmon resonance, and high resolution microscopy. O

Example 7.5.6: Fresnel Rhomb. The Fresnel rhomb is a glass prism depicted in Fig. 7.5.6 that
acts as a 90° retarder. It converts linear polarization into circular. Its advantage over the
birefringent retarders discussed in Sec. 4.1 is that it is frequency-independent or achro-
matic.

circularly
polarized

linearly
polarized ~“9(°

Fig. 7.5.6 Fresnel rhomb.

Assuming a refractive index n = 1.51, the critical angle is 0, = 41.47°. The angle of the
rhomb, 6 = 54.6°, is also the angle of incidence on the internal side. This angle has been
chosen such that, at each total internal reflection, the relative phase between the TE and
TM polarizations changes by 45°, so that after two reflections it changes by 90°.

The angle of the rhomb can be determined as follows. For 6 > 6., the reflection coefficients
can be written as the unimodular complex numbers:

1+ jx 1 + jxn? 4/sin® @ — sin® O,
- - A R L 7.5.
PTE= 7 “ix’ P 1= jxn?’ X 050 (7.5.5)

where sin 0. = 1/n. It follows that:
p1E = ez.jWTE’ Py = eITH2jW M
where @ 7x, Y 1y are the phase angles of the numerators, that is,

tany7g = X, taanM:xnz
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The relative phase change between the TE and TM polarizations will be:

PTM _ o2jwm=2jwreHim
PTE

It is enough to require that 1y — Y r = 171/8 because then, after two reflections, we will
have a 90° change:

2
P _ miavjm P _ gimrze2jm _ pimi2
PTE PTE

From the design condition ¢y — Y 7r = 11/8, we obtain the required value of x and then
of 0. Using a trigonometric identity, we have:

tan Yy — tan Y g xn? —x e
tan(Ymy — W) = = 5oy = tan()
1+ tan Yy tan Y g 1+ nex

This gives the quadratic equation for x:

1 1 »  cos? 0, o
St =X - 00y sin?0, = 0 7.5.6
n2) n2 tan(17/8) st Pe ( )

ot
tan(17/8)

(1-

Inserting the two solutions of (7.5.6) into Eq. (7.5.5), we may solve for sin 8, obtaining two
possible solutions for 0:

X2 + sin® 0,

sinf = - 7.5.7
X2 +1 ( )
We may also eliminate x and express the design condition directly in terms of 0:
cos 0+/sin® O — sin® 0 e
¢ =tan(~) (7.5.8)

sin® 0 8
However, the two-step process is computationally more convenient. For n = 1.51, we find
the two roots of Eq. (7.5.6): x = 0.822 and x = 0.534. Then, (7.5.7) gives the two values
0 = 54.623° and 0 = 48.624°. The rhomb could just as easily be designed with the second

value of 0.
For n = 1.50, we find the angles 6 = 53.258° and 50.229°. For n = 1.52, we have
0 = 55.458° and 47.553°. See Problem 7.5 for an equivalent approach. m]

Example 7.5.7: Goos-Hiinchen Effect. When a beam of light is reflected obliquely from a denser-
to-rarer interface at an angle greater than the TIR angle, it suffers a lateral displacement,
relative to the ordinary reflected ray, known as the Goos-Hanchen shift, as shown Fig. 7.5.7.

Let n, n’ be the refractive indices of the two media with n > n’, and consider first the case
of ordinary reflection at an incident angle 6, < .. For a plane wave with a free-space
wavenumber ko = w/cy and wavenumber components ky = kon sin 0y, k; = kon cos 0,
the corresponding incident, reflected, and transmitted transverse electric fields will be:

Ei(x,z) = e hxgikez

Er(x,7) = p(ky) e hxxgtikez

Ec(x,2) = T(kye e oz = \[kin? 13
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shifted ray x

\
\
\ \
\ \
\

W 8 X = lateral Goos-Héanchen shift
N\ L,

Z( = effective penetration depth

incident ray o

Fig. 7.5.7 Goos-Hanchen shift, with n > n" and 6 > O..

where p(ky) and T (ky) =1 + p(ky) are the transverse reflection and transmission coeffi-
cients, viewed as functions of ky. For TE and TM polarizations, p (kx) is given by

k, — Kk,
k, + k3’

k,n® —k,n"
kyn2 + k,n’?

pre(kx) = prv(ky) =

Abeam can be made up by forming a linear combination of such plane waves having a small
spread of angles about 6. For example, consider a second plane wave with wavenumber
components ky + Aky and k, + Ak,. These must satisfy (ky + Aky)?+ (k, + Ak,)%=
k2 + k2 = k3n?, or to lowest order in Aky,

kxAkx + k; Ak, =0 = Ak, = —Aky II:—X = —Akytan 6,

Similarly, we have for the transmitted wavenumber Ak}, = —AKky tan 0;, where 6, is given
by Snel’s law, nsin 0y = n’sin 6. The incident, reflected, and transmitted fields will be
given by the sum of the two plane waves:

Ei(x,7) = o JkxXg=jkzz | o=J(kx+Akx)X o—j(Kz+Akz)Z
E (x,2) = p(kx)eﬁikxxetikzz + pky + Akx)eﬁi(kxmkx)xeti(kzwkz)z

Ec(x%,2) = T(ky) e RXeKeZ 1 1 (ky + Aky) eI Kt akox gk +aks)z

Replacing Ak, = —Akytan 0y and Ak), = —Aky tan 6;,, we obtain:
Ei(x,2) = e—jkxxe—jkzz[l + e—jAkX(x—zlaneo)]
Er(x,2) = e %e#ikez [ p (ky) +p (ky + Aky) e 3kx (x+ztan00) | (7.5.9)
Ec(x,2) = e M TRz [ (k) +T (ky + Aky) @ /Akn (x-2tan06) ]

The incidence angle of the second wave is 6y + A0, where A is obtained by expanding

kx + Aky = konsin(6y + AQ) to first order, or, Aky = koncos 0y AQ. If we assume that
0o < O, as well as 09 + AO < O, then p(ky) and p(kyx + Aky) are both real-valued. It

7. Oblique Incidence

follows that the two terms in the reflected wave E, (x, z) will differ by a small amplitude
change and therefore we can set p (ky + Aky)~ p(ky). Similarly, in the transmitted field
we may set T (ky + Akx) =~ T(ky). Thus, when 0 < 0., Eq. (7.5.9) reads approximately,

Ei(X,Z) _ e—jkxxe—jkzz [1 + e—jAkX(x—z\anU())]
Er(x,2) = p(ky) e Kxxetikez ] 4 g =iakx (x+ztan0o) | (7.5.10)
E(x,7) = T(kx)e—jkxxe—jk}z[l + e—jAkx(x—ztanef))]

Noting that |1 + e /4kx&=ztndo) | < 2 with equality achieved when x — ztan 6y = 0, it

follows that the intensities of these waves are maximized along the ordinary geometric
rays defined by the beam angles 0, and 6y, that is, along the straight lines:

x—ztanf0y =0, incident ray
X+ ztan0y =0, reflected ray (7.5.11)
x—ztan0Oy =0, transmitted ray

On the other hand, if 6y > 0. and 0y + AO > 0., the reflection coefficients become
unimodular complex numbers, as in Eq. (7.5.5). Writing p (ky) = e/®&x) Eq. (7.5.9) gives:

Ey(x,2) = e ke tikez [pih(kn) 4 ofth(Kn+aKn) =jakx (x+21an 00) | (7.5.12)

Introducing the Taylor series expansion, ¢ (ky + Aky) = ¢ (ky) +Akx ¢’ (kx), we obtain:

E, (x,2)= el b kx) g=jkxx o +jkz2 [1 + eiAkde’ (kx) g =jAkx (x+2 tan 00)]

Setting xo = ¢’ (ky), we have:

E,(x,2)= ej¢(kx)e—jkxxe+jkzz[1 + e—jAkX(x—onrztaneo)] (7.5.13)

This implies that the maximum intensity of the reflected beam will now be along the shifted
ray defined by:
X—Xo+ ztan60y = 0, shifted reflected ray (7.5.14)

Thus, the origin of the Goos-Hanchen shift can be traced to the relative phase shifts arising
from the reflection coefficients in the plane-wave components making up the beam. The
parallel displacement, denoted by D in Fig. 7.5.7, is related to xo by D = X, cos 8. Noting
that dkyx = kon cos 6 dO, we obtain

_ dp _ 1 d¢
b =cosbo y = kon do

(Goos-Hanchen shift) (7.5.15)

)

Using Eq. (7.5.5), we obtain the shifts for the TE and TM cases:
2sin 0, n'?

Drv=Drg-
N 5 ’ 2 ” in2 2
kon [sin? 0o — sin? 0, (n2 + n’2)sin“ 0y — n

These expressions are not valid near the critical angle 8y ~ 0. because then the Taylor
series expansion for ¢ (ky) cannot be justified. Since geometrically, zo = D/ (2sin 0y), it
follows from (7.5.16) that the effective penetration depth into the n” medium is given by:

Dr =

(7.5.16)

1 1 1 n'?

ZTE = =7, ZmM= 1 - N
- - 2 2 20, —ne
kon /sz 0o — sin? 0, oz oz (N2 +n'2)sin“0yp — n

(7.5.17)
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where ), = \/ki —k3n? = ko\/n2 sin® 0y — n’2 = kon\/sin2 0y — sin® .. These expres-
sions are consistent with the field dependence eJkzz — o=e22 ingide the n’ medium, which
shows that the effective penetration length is of the order of 1/« . m|

7.6 Brewster Angle

The Brewster angle is that angle of incidence at which the TM Fresnel reflection coef-
ficient vanishes, pryy = 0. The TE coefficient pr cannot vanish for any angle 0, for
non-magnetic materials. A scattering model of Brewster’s law is discussed in [693].
Fig. 7.6.1 depicts the Brewster angles from either side of an interface.

The Brewster angle is also called the polarizing angle because if a mixture of TM
and TE waves are incident on a dielectric interface at that angle, only the TE or perpen-
dicularly polarized waves will be reflected. This is not necessarily a good method of
generating polarized waves because even though p7r is non-zero, it may be too small
to provide a useful amount of reflected power. Better polarization methods are based
on using (a) multilayer structures with alternating low/high refractive indices and (b)
birefringent and dichroic materials, such as calcite and polaroids.

Fig. 7.6.1 Brewster angles.

The Brewster angle 05 is determined by the condition, pry = 0, in Eq. (7.4.2). Setting
the numerator of that expression to zero, we have:

7N 2 7N 2
(n—> —sin® 0 = (1) cos 03 (7.6.1)
n n

After some algebra, we obtain the alternative expressions:

’ ’

sin 0p = o < |tanOp = % (Brewster angle) (7.6.2)

Vn? +n’?

Similarly, the Brewster angle 0 from the other side of the interface is:

’ n ’ n
sinfy = —————=| < |tanf= w (Brewster angle) (7.6.3)

Vvn? +n’? ’
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The angle 0% is related to 0 by Snel’s law, n’ sin 0 = nsin0g, and corresponds
to zero reflection from that side, p’p; = —pmr = 0. A consequence of Eq. (7.6.2) is that
05 = 90° — 0y, or, O + O = 90°. Indeed,

sin Op n’  sinfp

=tanfp = — = —
cos Op n  sinfj

which implies cos 0p = sin 0y, or 05 = 90° — 0. The same conclusion can be reached
immediately from Eq. (7.4.3). Because, 65 — 0p # 0, the only way for the ratio of the
two tangents to vanish is for the denominator to be infinity, that is, tan(05 + 0p) = oo,
or, 05 + 05 = 90°.

As shown in Fig. 7.6.1, the angle of the refracted ray with the would-be reflected ray
is 90°. Indeed, this angle is 180° — (0 + 05) = 180° — 90° = 90°.

The TE reflection coefficient at O can be calculated very simply by using Eq. (7.6.1)
into (7.4.2). After canceling a common factor of cos 0, we find:

n 2
() e

n 2 _n2+n’2
1+ ()

pre(0p)= (7.6.4)

n

Example 7.6.1: Brewster angles for water. The Brewster angles from the air and the water sides
of an air-water interface are:

1.333 1
0p = at <—> =53.1°, 03 =at (—) =36.9°
p = atan 1 g =atan | ;oo
We note that 0+ 05 = 90°. At RF, the refractive index is Hyater = 9 and we find 0 = 83.7°
and 0 = 6.3°. We also find pre(0p) = —0.2798 and |p1e(03)|%> = 0.0783/ Thus, for TE
waves, only 7.83% of the incident power gets reflected at the Brewster angle. m]

Example 7.6.2: Brewster Angles for Glass. The Brewster angles for the two sides of an air-glass
interface are:

1. 1
Op = atan (TS> =56.3°, 0= atan(ﬁ) =33.7°

Fig. 7.6.2 shows the reflection coefficients |pry(0) 1, |p71£(0) | as functions of the angle of
incidence 6 from the air side, calculated with the MATLAB function fresnel.

Both coefficients start at their normal-incidence value |p| = |(1 — 1.5)/(1 + 1.5)] = 0.2
and tend to unity at grazing angle 0 = 90°. The TM coefficient vanishes at the Brewster
angle 05 = 56.3°.

The right graph in the figure depicts the reflection coefficients |p7,(0") |, |pw(0")| as
functions of the incidence angle 0’ from the glass side. Again, the TM coefficient vanishes
at the Brewster angle 03 = 33.7°. The typical MATLAB code for generating this graph was:

na =1; nb = 1.5;

[thb,thc] = brewster(na,nb);
th = linspace(0,90,901);
[rte,rtm] = fresnel(na,nb,th);
plot(th,abs(rtm), th,abs(rte));

% calculate Brewster angle
% equally-spaced angles at 0.1° intervals
% Fresnel reflection coefficients
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Air to Glass Glass to Air

Fig. 7.6.2 TM and TE reflection coefficients versus angle of incidence.

The critical angle of reflection is in this case 0, = asin(1/1.5)= 41.8°. As soon as 0’
exceeds 0, both coefficients become complex-valued with unit magnitude.

The value of the TE reflection coefficient at the Brewster angle is prr = —p7 = —0.38,
and the TE reflectance |pg|? = 0.144, or 14.4 percent. This is too small to be useful for
generating TE polarized waves by reflection.

Two properties are evident from Fig. 7.6.2. One is that |pry| < |prz| for all angles of
incidence. The other is that 03 < 0. Both properties can be proved in general. O

Example 7.6.3: Lossy dielectrics. The Brewster angle loses its meaning if one of the media is
lossy. For example, assuming a complex refractive index for the dielectric, ng = n, — jn;,
we may still calculate the reflection coefficients from Eq. (7.4.4). It follows from Eq. (7.6.2)
that the Brewster angle 0 will be complex-valued.

Fig. 7.6.3 shows the TE and TM reflection coefficients versus the angle of incidence 6 (from
air) for the two cases ng = 1.50 — 0.15j and ng = 1.50 — 0.30j and compares them with
the lossless case of ng = 1.5. (The values for n; were chosen only for plotting purposes
and have no physical significance.)

The curves retain much of their lossless shape, with the TM coefficient having a minimum
near the lossless Brewster angle. The larger the extinction coefficient n;, the larger the
deviation from the lossless case. In the next section, we discuss reflection from lossy
media in more detail. m]

7.7 Complex Waves

In this section, we discuss some examples of complex waves that appear in oblique
incidence problems. We consider the cases of (a) total internal reflection, (b) reflection
from and refraction into a lossy medium, (c) the Zenneck surface wave, and (d) surface
plasmons. Further details may be found in [902-909] and [1293].

Because the wave numbers become complex-valued, e.g., k = B — j&, the angle of
refraction and possibly the angle of incidence may become complex-valued. To avoid
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Lossy Dielectric

Lossy Dielectric

1 ng=150-0.155 1

ng=1.50-0.30;
— ™ 4 — ™
08 lossless ‘/ 08 lossless e

Fig. 7.6.3 TM and TE reflection coefficients for lossy dielectric.

unnecessary complex algebra, it proves convenient to recast impedances, reflection co-
efficients, and field expressions in terms of wavenumbers. This can be accomplished by
making substitutions such as cos 8 = k,/k and sin 0 = ky/k.

Using the relationships kn = wu and k/n = we, we may rewrite the TE and TM
transverse impedances in the forms:

n )’]k wu r]kz k;
_ _nk _ _ o= MKz _ Kz 7.7.1
nte w0s0 Kk, K, ntv = ncos K we ( )

We consider an interface geometry as shown in Fig. 7.1.1 and assume that there are
no incident fields from the right of the interface. Snel’s law implies that kyx = kj, where
kx = ksin @ = w,/Ho€ sin 0, if the incident angle is real-valued.

Assuming non-magnetic media from both sides of an interface (u = y’ = o), the TE
and TM transverse reflection coefficients will take the forms:

n’TE_nTE kz_k,z n’TM_nTM k’ze—kze’
PTE= 7 = T PT™M = — = -5 . (7.7.2)
Ne+nmre  kz+kz N+ Nt kz€ + kg€
The corresponding transmission coefficients will be:
2k, 2k’ e
T =14+ =—F, T =1+ = Z 7.7.3
TE PTE K, + K, ™ P1™ Koe + k€' ( )

We can now rewrite Egs. (7.2.18) and (7.2.20) in terms of transverse amplitudes and
transverse reflection and transmission coefficients. Defining Eg = A, cos 6 or Eq = B
in the TM or TE cases and replacing tan 6 = kx/k,, tan 0" = k,/k;, = kx/k},, we have for
the TE case for the fields at the left and right sides of the interface:
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E(r) = Y Eole /% + prgelts?] e/

H = £ [(—x + ]’:—x z) e ke 4 pop (x + %z) efkﬂ] e kX

o i ’ (TE) (7.7.4)
E' (V) = § T Ege Kz Tk 7.
E k o )
H (r) = TTI:: 0 (—f(+ %2> e IK,Z p=jkxx
Nrte k7
and for the TM case:
o Kx .\ ikz ok ks ik
E(r)=Eo|(X— " 2)e /" +pmy X+ - 2)el7 | e/
k, k,
< EO —jkzz iK, 27 -— KX
H(r) =y ——[e/"* — ppye/*+*]e /™
nrm
(TM)  (7.7.5)

7 ~ k ~ —ijk’ —7,
E'(r) = T Eo (x - k—i‘ z) e IKiz g ikxx
Z

TmwmEo _a .,
H (1) = ¢ —M20 5jk;2 g =jknk
™

Equations (7.7.4) and (7.7.5) are dual to each other, as are Egs. (7.7.1). They transform
into each other under the duality transformation E — H, H — —E, € — y, and u — €.
See Sec. 18.2 for more on the concept of duality.

In all of our complex-wave examples, the transmitted wave will be complex with
K =kx+ki,z=B —jo' = (Bx—jox)X+ (B, —j})Zz. This must satisfy the constraint
kK - K = w?up€e’. Thus, the space dependence of the transmitted fields will have the
general form:

oKz g=ikxX — o=J(B,=j00)Z o= (Bx=jtx)X — o= (0,z+0tcX) o= (B, Z+BxX) (7.7.6)

For the wave to attenuate at large distances into the right medium, it is required that
o, > 0. Except for the Zenneck-wave case, which has oy > 0, all other examples will
have oy = 0, corresponding to a real-valued wavenumber k; = kx = Bx. Fig. 7.7.1 shows
the constant-amplitude and constant-phase planes within the transmitted medium de-
fined, respectively, by:

&7 + oxX = const., B,z + Bxx = const. (7.7.7)

As shown in the figure, the corresponding angles ¢ and y that the vectors B’ and
o’ form with the z-axis are given by:

tan¢ = B—f, tany = (X—i‘ (7.7.8)
z XKz
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X A

phase planes

amplitude planes

€€

Fig. 7.7.1 Constant-phase and constant-amplitude planes for the transmitted wave.

The wave numbers k,, k/, are related to ky through
k2 = w?ue - k3, k= w?ue —k2

In calculating k, and k/, by taking square roots of the above expressions, it is neces-
sary, in complex-waves problems, to get the correct signs of their imaginary parts, such
that evanescent waves are described correctly. This leads us to define an “evanescent”
square root as follows. Let € = eg — jey with €; > 0 for an absorbing medium, then

Jw?u(eg — jer)—kz, if € #0

k; = sqrte(w?p (eg — jer) —k3) = (7.7.9)

—j\Jk% — w2peg, if =0

If €; = 0 and w?peg — k2 > 0, then the two expressions give the same answer. But if
€r = 0 and w?ueg — k,% < 0, then k is correctly calculated from the second expression.
The MATLAB function sqrte.m implements the above definition. It is defined by

—jvlzl, if Re(z)< 0 and Im(z)=0

Jz therwi (evanescent SQRT) (7.7.10)
z, otherwise

y = sqrte(z) = {

Some examples of the issues that arise in taking such square roots are elaborated in
the next few sections.

7.8 Total Internal Reflection

We already discussed this case in Sec. 7.5. Here, we look at it from the point of view of
complex-waves. Both media are assumed to be lossless, but with € > €’. The angle of
incidence 6 will be real, so that k;, = kx = ksin@ and k, = kcos 0, with k = w./lE.
Setting k), = B, — jot,, we have the constraint equation:

K2+kZ?=kK? = k2= (B,—-jou,)?=w’ue — k3= w?uo(e — €sin®0)
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which separates into the real and imaginary parts:
22—« = w?up (€' — esin® ) = k*(sin® O, — sin® )
Y (7.8.1)
‘Xzﬁz =0

where we set sin? 0. = € /€ and k> = w?upe. This has two solutions: (a) &, = 0 and
B? = k?(sin® 8, — sin? @), valid when 6 < 0, and (b) B, = 0 and «? = k?(sin’ 0 —
sin? 0.), valid when 6 > 0.

Case (a) corresponds to ordinary refraction into the right medium, and case (b), to
total internal reflection. In the latter case, we have k;, = —j«/, and the TE and TM
reflection coefficients (7.7.2) become unimodular complex numbers:

k; -k, k;+jal ke — k€' k€ + joe

= , = - = s 7.8.2
P k;+kz k;—joo ™ ke + kye kz€ — joze ( )

The complete expressions for the fields are given by Eqs. (7.7.4) or (7.7.5). The prop-
agation phase factor in the right medium will be in case (b):

e—jk’zze—jkxx _ e—tx’zze—jkxx

Thus, the constant-phase planes are the constant-x planes (¢ = 90°), or, the yz-
planes. The constant-amplitude planes are the constant-z planes (¢ = 0°), or, the xy-
planes, as shown in Fig. 7.8.1.

X A

{; phase planes

> ‘x'
»Z
0
k
N
amplitude planes
€| €

Fig. 7.8.1 Constant-phase and constant-amplitude planes for total internal reflection (8 > 0.).

It follows from Eq. (7.8.2) that in case (b) the phases of the reflection coefficients are:

o, \/k,z< - kjn? \/sin2 0 —sin® 0,
k, /kgnz k3 cos 0
n2«, nz\/k>2< — k3n’? B 1/12\/sin2 0 — sin® 0,

prv = eV tan Yy = =

nzk, e [k2n2 — k2 B n’2 cos 6

where kg = w,/l€y is the free-space wave number.

pre = eJVr, tan Y =

(7.8.3)
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7.9 Oblique Incidence on a Lossy Medium

Here, we assume a lossless medium on the left side of the interface and a lossy one, such
as a conductor, on the right. The effective dielectric constant €’ of the lossy medium is
specified by its real and imaginary parts, as in Eq. (2.6.2):

’ ’ . r o ’ . 7
€ =€;—J <ed + —) =€g —J€; (7.9.1)
w
Equivalently, we may characterize the lossy medium by the real and imaginary parts
of the wavenumber k', using Eq. (2.6.12):

k' =B —jo' = w\Ho€ = wnto (€ — j€r) (7.9.2)

In the left medium, the wavenumber is real with components ky = ksin@, k, =
k cos 0, with k = w ,/Ho€. In the lossy medium, the wavenumber is complex-valued with
components k, = ky and k}, = B, — jot,. Using Eq. (7.9.2) in the condition k' - k' = k2,
we obtain:

K2+kZ?=K? = K+ (B,—ja,)’= (B —jo')?= w?uo(ey — jer) (7.9.3)

which separates into its real and imaginary parts:

2w =B%- &% -k =w?poekr — k3 = w?uo (e — €sin® @) = Dy

(7.9.4)
2B, 00, = 2B &’ = w?ug€; = Dy

where we replaced k2 = k?sin® @ = w?o€ sin® 0. The solutions of Egs. (7.9.4) leading
to a non-negative ,, are:

1/2 1/2
p [W/D§+D%+DR} ) [JD,%D%—DR]
z = - 5 H (Xz: -5

> > (7.9.5)

For MATLAB implementation, it is simpler to solve Eq. (7.9.3) directly as a complex
square root (but see also Eq. (7.9.10)):

k, =B, —jx, = \/k'2 — ki = \/wzuo(e;2 - jep) —ki = \/DR - jDr (7.9.6)

Egs. (7.9.5) define completely the reflection coefficients (7.7.2) and the field solutions
for both TE and TM waves given by Egs. (7.7.4) and (7.7.5). Within the lossy medium the
transmitted fields will have space-dependence:

e_jk’zze_jkxx — e_‘xlzze_j(ﬁlzz*'kxx)

The fields attenuate exponentially with distance z. The constant phase and ampli-
tude planes are shown in Fig. 7.9.1.

For the reflected fields, the TE and TM reflection coefficients are given by Egs. (7.7.2).
If the incident wave is linearly polarized having both TE and TM components, the corre-
sponding reflected wave will be elliptically polarized because the ratio py/prr is now
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x4 phase planes

ot
() N

T

amplitude planes

€|€’

Fig. 7.9.1 Constant-phase and constant-amplitude planes for refracted wave.

complex-valued. Indeed, using the relationships k3 +k2 = w? o€ and k2 +k7? = w? o€’
in ppy of Eq. (7.7.2), it can be shown that (see Problem 7.5):

o kok, —ki k,—ksin@tan6 B, —jo, —ksin6tané
pre kyk, +ki ki +ksinOtan® B, —jxz + ksin6tan@

(7.9.7)

In the case of a lossless medium, €’ = €% and €; = 0, Eq. (7.9.5) gives:

, Dgr|+D , Dgr|-D
B, - /IRI%, o, = /‘R‘% (7.9.8)

If € > €, then Dr = w?po (€ — €sin® O) is positive for all angles @, and (7.9.8)
gives the expected result B, = \/Dgr = w+/Ho (€g — €sin? @) and &, = 0.

On the other hand, in the case of total internal reflection, that is, when 6;3 < €, the
quantity Dy is positive for angles 6 < 6., and negative for 0 > 0., where the critical
angle is defined through €; = €sin? 0. so that Dg = w?u (sin® O, —sin® 0). Egs. (7.9.8)
still give the right answers, that is, 8, = \/|Drl and «;, = 0,if 0 < 0., and 8, = 0 and
o, = +/|IDgl, if 0 > O..

For the case of a very good conductor, we have €; > €, or D; > |Dgl, and
Egs. (7.9.5) give B, = &}, = /D;/2, or

4 4 4 ! 0- . O—
By, = =~ = le;o s provided we > 1 (7.9.9)

In this case, the angle of refraction ¢ for the phase vector B’ becomes almost zero
so that, regardless of the incidence angle 6, the phase planes are almost parallel to the
constant-z amplitude planes. Using Eq. (7.9.9), we have:

tang = kx _ w,/Ho€sin@  [2we

B:  Jwpeo/2

which is very small regardless of 0. For example, for copper (o = 5.7x107 S/m) at 10
GHz, and air on the left side (€ = €), we find vV2we/o = 1.4x1074.

sin 8
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Air-Water at 1 GHz Air-Water at 100 MHz

Fig. 7.9.2 TM and TE reflection coefficients for air-water interface.

Example 7.9.1: Fig. 7.9.2 shows the TM and TE reflection coefficients as functions of the inci-
dent angle 0, for an air-sea water interface at 100 MHz and 1 GHz. For the air side we
have € = €( and for the water side: €' = 81€y, — jo/w, with 0 = 4 S/m, which gives
€ = (81 —71.9j)€o at 1 GHz and €’ = (81 — 719j) €y at 100 MHz.

At 1 GHz, we calculate k' = w./upe’ = B’ — jx’ = 203.90 — 77.45j rad/m and k' =
B’ —jo' = 42.04 — 37.57j rad/m at 100 MHz. The following MATLAB code was used to
carry out the calculations, using the formulation of this section:

ep0 = 8.854e-12; mu0 = 4*pi*le-7;

sigma = 4; f = 1e9; w = 2%pi*f;

epl = ep0; ep2 = 81*ep0 - j*sigma/w;

k1l = w*sqrt(muO*epl); k2 = w*sqrt(muO*ep2); % Eq. (7.9.2)

th = linspace(0,90,901); thr = pi*th/180;

klx = kl*sin(thr); klz = kl*cos(thr);
k2z = sqrt(wA2*mu0*ep2 - klx.A2); % Eq. (7.9.6)
rte = abs((klz - k2z)./(klz + k2z)); % Eq. (7.7.2)

rtm = abs((k2z*epl - klz*ep2)./(k2z*epl + klz*ep2));

plot(th,rtm, th,rte);

The TM reflection coefficient reaches a minimum at the pseudo-Brewster angles 84.5° and
87.9°, respectively for 1 GHz and 100 MHz.

The reflection coefficients py and p7g can just as well be calculated from Eq. (7.4.2), with
n=1andn’ =./€' /€y, where for 1 GHz we have n’ = /81 — 71.9j = 9.73 — 3.69j, and for
100 MHz, n’ = /81 = 719j = 20.06 — 17.92j. O

In computing the complex square roots in Eq. (7.9.6), MATLAB usually gets the right
answer, that is, f, > 0 and &}, > 0.

If €k > €, then Dg = w?pp (€ — €sin’ ) is positive for all angles 0, and (7.9.6) may
be used without modification for any value of €.
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If € < € and €] > 0, then Eq. (7.9.6) still gives the correct algebraic signs for any
angle 6. But when e} = 0, that is, for a lossless medium, then D; = 0 and k;, = Drg.
For 0 > 0. we have Dg < 0 and MATLAB gives k}, = \JDg = +/=[Dg| = j/IDgI, which
has the wrong sign for o, (we saw that Egs. (7.9.5) work correctly in this case.)

In order to coax MATLAB to produce the right algebraic sign for «, in all cases, we
may redefine Eq. (7.9.6) by using double conjugation:

/ ;o - * —j\/IDrl, if D;=0and Dg <0
ky, =B, —Jja; = ( (Dr *JDI)*) = (7.9.10)
\/m, otherwise

One word of caution, however, is that current versions of MATLAB (ver. < 7.0) may
produce inconsistent results for (7.9.10) depending on whether Dj is a scalar or a vector
passing through zero.t Compare, for example, the outputs from the statements:

DI
DI

0; kz
-1:1; kz

conj(sqrt(conj(-1 - j*DI)));
conj(sqrt(conj(-1 - j*DI)));

Note, however, that Eq. (7.9.10) does work correctly when Dy is a single scalar with
Dr being a vector of values, e.g., arising from a vector of angles 0.

Another possible alternative calculation is to add a small negative imaginary part to
the argument of the square root, for example with the MATLAB code:

kz = sqrt(DR-j*DI-j*realmin);

where realmin is MATLAB’s smallest positive floating point number (typically, equal
to 2.2251 x 1073%8)  This works well for all cases. Yet, a third alternative is to use
Eq. (7.9.6) and then reverse the signs whenever D; = 0 and D < 0, for example:

kz = sqrt(DR-j*DI);
kz(DI==0 & DR<0) = -kz(DI==0 & DR<0);

Next, we discuss briefly the energy flux into the lossy medium. It is given by the z-
component of the Poynting vector, P, = %2 -Re(EX H*). For the TE case of Eq. (7.7.4),
we find at the two sides of the interface:

_ |Eol?
2wHo

_|Eo?

= 2o By | T el 2007 (7.9.11)
0

?z kz(l_lprlz): P,z
where we replaced nrg = wpo/k; and N = wpe/k,. Thus, the transmitted power
attenuates with distance as the wave propagates into the lossy medium.

The two expressions match at the interface, expressing energy conservation, that is,

at z = 0, we have P, = P/, which follows from the condition (see Problem 7.7):
kz(1 = lprel?) = ByITrel? (7.9.12)

Because the net energy flow is to the right in the transmitted medium, we must have
B, = 0. Because also k, > 0, then Eq. (7.9.12) implies that |prg| < 1. For the case of

Tthis has been fixed in versions > v7.0.
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total internal reflection, we have B’ = 0, which gives |prg| = 1. Similar conclusions can
be reached for the TM case of Eq. (7.7.5). The matching condition at the interface is now:

’

TAE [Tml? (7.9.13)
z

€ €
ki(l — lpml?) = Re( ) ITmml? =
VA

k;

Using the constraint w?uy€; = 28, it follows that the right-hand side will again
be proportional to 8}, (with a positive proportionality coefficient.) Thus, the non-negative
sign of B, implies that |pry| < 1.

7.10 Zenneck Surface Wave

For a lossy medium €', the TM reflection coefficient cannot vanish for any real incident
angle 0 because the Brewster angle is complex valued: tan 0 = /€'/€ = /(€ — je€)) /€.

However, py can vanish if we allow a complex-valued 6, or equivalently, a complex-
valued incident wavevector k = B — j«, even though the left medium is lossless. This
leads to the so-called Zenneck surface wave [32,902,903,909,1293].

The corresponding constant phase and amplitude planes in both media are shown
in Fig. 7.10.1. On the lossless side, the vectors B and & are necessarily orthogonal to
each other, as discussed in Sec. 2.11.

X A
Pry=0
phase planes 0
X _ /7 amplitude planes
amplitude planes—" €€

Fig. 7.10.1 Constant-phase and constant-amplitude planes for the Zenneck wave.

We note that the TE reflection coefficient can never vanish (unless u # u’) because
this would require that k;, = k,, which together with Snel’s law kj = ky, would imply
that k = k', which is impossible for distinct media.

For the TM case, the fields are given by Eq. (7.7.5) with pry = 0 and T = 1. The
condition py = 0 requires that k€ = k,€’, which may be written in the equivalent form
k,k? = k;k’2. Together with k3 + k2 = k? and k2 + k}? = k’2, we have three equations
in the three complex unknowns ky, k, k;,. The solution is easily found to be:

, 2 7]
Kk R S VI (7.10.1)

ky=——7—, k
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where k = w./lig€ and k' = B’ — j&' = w+/Up€’. These may be written in the form:

’

€€

€ €
ke = WSl —— k, = w Sy —— . k. = w /iy ———— 7.10.2
X T OVHoN e Re T OVHo ey e T WOV e (7:10-2

Using ky = kx, the space-dependence of the fields at the two sides is as follows:

e—j(kxx+kzz) — e—(axx+azz)e—j([3xx+ﬁzz) , for z<0
efj(kl;x+k’zz) _ e—(rxxx+a’zz)efj(ﬁxx+ﬁ’zz) , forz>0

Thus, in order for the fields not to grow exponentially with distance and to be con-
fined near the interface surface, it is required that:

x>0, o;<0, «,>0 (7.10.3)

These conditions are guaranteed with the sign choices of Eq. (7.10.2). This can be
verified by writing

€ =|€e o T Im(e)

_j Re(e
€+e =le+eled™ € ©

] CH g
o (6-51) x02\

and noting that 6, = § — §; > 0, as follows by inspecting the triangle formed by the
three vectors €, €', and € + €’. Then, the phase angles of ky, k;, k, are —62/2, 61/2,
and — (62 + 61/2), respectively, thus, implying the condition (7.10.3). In drawing this
triangle, we made the implicit assumption that €z > 0, which is valid for typical lossy
dielectrics. In the next section, we discuss surface plasmons for which €3 < 0.

Although the Zenneck wave attenuates both along the x- and z-directions, the atten-
uation constant along x tends to be much smaller than that along z. For example, in the
weakly lossy approximation, we may write €' = €5 (1 —jT), where T = €;/€; < 1 is the
loss tangent of €. Then, we have the following first-order approximations in T:

’

€ _’ €
€+¢€ €+¢€

. T 1 1 T €g
€ =4\egll-Jj= |, ——=———=[1+j7 ;
ve \/7R< 12) VE + € /e+e}2( 12€+€R>

These lead to the first-order approximations for ky and k:

ec; T € € T €
ky =y B l1-j5—=), ke=w/io——|1+j5—2+
* Ho e+eR< J2€+€R> ‘ Ho /€+€§e( J2€+€R>
It follows that:

’ ’
€p T € € T € Ox €
ax = w-/Ho oy = —wW-/Hy———7 => =\
R

7 o 7y ’
€e+tep2eteg /€+€%2€+€R |zl

Typically, €; > €, implying that &y < |&,|. For example, for an air-water interface
we have at microwave frequencies €y /€ = 81, and for an air-ground interface, €3 /€ = 6.
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If both media are lossless, then both k and k' are real and Egs. (7.10.1) yield the
usual Brewster angle formulas, that is,
ky k' e

tan0p = — tanfy = — = — =

k, ke’ kK, Kk~ Je

Example 7.10.1: For the data of the air-water interface of Example 7.9.1, we calculate the fol-
lowing Zenneck wavenumbers at 1 GHz and 100 MHz using Eq. (7.10.2):

ke k e

f=1GHz | f =100 MHz

kx = Bx —Jjo&x = 20.89 — 0.064j | kx = Bx —jc&Xx = 2.1 — 0.001j
k, =B, —jo, = 1.88 + 0.71j k, = B, —jot, = 0.06 + 0.05j
k, = B, — jo, = 202.97 — 77.80j | k,, = B, — jot, = 42.01 — 37.59j

The units are in rads/m. As required, « is negative. We observe that &y < || and that
the attenuations are much more severe within the lossy medium. m]

7.11 Surface Plasmons

Consider an interface between two non-magnetic semi-infinite media €; and €», as shown
in Fig. 7.11.1 The wavevectors k; = Xkx + Zk, and ko = Xky + Z k> at the two sides
must have a common ky component, as required by Snel’s law, and their z-components
must satisfy:

k2, =k3e, — k2, k%, =k3er — k2 (7.11.1)

where we defined the relative dielectric constants &; = €,/€g, €2 = €2/€p, and the free-
space wavenumber kg = w./Ho€g = w/Co. The TM reflection coefficient is given by:

kzoer —kzie

Prv =
kzoer + ke
X A X A
Pry=0 Pry =0
Ereﬂ = 0\\\ Ereﬂ #0
% A A/
y »Z ) »Z
0 0y
k| ///

Einc %0 Eine=0/

€] 6 air €; | €,<0 metal

Brewster - Zenneck Surface Plasmons

Fig. 7.11.1 Brewster-Zenneck (p7y = 0) and surface plasmon (pry = o) cases.
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Both the Brewster case for lossless dielectrics and the Zenneck case were charac-
terized by the condition ppy = 0, or, k;pe1 = kz1&2. This condition together with
Egs. (7.11.1) leads to the solution (7.10.2), which is the same in both cases:

| &€& kog: ko2
kx =k , kjy=———, kp=——— 7.11.2
X 0 &+ & z &1+ & 22 &1+ & ( )

Surface plasmons or polaritons are waves that are propagating along the interface
and attenuate exponentially perpendicularly to the interface in both media. They are
characterized by a pole of the reflection coefficient, that is, pry = . For such waves to
exist, it is necessary to have the conditions:

£16 <0 and & +& <0 (7.11.3)

at least for the real-parts of these quantities, assuming their imaginary parts are small.
If the left medium is an ordinary lossless dielectric €; > 0, such as air, then we must
have &; < 0 and more strongly &, < —&;. Conductors, such as silver and gold, have this
property for frequencies typically up to ultraviolet. Indeed, using the simple conductiv-

ity model (1.12.3), we have for the dielectric constant of a metal:
2 2
e(w)=60+£=eo+& => e(w)=1—w7”, (7.11.4)

Jw Jw(jw +y) w? - jwy

Ignoring the imaginary part for the moment, we have

which is negative for w < w,. The plasma frequency is of the order of 1000-2000 THz,
and falls in the ultraviolet range. Thus, the condition (7.11.3) is easily met for optical
frequencies. If €; = 1, then, the condition &, < —&; requires further that
2
w w
H=1--2<-1 = w<-2£
2 w2 NA
and more generally, w < wy//1 + &;. The condition pry = o means that there is only
a “reflected” wave, while the incident field is zero. Indeed, it follows from Eref = p1mEinc,
or Einc = Erei/ prum, that Ejye will tend to zero for finite Eren and pry — oo.

The condition pry = o is equivalent to the vanishing of the denominator of pp,
that is, kz2&1 = —kz1 &2, which together with Egs. (7.11.1) leads to a similar solution as
(7.10.2), but with a change in sign for k,:

£1€ koe koe
el S (7.11.5)
& + & JVE1L+ & V&1t &2

The fields at the two sides of the interface are given by Egs. (7.7.5) by taking the limit
prv — o0 and Ty = 1 + pry — oo, which effectively amounts to keeping only the terms
that involve ppy. The fields have a z-dependence e/*21 on the left and e /2% on the
right, and a common x-dependence e IkxX,

kx = ko

k : ; k . .
E, = Ey (}A( + kix i) eszlZ e’JkX" E, = E (f( — kix 2) eiJkZZz e’JkX"
71 7 (7.11.6)

we; wez eiszzZ e*jkxx

ejkzlz e*jkxx H2 — ?EO
z1 z2

H, = -V Ej
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It can be verified easily that these are solutions of Maxwell’s equations provided
that Egs. (7.11.1) are satisfied. The boundary conditions are also satisfied. Indeed, the
Ex components are the same from both sides, and the conditions &, E;; = &E,» and
Hy, = H,; are both equivalent to the pole condition k> &; = —k;; &>.

The conditions (7.11.3) guarantee that k is real and k1, k,, pure imaginary. Setting
& = —&yr with &, > €1, we have &1 + & = /&) — & = j/E2r — &1, and V&1&2 =
V=& &y = j/€1&2r. Then, Egs. (7.11.5) read

&1&2r . ko&r . kogar
kx=ko, | ——, kpn=—-J———, kp=—-j—— 7.11.7
X 0 S — £, z1 J ﬁzr — z2 J Eor — &1 ( )

Setting k;; = —joz and kz, = —jxz2, with both «s positive, the z-dependence at
both sides of the interface at z = 0 will be:

elknz _ p0nz | o Jknz _ o—0nz
that is, exponentially decaying for both z < 0 and z > 0. Inserting &, = w3/w? — 1

into ky gives the so-called plasmon dispersion relationship, For example, if &, = 1,

k2 wZ wlz’f B wZ
YTk wh - 2w?
Defining the normalized variables @ = w/w, and k = ky/k,, where k, = wp/co,
we may rewrite the above relationship as,

- 1 - ?
k2 — (2
© 1 202
with solution
- 1 - 1
w=_|k?+=— [k#+ - 7.11.8
J ’ 2 ( )

It is depicted in Fig. 7.11.2. In the large ky limit, it converges to the horizontal line
w = wp/\/?. For small ky, it becomes the dispersion relationship in vacuum, w = coky,
which is also depicted in this figure.

Because the curve stays to the right of the vacuum line w = coky, thatis, ky > w/co,
such surface plasmon waves cannot be excited by an impinging plane wave on the inter-
face. However, they can be excited with the help of frustrated total internal reflection,
which increases ky beyond its vacuum value and can match the value of Eq. (7.11.7) re-
sulting into a so-called surface plasmon resonance. We discuss this further in Sec. 8.5.

In fact, the excitation of such plasmon resonance can only take place if the metal
side is slightly lossy, that is, when &, = —¢&2, — jé&pj, With 0 < &; < €7,. In this case, the
wavenumber ky acquires a small imaginary part which causes the gradual attenuation
of the wave along the surface, and similarly, k1, k>, acquire small real parts. Replacing
&or by &2y + j&p; in (7.11.7), we now have:

&1 (&2r + jEoi —jkoe —jko (21 + jEoi
Ky = ko [ &1 ( or +J 2i) Ky = JKo&1 Ky = Jko ( or +J 2i) (7.11.9)
Eor + JE2i — &1 Véar tJ&2i — & Véar tJ&2i — &
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plasmon dispersion relation

o/,

e W v}

Fig. 7.11.2 Surface plasmon dispersion relationship.

Expanding ky to first-order in &,;, we obtain the approximations:

X &1€&
kx = Bx —Jjax, Bx=ko L1

_&iéar )3/2 €2i (7.11.10)

&y =Ko (
’ &or — €1 2&3,

Er — &

Example 7.11.1: Using the value &, = —16 — 0.5j for silver at Ao = 632 nm, and air & = 1,
we have kg = 21m/A¢ = 9.94 rad/um and Egs. (7.11.9) give the following values for the
wavenumbers and the corresponding effective propagation length and penetration depths:

1
kx = Bx —jox = 10.27 — 0.0107j rad/pm, Ox = = 93.6 um

X
1

ks = Ba —jos = —0.043 — 2.57j rad/pm, &, = o, = 390nm
z1
1

ko = Bz —joz = 0.601 — 41.12j rad/pm, S, = W, = 24nm
z2

Thus, the fields extend more into the dielectric than the metal, but at either side they are
confined to distances that are less than their free-space wavelength. m|

Surface plasmons, and the emerging field of “plasmonics,” are currently active areas
of study [593-631] holding promise for the development of nanophotonic devices and
circuits that take advantage of the fact that plasmons are confined to smaller spaces
than their free-space wavelength and can propagate at decent distances in the nanoscale
regime (i.e., tens of ym compared to nm scales.) They are also currently used in chemical
and biological sensor technologies, and have other potential medical applications, such
as cancer treatments.

7.12 Oblique Reflection from a Moving Boundary

In Sec. 5.8 we discussed reflection and transmission from a moving interface at nor-
mal incidence. Here, we present the oblique incidence case. The dielectric medium is
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A X AX'

fixed frame moving dielectric

ny

Fig. 7.12.1 Oblique reflection from a moving boundary.

assumed to be moving with velocity v perpendicularly to the interface, that is, in the
z-direction as shown in Fig. 7.12.1. Other geometries may be found in [474-492].

Let S and S’ be the stationary and the moving coordinate frames, whose coordinates
{t,x,y,z} and {t',x’,y’,Z'} are related by the Lorentz transformation of Eq. (K.1) of
Appendix K.

We assume a TE plane wave of frequency w incident obliquely at the moving inter-
face at an angle 0, as measured in the stationary coordinate frame S. Let w,, w be
the Doppler-shifted frequencies, and 0,, 0¢, the angles of the reflected and transmitted
waves. Because of the motion, these angles no longer satisfy the usual Snel laws of
reflection and refraction—however, the do satisfy modified versions of these laws.

In the moving frame S with respect to which the dielectric is at rest, we have an
ordinary TE oblique incidence problem, solved for example by Eq. (7.7.4), and therefore,
all three frequencies will be the same, w’ = w), = w;, and the corresponding angles
0', 0, 0; will satisfy the ordinary Snel laws: 0, = 0’ and sin0’ = nsin 0y, where
n = /€/ €y and the left medium is assumed to be free space.

The electric field has only a y-component and will have the following form at the left
and right sides of the interface, in the frame S and in the frame S':

Ey = Eie/% + E,e/® | E, = Ee/®

o, . o (7.12.1)
E, = Eje/* + Eje/*,  E;, =Ee%
where E, = preEj and E; = T1£E{, and from Eq. (7.7.2),
kf _ k’ r_ ’ 2 ’
o iz — Ktz _ cos 0 —ncos0; Tr =1+ prp = cos 0 (7.12.2)

ki, + ki, cos@ +ncosf;’ cos 0’ + ncos 0;

The propagation phases are Lorentz invariant in the two frames and are given by:
¢i = wt —kjzz —kixx = 't —kj,z' — kX' = ¢;
¢br
on

Wt + kpzz —kpxx = W't + k., 2 — k. x' = ¢, (7.12.3)

v ! 7 4 7 ’
Wit —KkzZ —kixx = W't — ki, z' — kX' = ¢y
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with incident, reflected, and transmitted wavenumbers given in the frame S’ by:
kfz ] k:rz ) kl C.OS 9,” k%Z : k% C_OS 9,; (7.12.4)
kix = ki = kisin0@’, ki = k;sin 0,

where k; = k, = w'/c and k; = w' /€l = nw’/c. The relationships between
the primed and unprimed frequencies and wavenumbers are obtained by applying the
Lorentz transformation (K.14) to the four-vectors (w/c,kix,0,Kiz), (wr,Kyx, 0, —Krz),
and ((U[/C, k[x, 0, k[z)l

w =y +Bcki,)=w'y(l+ Bcosh)

ki, =y (kj, + gw')= uc)/ y(cos @ + B)
wy =y(w = Bcky,)=w'y(1 - BcosO")
—kyz = y(=k;, + gw')= —wT,y(cos 0’ - B) (7:12.3)
w; = y(w' + Bcky,)= w'y (1 + Brcos 0y)
ki, = y(kg, + Bw')= w’y(ncos 0, +p)

c c
where B = v/c and y = 1/4/1 — B2. Combining Snel’s laws for the system S’ with the

invariance of the x-components of the wavevector under the Lorentz transformation
(K.14), we have also:

kix = Kpx = Kix = k;x = k;'x = k;x

w oW . @ ., (7126)
c sin@’ = sin9r=n7 sin 0;

kisin0 =k, sin0, = k;sin0; =

Because the incident and reflected waves are propagating in free space, their wavenum-
bers will be k; = w/c and k, = w,/c. This also follows from the invariance of the scalar
(w/c)?—k? under Lorentz transformations. Indeed, because k; = k} = w’/c in the S’
system, we will have:

2 2

2
w k2=

2 [
c

w
c2

w
c2

2
4 w ’
-kif=0, —JS-ki= -k?=0

For the transmitted wavenumber k;, we find from Egs. (7.12.5) and (7.12.6):
ke = k2, + k3, = w?\/yz (ncos 0; + B)2+n? sin’ 0; (7.12.7)

Setting v; = w;/k; = c/n;, we obtain the “effective” refractive index n; within the
moving dielectric medium:

¢ ck \/;/2(r1c059§+B)2+nzsin2 0; - og
M= Vi w; y(1 + Brncos 0}) (7.12.8)

Atnormal incidence, this is equivalent to Eq. (5.8.6). Replacing k; = w/c, k, = w;/c,
and k; = w¢ng/c in Eq. (7.12.6), we obtain the generalization of Snel’s laws:

wsin® = w,sin0, = wn;sinf; = w'sin@’ = w’sin 6, = w'nsin; (7.12.9)
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For a stationary interface, all the frequency factors drop out and we obtain the or-
dinary Snel laws. The reflected and transmitted frequencies are 6-dependent and are
obtained from (7.12.5) by eliminating w’:

1— Bcos®’ 1 + Bncos 0;
Wr=w—"—" =t 7.12.10
" 1+ BcosO’ t 1+ BcosO’ ( )

Replacing kj; = kjcos@ = (w/c)cos® and k,, = k,cos0, = (w,/c)cosB, in

Eq. (7.12.5), we obtain the relationship of the angles 0, 0, to the angle 6’:

cosO' + B cos 0’ — B
g= VTP 0, = 2 7.12.11
cos 1+ BcosO’ cos Gr 1 - BcosO’ ( )
which can also be written as:
, 0 — 0, +
cos/ = 080—B _ cos0r+B (7.12.12)

N 1-Bcos® 1+ Bcosb,

Solving for 0, in terms of 0, we obtain:

_ (14 B%)cos —2B
cos 0, = 1~ 2Bcos0 + B2 (7.12.13)

Inserting cos 0’ in Eq. (7.12.10), we find the reflected frequency in terms of 6:

1-2BcosO + B?
e (7.12.14)

Egs. (7.12.13) and (7.12.14) were originally derived by Einstein in his 1905 paper on
special relativity [474]. The quantity n cos 0; can also be written in terms of 6. Using
Snel’s law and Eq. (7.12.12), we have:

2
ncos0; =\n2 —sin® @’ =vn2 —1+cos20’ = |n2 -1+ cosO=F , or,
1-Bcos®

o — \/(nz —1)(1 - Bcos0)%+(cos0 — B)? Q
neoste = 1-Bcos6 “1-BcosO

Using (7.12.15) and the identity (1 + Bcos0’) (1 — Bcos@)= 1 — B2, we find for the
transmitted frequency:

(7.12.15)

_ 1+PBncosf;  1-Bcosf+pQ
W =W 1+ Bcos0’ =w 1- g (7.12.16)

The TE reflection coefficient (7.12.2) may also be expressed in terms of 0:

_cos0 —ncosO; cos®-B-Q
" cosO +ncosf; cosh-B+Q (7.12.17)

PTE
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Next, we determine the reflected and transmitted fields in the frame S. The simplest
approach is to apply the Lorentz transformation (K.30) separately to the incident, re-
ﬂected,ﬁnd transmitted waves. In the S’ frame, a plane wave propagating along the unit
vector k has magnetic field:

’ 1. ’ ’ ’ r/ ’ N/ ’
H = KxE = CB=Cu0H=%k XE =nk xE (7.12.18)

where n = 1 for the incident and reflected waves. Because we assumed a TE wave and
the motion is along the z-direction, the electric field will be perpendicular to the velocity,
that is, B - E' = 0. Using the BAC-CAB rule, Eq. (K.30) then gives:

E=E =y(E, —BxcB,)=y(E —BxcB)=y(E —Bx (nk xE'))
, B , (7.12.19)
=y(E'-n(B-E)k +n(B-k)E)=yE' (1+np-k)
Applying this result to the incident, reflected, and transmitted fields, we find:

Ei = yE{(1+ Bcos6)
E, = yE, (1 —Bcos0 )= yprE; (1 — BcosO") (7.12.20)
E¢ = yE; (1 + nBcos0;)= yTreE{ (1 + nBcos 6;)

It follows that the reflection and transmission coefficients will be:

E, 1 - Bcos@’ w, E; 1 + npcos 0; o

e =P, o = TTE eyt = TTE 7.12.21

E; pTEl + Bcos O’ PrE w E; TE 4 B cos 0’ E o ( )
The case of a perfect mirror corresponds to prg = —1 and T = 0. To be interpretable

as a reflection angle, 6, must be in the range 0 < 0, < 90°, or, cos €, > 0. This requires
that the numerator of (7.12.13) be positive, or,

2B

2B )
1+p2

(1+pB%)cos@—-28=0 < cosf = E

< 0 < acos( (7.12.22)

Because 2/ (1 + B2)> B, (7.12.22) also implies that cos @ > B, or, vV < ¢, = ccos 0.
Thus, the z-component of the phase velocity of the incident wave can catch up with the
receding interface. At the maximum allowed 6, the angle 6, reaches 90°. In the above,
we assumed that § > 0. For negative f3, there are no restrictions on the range of 6.

7.13 Geometrical Optics

Geometrical optics and the concepts of wavefronts and rays can be derived from Maxwell’s
equations in the short-wavelength or high-frequency limit.

We saw in Chap. 2 that a uniform plane wave propagating in a lossless isotropic
dielectric in the direction of a wave vector k = kk = nko Kk is given by:

E(r) = Eye nkokr gy = HyeJmkokr — R.E =0, Hy= nﬂli x Ey (7.13.1)
0
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where n is the refractive index of the medium n = /€/€g, ko and ng are the free-space
wavenumber and impedance, and K, the unit-vector in the direction of propagation.

The wavefronts are defined to be the constant-phase plane surfaces S(r)= const.,
where S(#)= nk - . The perpendiculars to the wavefronts are the optical rays.

In an inhomogeneous medium with a space-dependent refractive index n(r), the
wavefronts and their perpendicular rays become curved, and can be derived by consid-
ering the high-frequency limit of Maxwell’s equations. By analogy with Egs. (7.13.1), we
look for solutions of the form:

E(r)=Ey(r) e %S H(¥)= Hy(r) e /55O (7.13.2)

where we will assume that kg is large and that Ey, Hy are slowly-varying functions of r.
This means that their space-derivatives are small compared to k¢ or to 1/A. For example,
|V X Ey| < k.

Inserting these expressions into Maxwell’s equations and assuming y = Ly and € =
n2egy, we obtain:

V X E=e M5 (V x By — jkoVS X Ey) = —jepoHy e /%
V x H=e /%5 (V x Hy — jkoVS x Hy) = jn’weoEy e /oS

Assuming |V X Ey| < |koVS X Ey|, and similarly for Hy, and dropping the common
phase factor e /oS we obtain the high-frequency approximations:

—JkoVS X Ey = —jwuoHy

—jkoVS X Hy = jn°wegEy

~ 1
Replacing kg = w./Ho€p, and defining the vector k = HVS' we find:

Hy = £IA(XE(), Ey = —@RXH() (7.13.3)
no n

These imply the transversality conditions k - Ey = k - Hy = 0. The consistency of the
equations (7.13.3) requires that k be a unit vector. Indeed, using the BAC-CAB rule, we
have:

kx (kX Ey)=k(k - Ey)—Eo(k - k)= —E (k - k) = %RXHO - _E

Thus, we obtain the unit-vector condition, known as the eikonal equation:
k-k=1 = |VS|2=n? (eikonal equation) (7.13.4)

This equation determines the wavefront phase function S(r). The rays are the per-
pendiculars to the constant-phase surfaces S (¥) = const., so that they are in the direction
of VS ork. Fig. 7.13.1 depicts these wavefronts and rays.

The ray passing through a point ¥ on the surface S(r)= S4, will move ahead by a
distance dr in the direction of the gradient VS. The length of dris dl = (dr - dr)V/2.
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ray

wavefronts

Fig. 7.13.1 Wavefront surfaces and rays.

The vector dr/dl is a unit vector in the direction of VS and, therefore, it must be equal
to k. Thus, we obtain the defining equation for the rays:

dr - dr 1
E—k = E—HVS =

dr

na =VS§ (7.13.5)

The eikonal equation determines S, which in turn determines the rays. The ray
equation can be expressed directly in terms of the refractive index by eliminating S.
Indeed, differentiating (7.13.5), we have:

d ( dr) _d gs)- (ﬂ’_v>vg=%(vs-v)v5

ai\ai) = ai di
where, in differentiating along a ray, we used the expression for d/dl:
d dr
m = E -V (7.13.6)

But, V(VS - VS) = 2(VS - V)VS, which follows from the differential identity
Eg. (C.16) of the Appendix. Therefore,

d(,dry_1 L g L
m(na)_n(vs V)VS_ZHV(VS VS)_va(n )—2n2nVn, or,

d dr .

dl (n a) =Vn (ray equation) (7.13.7)

The vectors Ey, Hy, k form a right-handed system as in the uniform plane-wave case.
The energy density and flux are:

1 1 1
We = —Re[=€E- E*] = ~€eon®|E|?
e=5 e[Z ] 4 on”|Ep|

1 , 1 n? , 1 .
Wm = ~Ho|Hol?* = 2Ho 2 |Eo|? = ~eon?|Eol? = w,
0

4 4
(7.13.8)

_ _1 2\ B2
W—We+Wm—2€0n | Ep|

_1 L Y
P = Re[Ex H'] = Znok|E°|
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Thus, the energy transport velocity is:

2N
o

9k (7.13.9)

v= —
n

k do.

o

The velocity v depends on r, because n an

7.14 Fermat’s Principle

An infinitesimal movement by dI along a ray will change the wavefront phase function
by dS = ndl. Indeed, using Eq. (7.13.6) and the eikonal equation we find:
s _dr

ar vs=Llvs.vs=
n

i 2 _
dl dl n n (7.14.1)

1

n
Integrating along a ray path from a point A on wavefront S(r)= S, to a point B on

wavefront S (r) = Sp, as shown in Fig. 7.13.1, gives rise to the net phase change:

B B
Sp—Sa = J ds = J ndl (7.14.2)
A A

The right-hand side is recognized as the optical path length from A to B. It is pro-
portional to the travel time of moving from A to B with the ray velocity v given by
Eq. (7.13.9). Indeed, we have dl = v - kdt = codt/n, or, dS = ndl = cydt. Thus,

B tp
Sp—Sa = J ndl = ¢y dt = co(tg — ta) (7.14.3)
A

ta

Fermat’s Principle states that among all possible paths connecting the two points A
and B, the geometrical optics ray path is the one the minimizes the optical path length
(7.14.3), or equivalently, the travel time between the two points. The solution to this
minimization problem is the ray equation (7.13.7).

Any path connecting the points A and B may be specified parametrically by the curve
r(T), where the parameter T varies over an interval T4 < T < Tp. The length dl may be
written as:

dl = (dr-dn'? = (¥r-»'?dt, where = % (7.14.4)
Then, the functional to be minimized is:
B 5 172
J ndl = J L(r, k) dT, where L(r,i)=n(r) (i-¥) (7.14.5)
A TaA

The minimization of Eq. (7.14.5) may be viewed as a problem in variational calculus

with Lagrangian function L. Its solution is obtained from the Euler-Lagrange equations:
d (oL oL

— === 7.14.6

dr ( or ) or ( )
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See [868-870] for a review of such methods. The required partial derivatives are:

oL on,. .12 0L ... .12 dr
or ~ or )T Gy =nili ) =n

The Euler-Lagrange equations are then:

d ﬂ._.fu.z)_ain._.uz
dr (n d'r(r ) - ar(r ") o

V- i')*l/Z

o122 d ﬂ...—I/Z)_al
(r-1) dt (nd'r(r P) ~or

Using dl = (- ¥) 1z dT, we may rewrite these in terms of the length variable dl,
resulting in the same equations as (7.13.7), that is,

(7.14.7)

d dr on
dl (" dI) = or (7.14.8)

A variation of Fermat’s principle states that the phase change between two wave-
front surfaces is independent of the choice of the ray path taken between the surfaces.
Following a different ray between points A’ and B’, as shown in Fig. 7.13.1, gives the

same value for the net phase change as between the points A and B:

(7.14.9)

B B’
SB_SA:J l’ldl=J l’ldl’
A A’

This form is useful for deriving the shapes of parabolic reflector and hyperbolic lens
antennas discussed in Chap. 21.

It can also be used to derive Snel’s law of reflection and refraction. Fig. 7.14.1 shows
the three families of incident, reflected, and refracted plane wavefronts on a horizontal
interface between media n, and nyp, such that the incident, reflected, and refracted rays
are perpendicular to their corresponding wavefronts.

For the reflection problem, we consider the ray paths between the wavefront surfaces
ApA; and A;A). Fermat's principle implies that the optical path length of the rays
AOA’, ApAj, and A, A) will be the same. This gives the condition:

Ng(lag +1)=ngL =ngl” = L=1L

where L and L’ are the lengths of the rays AgAo and A,Aj. It follows that the two
triangles A¢gA»A} and AgAyA); will be congruent. and therefore, their angles at the
vertices Ay and A} will be equal. Thus, 0, = 0.
For the refraction problem, we consider the ray paths AOB, AyBy, and A;B; between
the wavefronts AgA; and ByB;. The equality of the optical lengths gives now:
L, np

Nglg + nply = nply =ngl, = — =
Ly Nng

But, the triangles AgA;B; and AyBpB; have a common base AyB;. Therefore,

Ls _sin0q
L, sin0y
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- refracted
By 4 wavefronts

Fig. 7.14.1 Snel’s laws of reflection and refraction.

Thus, we obtain Snel’s law of refraction:

L sin 0 np . )
-4 -4 -2 & p,sin@g = npsinfy
L, sin0, ng

7.15 Ray Tracing

In this section, we apply Fermat’s principle of least optical path to derive the ray curves
in several integrable examples of inhomogeneous media.

As a special case of Eq. (7.14.8), we consider a stratified half-space z > 0, shown in
Fig. 7.15.1, in which the refractive index is a function of z, but not of x.

ZA . ZA . .
decreasing n(z) T increasing n(z) T
ray
ray
y dl
/ 0|d
. 4 dl 0ldz . 7
0 dx dx
0
0 X X 0 X x
medium n, medium 7,
9, edium n, 9, edium n,

Fig. 7.15.1 Rays in an inhomogeneous medium.
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Let O be the angle formed by the tangent on the ray at point (X, z) and the vertical.
Then, we have from the figure dx = dl sin @ and dz = dl cos 8. Because on/ox = 0, the
ray equation (7.14.8) applied to the x-coordinate reads:

d dx
ai(na) =0
This is the generalization of Snel’s law to an inhomogeneous medium. The constant

may be determined by evaluating it at the entry point z = 0 and x = 0. We take the
constant to be ng, sin 0,. Thus, we write (7.15.2) as:

d
nd—); =const. = nsin® = const. (7.15.1)

‘ n(z)sin0(z)= ngsin 0, (generalized Snel’s law) (7.15.2)

The z-component of the ray equation is, using dz = dl cos 0:

d dz dn d dn
dl (na) =1 = cos@d—z (ncos@) = dz (7.15.3)
This is a consequence of Eq. (7.15.2). To see this, we write:
ncos0 = \/n2 —n2sin? 0 = \/nz — n2sin? 0, (7.15.4)

Differentiating it with respect to z, we obtain Eq. (7.15.3). Therayin the left Fig. 7.15.1
is bending away from the z-axis with an increasing angle 6 (z). This requires that n(z)
be a decreasing function of z. Conversely, if n(z) is increasing as in the right figure,
then 6 (z) will be decreasing and the ray will curve towards the z-axis.

Thus, we obtain the rule that a ray always bends in the direction of increasing n(z)
and away from the direction of decreasing n(z).

The constants n, and 6, may be taken to be the launch values at the origin, that
is, n(0) and 0 (0). Alternatively, if there is a discontinuous change between the lower
and upper half-spaces, we may take ng,, 6, to be the refractive index and incident angle
from below.

The ray curves can be determined by relating x and z. From Fig. 7.15.1, we have
dx = dztan 0, which in conjunction with Egs. (7.15.2) and (7.15.4) gives:

X _ ang = 1SMO _ __ Nasinda (7.15.5)
dz ncos 0 \/m
Integrating, we obtain:
2 .
X = J Ma $in 0, - dz' (ray curve) (7.15.6)
0 \/n2(z')—nzsin® 0,

An object at the point (x, z) will appear to an observer sitting at the entry point O
as though it is at the apparent location (x, z,), as shown in Fig. 7.15.1. The apparent or
virtual height will be z, = x cot 0, which can be combined with Eq. (7.15.6) to give:

z 0
Za = J Ma €08 Ya dz | (irtual height) (7.15.7)

0 \/n2(z')—n3sin? 0,
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The length z,; can be greater or less than z. For example, if the upper half-space is
homogeneous with n, < ng, then z; > z. If n, > ng, then z; < z, as was the case in
Example 7.5.4.

Next, we discuss a number of examples in which the integral (7.15.6) can be done
explicitly to derive the ray curves.

Example 7.15.1: Ionospheric Refraction. Radio waves of frequencies typically in the range of

about 4-40 MHz can be propagated at large distances such as 2000-4000 km by bouncing
off the ionosphere. Fig. 7.15.2 depicts the case of a flat ground.

decreasing n(z)T

ionosphere

virtual
height

l

ground l«—— skip distance —»]

Fig. 7.15.2 Ionospheric refraction.

The atmosphere has a typical extent of 600 km and is divided in layers: the troposphere up
to 10 km, the stratosphere at 10-50 km, and the ionosphere at 50-600 km. The ionosphere
is further divided in sublayers, such as the D, E, Fy, and F» layers at 50-100 km, 100-150
km, 150-250 km, and 250-400 km, respectively.

The ionosphere consists mostly of ionized nitrogen and oxygen at low pressure. The
ionization is due to solar radiation and therefore it varies between night and day. We
recall from Sec. 1.15 that a collisionless plasma has an effective refractive index:

»  €(w) wp, , Neé?
n’ = = e wy = ——
€ w eom

(7.15.8)

The electron density N varies with the time of day and with height. Typically, N increases
through the D and E layers and reaches a maximum value in the F layer, and then decreases
after that because, even though the solar radiation is more intense, there are fewer gas
atoms to be ionized.

Thus, the ionosphere acts as a stratified medium in which n(z) first decreases with height
from its vacuum value of unity and then it increases back up to unity. We will indicate the
dependence on height by rewriting Eq. (7.15.8) in the form:

f3(z)
;2
If the wave is launched straight up and its frequency f is larger than the largest f,, then

it will penetrate through the ionosphere and be lost. But, if there is a height such that
f = fp(z), then at that height n(z) = 0 and the wave will be reflected back down.

2, N(z)e?
fp(2)= ameom (7.15.9)

n?(z)=1-
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If the wave is launched at an angle 0,, then it follows from Snel’s law that while the
refractive index n(z) is decreasing, the angle of refraction 6 (z) will be increasing and the
ray path will bend more and more away from z-axis as shown on the left of Fig. 7.15.1.
Below the ionosphere, we may assume that the atmosphere has refractive index n, = 1.
Then, the angle 0 (z) may be written as:

2 qin2 2
o ngsin” 0, sin® 0,4
sin“ 0 (z) = = (7.15.10)
n?(z) f7(2)
-5
Because sin 6 (z) is required to be less than unity, we obtain the restriction:
; 5 (2)
sin® 0, <1 — f”fz > fp(2)<fcosO, (7.15.11)

If there is a height, say Zmax, at which this becomes an equality, [ (Zmax) = [ c0s 84, then
Eq. (7.15.10) would imply that sin € (Zmax) = 1, or that 0 (Zmax) = 90°. At that height, the
ray is horizontal and it will proceed to bend downwards, effectively getting reflected from
the ionosphere.

If f is so large that Eq. (7.15.11) is satisfied only as a strict inequality, then the wave will
escape through all the layers of the ionosphere. Thus, there is a maximum frequency, the
so called maximum usable frequency (MUF), that will guarantee a reflection. There is also a
lowest usable frequency (LUF) below which there is too much absorption of the wave, such
as in the D layer, to be reflected at sufficient strength for reception.

As an oversimplified, but analytically tractable, model of the ionosphere we assume that
the electron density increases linearly with height, up to a maximal height zy,.x. Thus, the
quantities f§ (z) and n?(z) will also depend linearly on height:

2 2 _Z 2 fom 2
5 (2)= fiax , n“(z)=1- -, , for 0<2z<Zna
Zmax f ZmaX

(7.15.12)

Over the assumed height range 0 < z < Zpuy, the condition (7.15.11) must also be satisfied.
This restricts further the range of z. We have:

z z f?cos? 0,
pr(Z)Zféaxiﬁfzcoszea = =S —
Zmax Zmax max

(7.15.13)

If the right-hand side is greater than unity, so that f cos ; > fmax, then there is no height
z at which (7.15.11) achieves an equality, and the wave will escape. But, if f cos 04 < fmax,
then there is height, say zy, at which the ray bends horizontally, that is,

zo _ f?cos? 04 S g Zmaxf? c0s% 04
z 2 0= 2
max max max

(7.15.14)

The condition f cos 0, < fmax can be written as f < fuyur, where the MUF is in this case,
fmur = fmax/ cos 04. The integral (7.15.6) can be done explicitly resulting in:

N 2 Zmax Sin% 04

3 (7.15.15)
a Zmax

z
[cos 04— . [cos2 0, — a? —]

where we defined a = fiax/f. Solving for z in terms of X, we obtain:
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1 .
Z=20==F (x —x0)? (7.15.16)

where
_ 2Zmax sin 64 cos B4

a2

Zmax SiN% 04

, F= 2

Xo

Therefore, the ray follows a downward parabolic path with vertex at (xg,Zo) and focal

length F, as shown in Fig. 7.15.3. m]
Z A
20
2xg
[0} Xq R x
Oa Ou

Fig. 7.15.3 Parabolic ray.

Example 7.15.2: Mirages. Temperature gradients can cause several types of mirage effects that

are similar to ionospheric refraction. On a hot day, the ground is warmer than the air above
it and therefore, the refractive index of the air is lower at the ground than a short distance
above. (Normally, the air pressure causes the refractive index to be highest at the ground,
decreasing with height.)

Because n(z) decreases downwards, a horizontal ray from an object near the ground will
initially be refracted downwards, but then it will bend upwards again and may arrive at an
observer as though it were coming from below the ground, causing a mirage. Fig. 7.15.4
depicts a typical case. The ray path is like the ionospheric case, but inverted.

Such mirages are seen in the desert and on highways, which appear wet at far distances.
Various types of mirages are discussed in [50-52,1827].

As a simple integrable model, we may assume that n(z) increases linearly with height z,
that is, n(z) = ng + Kz, where K is the rate of increase per meter. For heights near the
ground, this implies that n? (z) will also increase linearly:

nz)y=nog+kz| = ’ n?(z) = nj + 2nokz

We consider a ray launched at a downward angle 0, from an object with (X, z) coordinates
(0,h), as shown. Let n?z = né + 2ngkh be the refractive index at the launch height. For
convenience, we assume that the observer is also at height h. Because the ray will travel
downward to points z < h, and then bend upwards, we integrate the ray equation over the
limits [z, h] and find:

(7.15.17)

g sin 0,

h .
Ng sin 0
X:I a a dZ/:

, [nacose‘a—\/nécos2 0, +2n0K(z—h)]
z \[n2(z')—n%sin® 0, NoK
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where we used the approximation n?(z)= nj + 2nykz in the integral. Solving for z in
terms of x, we obtain the parabolic ray:

X(x —2x d n%sin0,cos0 n2 sin® 0
z:h+g, Xo=—- =12 4 a F=-4 a

4F 2 NoK 2noK

where d is the distance to the observer and F is the focal length. The apex of the parabola
is at x = Xo = d/2 at a height z, given by:

20=h-0 5 7_z0= L (x—x0)?
T aF * T 4F !

» observer
!
ea i

Y=

d

warm ground

mirage V -

Fig. 7.15.4 Mirage due to a temperature gradient.

The launch angle that results in the ray being tangential to ground is obtained by setting
the apex height to zero, zo = 0. This gives a condition that may be solved for 0,:

Xo=VAFh = sing, =" o p-To L |y = [2hm (7.15.18)
ng 2K K

The corresponding d = 2x, is the maximum distance of the observer from the object for
which a ray can just touch the ground. m]

Example 7.15.3: Atmospheric Refraction [50-52]. Because of the compression of gravity, the
density of the atmosphere’ and its refractive index n are highest near the ground and
decrease exponentially with height. A simplified model [721], which assumes a uniform
temperature and constant acceleration of gravity, is as follows:

n(z)=1+ (ng—1)e /e (7.15.19)

The refractive index on the ground is approximately nop = 1.0003 (it also has some de-
pendence on wavelength, which we ignore here.) The characteristic height h. is given by
he = RT/Mg, where R, T,M, g are the universal gas constant, temperature in absolute
units, molecular mass of the atmosphere and acceleration of gravity:

J _ kg _gg
K mole ’ M =0.029 mole” 97 9-8 s2

R =38.31

For a temperature of T = 303K, or 30°C, we find a height of h. = 8.86 km. At a height of
a few h,, the refractive index becomes unity.
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atmosphere

T decreasing n(z)

X
>

ground

Fig. 7.15.5 Atmospheric refraction.

The bending of the light rays as they pass through the atmosphere cause the apparent
displacement of a distant object, such as a star, the sun, or a geosynchronous satellite.
Fig. 7.15.5 illustrates this effect. The object appears to be closer to the zenith.

The look-angle 6 at the ground and the true angle of the object 0, are related by Snel’s
law n; sin 01 = ng sin 0. But at large distances (many multiples of h.), we have n; = 1.
Therefore,

sin@; = nysin O (7.15.20)

The refraction angle is ¥ = 67 — 6. Assuming a small ¥, we may use the approximation
sin(0y + r) = sin 6y + r cos 6. Then, Eq. (7.15.20) gives the approximate expression:

r=(nyg— 1)tan90

The maximum viewing angle in this model is such that ng sin 8¢ = sin 6, = 1, correspond-
ing to 67 = 90° and 6, = asin(1/ny) = 88.6°, for ny = 1.0003.

The model assumes a flat Earth. When the curvature of the Earth is taken into account, the
total atmospheric refraction near the horizon, that is, near 0, = 90°, is about 0.65° for a
sea-level observer [50]. The setting sun subtends an angle of about 0.5°. Therefore, when
it appears about to set and its lower edge is touching the horizon, it has already moved
below the horizon.

The model of Eq. (7.15.19) may be integrated exactly. The ray curves are obtained from
Eq. (7.15.6). Setting n, = ny, 6, = 6y and using the definition (7.15.20), we obtain:

- 5) e (52)] =tann [+ nen (L )|
xfh,;tanel[atanh<3) atanh(BO =tan0; |z + h. In Ao+ Bo (7.15.21)

where the quantities A, B, Ay, By are defined as follows:
A=n(z)7sin261, A()=n()*Sil'1291

B = cos 0,4/n2(z)—sin® 0, , By = cos 01+/n3 — sin® 0,

Thus, Ao, By are the values of A, B at z = 0. It can be shown that A > B and therefore, the
hyperbolic arc-tangents will be complex-valued. However, the difference of the two atanh

TThe troposphere and some of the stratosphere, consisting mostly of molecular nitrogen and oxygen.
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terms is real and can be transformed into the second expression in (7.15.21) with the help
of the result A% — B2 = (A3 — B3) e %?/he,

In the limit of z > h,, the quantities A, B tend to A; = B; = cos? 0;. and the ray equation
becomes the straight line with a slope of tan 0;:

(7.15.22)

X=(z+z))tan0;, z; = h, ln(M>

Ao + By

This asymptotic line is depicted in Fig. 7.15.5, intercepting the z-axis at an angle of 6,. O

Example 7.15.4: Bouguer’s Law. The previous example assumed a flat Earth. For a spherical

Earth in which the refractive index is a function of the radial distance r only, that is, n(r),
the ray tracing procedure must be modified.

Snel’s law n (z)sin 0 (z) = ng sin 8y must be replaced by Bouguer’s law [638], which states
that the quantity rn (r)sin @ remain constant:

rn(r)sin@ (r)= ron(ry)sin 0y (Bouguer’s law) (7.15.23)

where 6 (r) is the angle of the tangent to the ray and the radial vector. This law can be
derived formally by considering the ray equations in spherical coordinates and assuming
that n(r) depends only on r [869].

A simpler derivation is to divide the atmosphere in equal-width spherical layers and assume
that the refractive index is homogeneous in each layer. In Fig. 7.15.6, the layers are defined
by the radial distances and refractive indices r;, n;, i = 0,1,2,....

(0]

Fig. 7.15.6 Ray tracing in spherically stratified medium.

For sufficiently small layer widths, the ray segments between the points Ag, Ay, Ao, ...
are tangential to the radial circles. At the interface point A3, Snel’s law gives n, sin ¢, =
ns3 sin 63. On the other hand, from the triangle OA; A3, we have the law of sines:

r, r3 _ I3
sing,  sin(mw—0,) sinf,

= 1sin0, =rysing;
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Combining with Snel’s law, we obtain:

FaMy sin 0, = 13N, sin ¢, = r3n; sin O3

Thus, the product r;n; sin 0; is the same for alli = 0,1, 2, .... Defining an effective refrac-
tive index by nege (¥) = n(r)r/ro, Bouguer’s law may be written as Snel’s law:

Nefr (I’)Sil’l 0 (I") = Ny Sin 9(]

where we have the initial value neg (ro) = noto/¥o = No. m]

Example 7.15.5: Standard Atmosphere over Flat Earth. For radiowave propagation over ground,

the International Telecommunication Union (ITU) [877,878] defines a “standard” atmo-
sphere with the values no = 1.000315 and h. = 7.35 km, in Eq. (7.15.19).

For heights of about one kilometer, such that z < h., we may linearize the exponential,
e z/hc =1 — z/h,, and obtain the refractive index for the standard atmosphere:

ng—1 315x1076 81
n(z)=ng— Kz |, K= = ————- =4.2857 %10
e T 73sx1E m

This is similar to Eq. (7.15.17), with the replacement k — —k. Therefore, we expect the
rays to be parabolic bending downwards as in the case of the ionosphere. A typical ray
between two antennas at height h and distance d is shown in Fig. 7.15.7.

(7.15.24)

z decreasing n(z) f

Y=

ground O

Fig. 7.15.7 Rays in standard atmosphere over a flat Earth.

Assuming an upward launch angle 0, and defining the refractive index n, at height h
through n2 = n3 — 2ngkh, we obtain the ray equations by integrating over [h, z]:

z : .
X = J Masinda r - Na sin 0 [nac039a—\/n§cosz 04 —2noK(Z—h)]
h

- dz
\n2(z')—n3sin® 0, Mok
where we used n?(z)= n(z) — 2nokz. Solving for z, we obtain the parabola:

X (X — 2x0) N d nisin@,cos0, _ nZsin® 0,

4F ’ 0= E = NoK ’ B 2NoK

z=h

where d is the distance to the observer and F is the focal length. The apex of the parabola
is at x = xo = d/2 at a height z, given by:
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z—h+x—% o Z-zZg= - (x—x0)?
o=h+ F 0="4F 0

The minus sign in the right-hand side corresponds to a downward parabola with apex at
the point (xg, Zo). m]

Example 7.15.6: Standard Atmosphere over Spherical Earth. We saw in Example 7.15.4 that

in Bouguer’s law the refractive index n(r) may be replaced by an effective index n, (r)=
n(r)r/ro. Applying this to the case of the Earth with ¥ = R and ¥ = R + z, where R is
the Earth radius and z the height above the surface, we have n, (z)= n(z) (R + z) /R, or,

ne@=n((1+7) = tno— k) (1+ %)

Thus, the spherical Earth introduces the factor (1 + z/R), which increases with height and
counteracts the decreasing n(z). Keeping only linear terms in z, we find:

n

For the average Earth radius R = 6370 km and the ITU values of ny and k given in
Eq. (7.15.24), we find that the effective k, is positive:

Ke =1.1418 107" m™! (7.15.26)

Making the approximation n?(z) = nj + 2nyk,z will result in parabolic rays bending up-
wards as in Example 7.15.2.

Often, an equivalent Earth radius is defined by k., = no/R, so that the effective refractive
index may be assumed to arise only from the curvature of the equivalent Earth:

z
Ne(Z)= Ng + KeZ = Ng <1+ —)
R,

In units of R, we have:

R, No no
— = = ——— =1.3673 7.15.27
R KeR  ng— KR ( )

which is usually replaced by R, = 4R/3. In this model, the refractive index is assumed to
be uniform above the surface of the equivalent Earth, n(z) = ny.

The ray paths are determined by considering only the geometrical effect of the spherical
surface. For example, to determine the maximum distance x, at which a ray from a trans-
mitter at height h just grazes the ground, we may either use the results of Eq. (7.15.18), or
consider a straight path that is tangential to the equivalent Earth, as shown in Fig. 7.15.8.

Setting K, = no/R, in Eq. (7.15.18), we obtain:

Xo = /ZZ—Oh - \2hR, (7.15.28)
e
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increasing n(z) f

0 X0 ground equivalent Earth

Fig. 7.15.8 Rays over a spherical Earth.

On the other hand, because h < R, the arc length Xy = (OB) may be taken to be a straight
line in Fig. 7.15.8. Applying the Pythagorean theorem to the two orthogonal triangles OAB
and CAB we find that:

x3+h?>=d* = (h+R,)*~R2=h’+2hR, = xj=2hR,

which is the same as Eq. (7.15.28). [m]

Example 7.15.7: Graded-Index Optical Fibers. In Example 7.5.5, we considered a step-index

optical fiber in which the rays propagate by undergoing total internal reflection bouncing
off the cladding walls. Here, we consider a graded-index fiber in which the refractive index
of the core varies radially from the center value ny to the cladding value n. at the edge of
the core. Fig. 7.15.9 shows the geometry.

Ty

3 |P %\/\/\/
z 0, graded-index core
cladding

Fig. 7.15.9 Graded-index optical fiber.

As a simple model, we assume a parabolic dependence on the radial distance. We may
write in cylindrical coordinates, where a is the radius of the core:

2 nz — n?
nz(p)zn;<1—A2"—2>, P (7.15.29)
a nf

Inserting this expression into Eq. (7.15.6), and changing variables from z,x to p, z, the
integral can be done explicitly resulting in:

_asinf, ( pA )
zZ = A asin acos0, (7.15.30)

Inverting the arc-sine, we may solve for p in terms of z obtaining the following sinusoidal
variation of the radial coordinate, where we also changed from the incident angle 6, to
the initial launch angle ¢ = 90° — 0,:
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sin(kz)

_ tangy
K
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—_— 7.15.31
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The TE and TM wave solutions at both sides of the interface are still given by Egs. (7.7.4)
and (7.7.5), and reproduced below (with e/®! suppressed):

For small launch angles ¢, the oscillation frequency becomes independent of ¢y, that is,
K = A/(acos ¢g)= A/a. The rays described by Eq. (7.15.31) are meridional rays, that is,
they lie on a plane through the fiber axis, such as the xz- or yz-plane.

There exist more general ray paths that have nontrivial azimuthal dependence and prop-
agate in a helical fashion down the guide [871-876]. [m}

7.16 Snel’s Law in Negative-Index Media

Consider the planar interface between a normal (i.e., positive-index) lossless medium
€, 1 and a lossless negative-index medium [391] €', 4’ with negative permittivity and
permeability, € < 0 and p’ < 0, and negative refractive index n’ = —/u’€’/po€q. The
refractive index of the left medium is as usual n = \/ue/ €. A TE or TM plane wave
is incident on the interface at an angle 6, as shown in Fig. 7.16.1.

Ax

positive-index medium, 1 > 0 negative-index medium, n'< 0

ke
R

0
> Z
P 0/Ac0 P,
e s’ Na P
! f k' o' VTx
/P Y ka kxt*, 'P\~energy flux
energy flux ke kz<0 negative refraction

Fig. 7.16.1 Refraction into a negative-index medium.

Because n’ < 0, Snel’s law implies that the refracted ray will bend in the opposite
direction (e.g., with a negative refraction angle) than in the normal refraction case. This
follows from:

nsin® = n’'sin@ = —|n’|sin@’ = |n’|sin(-9") (7.16.1)

As aresult, the wave vector k' of the refracted wave will point towards the interface,
instead of away from it. Its x-component matches that of the incident wave vector k,
that is, kj, = kx, which is equivalent to Snel’s law (7.16.1), while its z-component points
towards the interface or the negative z-direction in the above figure.

Formally, we have k' = k’§’, where §’ is the unit vector in the direction of the re-
fracted ray pointing away from the interface, and k" = —w./u’e’ = n'kg, with k¢ the
free-space wavenumber ko = w./Ho€p = w/Ccy. As we see below, the energy flux Poynt-
ing vector P’ of the refracted wave is opposite k" and points in the direction of §’, and
therefore, carries energy away from the interface. Thus, component-wise we have:

ki, =n'kosin0" = ky = nkosin0, kj, =n'kocos6 = —|n"lkgcos®’ <0

E(r) = VEole ™/ + prpelte?] e/l

E L okx L) L kx L\ i
H(r) = n—o [(—x+ k—"z) e Rz 4 pry (x+ k—xz) eﬂ‘zz] ek

TE z z
o ) (TE) (7.16.2)
E'(r) =y TrgEge /N7 e/
H (n) = Tk (4 + z) e ikiz gk
Nt kz
where, allowing for magnetic media, we have
nre = “H NrE= wi’ p1E = Mire = N = Kot = kon Tre=1+pr (7.16.3)
[ Nre+nme K +kop’
For the TM case we have:
_ S kX 5 —jk,z S kX 5 jk,z —jkxx
E(r) =Ey|(X——Z|e "+ pry | X+ — 2] e/f% | eI
k, kz
. Eo —jkzz k227 ,—JjkxX
H(r):yi[er _pTMer]eJx
nrm
(TM) (7.16.4)

) ke
E'(r) = T Eo (x - k—i‘ z) e IKaz g ikxx
Z

TmmEo _a .,
H (1) :ywe Ik, Z g =jkxx

™

with

7

_ Ny — N1M _ ke — k€’
Nme+ Nt kze + ke’

kZ I4 V4
™ = = ™
n we ’ r’TM we’ y P

Tmv=1+pm (7.16.5)

One can verify easily that in both cases the above expressions satisfy Maxwell’s equa-
tions and the boundary conditions at the interface, provided that

k2 + k2 = w’ue = n°k3
K2+ K2 = wp'e = n'?kd (7160
X z — u = 0

In fact, Egs. (7.16.2)-(7.16.6) describe the most general case of arbitrary, homoge-
neous, isotropic, positive- or negative-index, and possibly lossy, media on the left and
right and for either propagating or evanescent waves. We concentrate, next, on the case
when the left medium is a positive-index lossless medium, gy > 0 and € > 0, and the
right one is lossless with yu’ < 0 and €’ < 0, and consider a propagating incident wave
with ky = nkgsin @ and k, = nkgcos 6 and assume, for now, that n < |n’| to avoid
evanescent waves into the right medium. The Poynting vector 2’ in the right medium
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can be calculated from Egs. (7.16.2) and (7.16.4):

(TE: P’ = 1Re(£’><H’*)= lITTE\ZlEolz[2Re< Kz )+>2Re( K )}
2 2 wul w ’

(7.16.7)

P R )= Sl ol [2me( ) xre( G |

(TM): P —ZRe(E X H )_2|TTM| |Eol° | ZRe X + XRe TAE

Because y’ < 0 and €’ < 0, and k;, is real, the requirement of positive energy flux
away from the interface, P}, > 0, requires that k;, < 0 in both cases. Similarly, because
kx > 0, the x-component of P’ will be negative, P; < 0. Thus, the vector P’ has the
direction shown in Fig. 7.16.1. We note also that the z-component is preserved across
the interface, P, = P. This follows from the relationships:

1.,k 1 K ,
P, = Z|ElP=2 (1 - |pgel?) =*|Eo|2\TTE\2Re< Z,) =P,
2 wu 2 wu
; ) , (7.16.8)
= B (1 pl?) = LiEo TR 9E) =
P, 2\Eol K, (1= lpmml®) 2|E0\ | Trml“ Re K, P,

If n > |n’|, the possibility of total internal reflection arises. When sin@ > |n’|/n,
then k2 = n'2k3 — k2 = k3 (n'2 — n?sin® @) is negative and k, becomes pure imaginary.
In this case, the real-parts in the right-hand side of Eq. (7.16.8) are zero, showing that
|p1el = |prMm| = 1 and there is no (time-averaged) power flow into the right medium.

For magnetic media, including negative-index media, the Brewster angle may also
exist for TE polarization, corresponding to prg = 0. This condition is equivalent to
k,u = k', Similarly pry = 0 is equivalent to k€ = k,€’. These two conditions imply
the following relationship for the Brewster angles:

i

’ ’ ’ . , €
prE=0 = KkKpu=kpy = (uz—uz)sm293=u2—“u€ e
o (7.16.9)
pmm=0 = kie=ke = (€?-¢€*)sin?0p=¢€?— HE e

Clearly, these may or may not have a solution, such that 0 < sin? 8 < 1, depending
on the relative values of the constitutive parameters. For non-magnetic media, y = u’ =
o, the TE case has no solution and the TM case reduces to the usual expression:

7

€?-¢ee € n’

in2
sin“0p = —>—— = =— -
€?2—-€e € +€e n?+n?

Assuming that €, u and €', u’ have the same sign (positive or negative), we may re-
place these quantities with their absolute values in Eq. (7.16.9). Defining the parameters
x = |u'/u| and y = |€’/€|, we may rewrite (7.16.9) in the form:

1 .
TE case: (1——2>sinZ 0p = (1—X>
X X

TM case: (1—%)sin2 0p = <1—§>
4 4

(7.16.10)
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with the TE and TM cases being obtained from each other by the duality transformations
x — y and y — x. It is straightforward to verify that the ranges of the x,y parameters
for which a Brewster angle exists are as follows:

1 1
TE case: x>1,y<x,y>;, or, X<1, y>x, y<-—

bd

(7.16.11)

—

1
TM case: y>1,x<y,y>;, or, y<1,x>)/,y<;

These regions [697], which are bounded by the curves y = x and y = 1/x, are shown
in Fig. 7.16.2. We note, in particular, that the TE and TM regions are non-overlapping.

y=1€'el
A -
y=1/x Y
™
HTEX  TE
™ ,
0 ; »x = p'/ul

Fig. 7.16.2 Brewster angle regions.

The unusual property of Snel’s law in negative-index media that the refracted ray
bends in the opposite direction than in the normal case has been verified experimentally
in artificial metamaterials constructed by arrays of wires and split-ring resonators [397],
and by transmission line elements [430-432,452,465]. Another consequence of Snel’s
law is the possibility of a perfect lens [398] in the case n” = —1. We discuss this in
Sec. 8.6.

7.17 Problems

7.1 The matching of the tangential components of the electric and magnetic fields resulted in
Snel’s laws and the matching matrix Eq. (7.3.11). In both the TE and TM polarization cases,
show that the remaining boundary conditions B, = B, and D, = D/, are also satisfied.

7.2 Show that the Fresnel coefficients (7.4.2) may be expressed in the forms:

sin20’ —sin20  tan(0’' - 0) sin(0’ — 0)

PIM= §in20" +sin20 ~ tan(0’ + 0) ' ™" sin(0' + 0)

7.3 Show that the refractive index ratio n’ /n can be expressed in terms of the ratio ¥ = pmy/p1E
and the incident angle 6 by:

n’ 1+71)? 1z
— =sinf@ [1 + (—) tan® 9]
n 1-r

This provides a convenient way of measuring the refractive index n’ from measurements of
the Fresnel coefficients [716]. It is valid also for complex n’.
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7.4 Ttis desired to design a Fresnel rhomb such that the exiting ray will be elliptically polarized
with relative phase difference ¢ between its TE and TM components. Let sinf. = 1/n be
the critical angle within the rhomb. Show that the rhomb angle replacing the 54.6° angle in
Fig. 7.5.6 can be obtained from:

cos? 0. + \/cos4 0. — 4sin® . tan?(¢p/4)

sin @ =
2tan2(¢p/4) + cos? O + \/cos4 0. — 4sin® O, tan2 (¢p/4)

Show ¢ is required to satisfy tan(¢/4)< (n —n=')/2.

7.5 Show the relationship (7.9.7) for the ratio pmv/p1e by first proving and then using the fol-
lowing identities in the notation of Eq. (7.7.4):

(K, = ky) (K2 = k,k,) = k2K, + k'?k,

Using (7.9.7), show that when both media are lossless, the ratio pry/p7e can be expressed
directly in terms of the angles of incidence and refraction, 8 and 6’:

Pv cos(0 +0")

pre cos(0 —6)

Using this result argue that |pmy| < |prel at all angles 0. Argue also that 65 + 05 = 90°,
for the Brewster angles. Finally, show that for lossless media with € > €', and angles of
incidence 0 > 0., where sin O, = /€’ /€, we have:

Pm j\/m+sin9tan9
P j\/m—sinetane

Explain how this leads to the design equation (7.5.8) of the Fresnel rhomb.

7.6 Let the incident, reflected, and transmitted waves at an interface be:
E.(nN=E.e %" E (n=E.e %7 FE(rH=Ee X"

where k. = kxX = k,2 and k' = kyX + k;, z. Show that the reflection and transmission
coefficients defined in Egs. (7.7.1)-(7.7.5) can be summarized compactly by the following
vectorial relationships, which are valid for both the TE and TM cases:

ke x (Eyxks) 2k,
k2 Tk, x Kkl

E.

7.7 Using Egs. (7.7.4), derive the expressions (7.9.11) for the Poynting vectors. Derive similar
expressions for the TM case.
Using the definitions in Egs. (7.3.12), show that if the left medium is lossless and the right
one lossy, the following relationship holds:

1

) 1 )
1- 2) =Re — | IT 2
WT( lprl?) (n'_>| Tl

T

Then, show that Egs. (7.9.12) and (7.9.13) are special cases of this result, specialized to the
TE and TM cases.
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7.8 Alight ray enters a glass block from one side, suffers a total internal reflection from the top
side, and exits from the opposite side, as shown below. The glass refractive indexis n = 1.5.

air

glass n

a. How is the exit angle 0}, related to the entry angle 6,? Explain.

b. Show that all rays, regardless of the entry angle 6,, will suffer total internal reflection
at the top side.

c. Suppose that the glass block is replaced by another dielectric with refractive index n.
What is the minimum value of n in order that all entering rays will suffer total internal
reflection at the top side?

7.9 Anunderwater object is viewed from air at an angle 0 through a glass plate, as shown below.
Let z = z, + 2, be the actual depth of the object from the air surface, where z, is the thickness
of the glass plate, and let ny, n, be the refractive indices of the glass and water. Show that
the apparent depth of the object is given by:

, z1cos 0 Z> cos 0
\/nf —sin® 0 \/ng —sin? 0
air
glass T
n z'
|
water v e
ny

7.10 Anunderwater object is viewed from air at an angle 0 through two glass plates of refractive
indices n;,n, and thicknesses z;, zZ>, as shown below. Let z3 be the depth of the object
within the water.
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air
n,

glass
n

glass
ny

water
ns

a. Express the apparent depth z of the object in terms of the quantities 0, ng, ny, n2, n3
and z,, Z», Z3.
b. Generalize the results of the previous two problems to an arbitrary number of layers.

c. Consider also the continuous limit in which the body of water is inhomogeneous with
a refractive index n(z) given as a function of the depth z.

7.11 As shown below, light must be launched from air into an optical fiber at an angle 6 < 0, in
order to propagate by total internal reflection.

\ .
\Na| Nc cladding /
\

Oa /\\ i : B fiber / /,,
57 \/ N

Y

ry

a. Show that the acceptance angle is given by:

n; —n?
sinf, = "
a

b. For a fiber of length I, show that the exiting ray, at the opposite end, is exiting at the
same angle 0 as the incidence angle.

c. Show that the propagation delay time through this fiber, for a ray entering at an angle
0, is given as follows, where t, = 1/¢y:

d. What angles 0 correspond to the maximum and minimum delay times? Show that the
difference between the maximum and minimum delay times is given by:

tong (ng — ne)

At = tmax — tmin =
ne

Such travel time delays cause “modal dispersion,” that can limit the rate at which digital
data may be transmitted (typically, the data rate must be fyps < 1/(2At) ).

7. Oblique Incidence

7.12 You are walking along the hallway in your classroom building wearing polaroid sunglasses

and looking at the reflection of a light fixture on the waxed floor. Suddenly, at a distance d
from the light fixture, the reflected image momentarily disappears. Show that the refractive
index of the reflecting floor can be determined from the ratio of distances:

d

" hieh

where h; is your height and h, that of the light fixture. You may assume that light from
the fixture is unpolarized, that is, a mixture of 50% TE and 50% TM, and that the polaroid
sunglasses are designed to filter out horizontally polarized light. Explain your reasoning.t

light fixture

sunglasses - 5, hy

h
0lo

: < d toon

RN
image

7.13 Prove the effective depth formulas (7.5.17) of the Goos-Héanchen effect by directly differen-

tiating the reflection coefficient phases (7.8.3) with respect to ky, noting that the lateral shift
is xo = 2dy /dky where y is either (1g or Y.

7.14 First, prove Eq. (7.12.13) from Egs. (7.12.11). Then, show the following relationships among

the angles 0, 0,,0":

tan(6/2) 1-B8 tan(0,/2) |1+ tan(0,/2) 1-

tan(0’/2)  \V1+pB  tan(0’/2) \V1-B° tan(0/2) 1+8

7.15 A TM plane wave is incident obliquely on a moving interface as shown in Fig. 7.12.1. Show

that the Doppler-shifted frequencies of the reflected and transmitted waves are still given
by Egs. (7.12.14) and (7.12.16). Moreover, show that the Brewster angle is given by:

1+ Bvn+1
cosOp = —"——F——
B+vn?+1

See, H. A. Smith, “Measuring Brewster’s Angle Between Classes,” Physics Teacher, Febr. 1979, p.109.
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Multilayer Film Applications

8.1 Multilayer Dielectric Structures at Oblique Incidence

Using the matching and propagation matrices for transverse fields that we discussed
in Sec. 7.3, we derive here the layer recursions for multiple dielectric slabs at oblique
incidence.

Fig. 8.1.1 shows such a multilayer structure. The layer recursions relate the various
field quantities, such as the electric fields and the reflection responses, at the left of
each interface.

f— [ —— [ —f — 1; Ly
ng nj ny nj nyy np
ETp1,+
Ob
o v
) - Erpm1,+
Erivi+ Erprs ALkl
Pr3 Pri| PrTi+1 Pry| PTM+
1 2 3 i i+ ... M M+1

Fig. 8.1.1 Oblique incidence on multilayer dielectric structure.

We assume that there are no incident fields from the right side of the structure.
The reflection/refraction angles in each medium are related to each other by Snel’s law
applied to each of the M + 1 interfaces:

Ngsin@, = njsin0; = nysinfy |, i=1,2,...,.M (8.1.1)

It is convenient also to define by Eq. (7.3.8) the propagation phases or phase thick-
nesses for each of the M layers, that is, the quantities ; = k;l;. Using k,; = kon; cos 0,
where kg is the free-space wavenumber, kg = w/cy = 21f/co = 21T/A, we have for
i=1,2,...,M:
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2 g2
ng sin” 0,
— 8.1.2
Py 2 ( )

1

w 27T 27T
8i = —njlicos 0; = == niljcos 0; = =— Iin; |1 —
Co A

where we used Eq. (8.1.1) to write cos §; = \/1 —sin®0; = \/1 — nZsin® 0,/n?. The
transverse reflection coefficients at the M + 1 interfaces are defined as in Eq. (6.1.1):

nri-1 — Nt

, 1i=1,2,....M+1 (8.1.3)
nr,i-1 + Nt

PrTi =

where we set N9 = Nrg, as in Sec. 6.1. and nry+1 = nrp. The transverse refractive
indices are defined in each medium by Eq. (7.2.13):

i , TM polarization .
nri =1 cos0; , i=a,l,2,...,M,b (8.1.4)

njcos 0;, TE polarization

To obtain the layer recursions for the electric fields, we apply the propagation matrix
(7.3.5) to the fields at the left of interface i + 1 and propagate them to the right of the
interface i, and then, apply a matching matrix (7.3.11) to pass to the left of that interface:

Erie | _ 1| 1 pmi o 0 ETji+1,+
Eri- Tri | Pri 1 0 e ETjis1,-

Multiplying the matrix factors, we obtain:

ETis 1 eldi pTiei".‘S" E7iv1+ ,
_ b - o L oMM -1,...,1 (815
[Eri— } TTi [pTieJ6’ eJoi Et,iv1,- (6.1

This is identical to Egs. (6.1.2) with the substitutions k;lI; — 6; and p; — pt;. The
recursion is initialized at the left of the (M + 1) st interface by performing an additional
matching to pass to the right of that interface:

Erpers | _ 1 1 prm1 || Erasers 8.1.6)
Erper,- TrM+1 | PT,M+1 1 0 o
It follows now from Eq. (8.1.5) that the reflection responses, I'r;j = E1j—/ETj+, will
satisfy the identical recursions as Eq. (6.1.5):

pri+ I'riv1e %0 .
Ipj= POTATLHE = G MM —1,..,1 8.1.7
"7 14 prily e 200 ®-1.7)

and initialized at I'rm+1 = pPr,m+1. Similarly, we obtain the following recursions for
the total transverse electric and magnetic fields at each interface (they are continuous
across each interface):

Eri | cosd;  jnrisind; || Erin .
|:HT1':| = |:Jnf} sin &; 08 5; Hrin |’ i=M,M-1,...,1 (8.1.8)



8.2. Lossy Multilayer Structures 305

where nr; are the transverse characteristic impedances defined by Eq. (7.2.12) and re-
lated to the refractive indices by n1; = no/nr;. The wave impedances, Z1; = E1;/Hrj,
satisfy the following recursions initialized by Z7 y+1 = N1b:

Zr,i+1 +Jnritan §;

- , i=M,M-1,...,1 (8.1.9)
"Nri +jZr,ie1 tan §;

Zi =Nt

The MATLAB function muTtidiel that was introduced in Sec. 6.1 can also be used
in the oblique case with two extra input arguments: the incidence angle from the left
and the polarization type, TE or TM. Its full usage is as follows:

[Gammal,Z1] = multidiel(n,L,lambda,theta,pol); 9% multilayer dielectric structure

where theta is the angle 6 = 0, and po1 is one of the strings ’te’ or ’tm’. If the angle
and polarization arguments are omitted, the function defaults to normal incidence for
which TE and TM are the same. The other parameters have the same meaning as in
Sec. 6.1.

In using this function, it is convenient to normalize the wavelength A and the optical
lengths n;l; of the layers to some reference wavelength Ag. The frequency f will be
normalized to the corresponding reference frequency fo = co/A.

Defining the normalized thicknesses L; = n;l;j/Aq, so that n;l; = LjAg, and noting
that Ag/A = f/fo, we may write the phase thicknesses (8.1.2) in the normalized form:

f

A
6i=27TTOLicos(91-=2Tr—Lic059,- s i=1,2,...,.M (8.1.10)
0

Typically, but not necessarily, the L; are chosen to be quarter-wavelength long at
Ao, that is, L; = 1/4. This way the same multilayer design can be applied equally well
at microwave or at optical frequencies. Once the wavelength scale A, is chosen, the
physical lengths of the layers I; can be obtained from I; = L;jAq/n;.

8.2 Lossy Multilayer Structures

The muTtidiel function can be revised to handle lossy media. The reflection response
of the multilayer structure is still computed from Eq. (8.1.7) but with some changes.
In Sec. 7.7 we discussed the general case when either one or both of the incident and
transmitted media are lossy.

In the notation of Fig. 8.1.1, we may assume that the incident medium n, is lossless
and all the other ones, n;, i = 1,2,...,M,b, are lossy (and nonmagnetic). To imple-
ment multidiel, one needs to know the real and imaginary parts of n; as functions
of frequency, that is, n; (w) = ng; (w) —jny; (w), or equivalently, the complex dielectric
constants of the lossy media:

€i(w) = eR,-(w)—jen(w), i=1,2,...,.M,b

. ) _ic. (8.2.1)
() :\/mw) z\/emuo) jeri (w) s () it ()

€o €o

306 8. Multilayer Film Applications

Snel’s law given in Eq. (8.1.1) remains valid, except now the angles 0; and 0} are
complex valued because n;, n, are. One can still define the transverse refractive indices
nr; through Eq. (8.1.4) using the complex-valued n;, and cos 6; given by:

2 qin?
cosO; =1 —sin20; = [1- "800 oo oMb 822)

n;

The reflection coefficients defined in Eq. (8.1.3) are equivalent to those given in
Eq. (7.7.2) for the case of arbitrary incident and transmitted media.

The phase thicknesses &; now become complex-valued and are given by &; = ky;l;,
where k,; is computed as follows. From Snel’s law we have kx; = kxq = W ./Ho€oNg sin 04
= kong sin 04, where ko = w./Ho€o = W/ is the free-space wave number. Then,

ki = Jw?poe; — K2 = ng/n,? —ndsin®0,, i=al,...,M,b (8.2.3)
0

Thus, the complex phase thicknesses are given by:

5i = kyli = ‘?—I’}/n% —nisin20,, i=1,2,...,M (8.2.4)
0

Writing ¢y = foAo for some reference frequency and wavelength, we may re-express
(8.2.4) in terms of the normalized frequency and normalized physical lengths:

S = kyl; = 2Tl’££ n? —nisin’0,, i=1,2,....M (8.2.5)

fo Ao
To summarize, given the complex n; (w) as in Eq. (8.2.1) at each desired value of
w, we calculate cos 6; from Eq. (8.2.2), n; and pr; from Egs. (8.1.4) and (8.1.3), and
thicknesses §; from Eq. (8.2.5). Then, we use (8.1.7) to calculate the reflection response.
The MATLAB function multidiel2 implements these steps, with usage:

[Gammal,Z1] = multidiel2(n,T1,f,theta,pol); % lossy multilayer structure

Once I'; is determined, one may calculate the power entering each layer as well as
the power lost within each layer. The time-averaged power per unit area entering the ith
layer is the z-component of the Poynting vector, which is given in terms of the transverse
E, H fields as follows:

1
Pi= SRe(EnHf), i=12,.,M (8.2.6)

The power absorbed within the ith layer is equal to the difference of the power
entering the layer and the power leaving it:

’P}OSS=’P1'—1P1'+1: i=1,2,....M (8.2.7)

The transverse fields can be calculated by inverting the recursion (8.1.8), that is,

ETis1 cos 6 —Jjnrisind; || Er; ;
’ = ] . s =1,2,....,.M 8.2.8
|:HT,1'+1 ] |: —Jl’)TI-1 SlIl(Si Ccos 5,‘ Hr; ! ( )
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The recursion is initialized with the fields E1, Hr1 at the first interface. These can
be calculated with the help of I'y:

Ery =Eri+ +Eri- = Eri (1 + 1)

1 (8.2.9)
Er(1-17)

1
Hp = (Eri+ —Emi-) =
NTa NTa
where nNrq = no/Nrta. The field ET1+ is the transverse component of the incident field.
If we denote the total incident field by Ej,, then E71, will be given by:

E 3 Ein, TE case (8.2.10)
T T A Encos0,, TM case o

The total incident power (along the direction of the incident wave vector), its z-
component, and the power entering the first layer will be given as follows (in both the
TE and TM cases):

1
Pin = H\Einpy Pinz = Pincos 0y, P1=Pin,(1-II11?) (8.2.11)
a

where n, = no/ng. Thus, one can start with Ei, = /2n4Pin, if the incident power is
known.

8.3 Single Dielectric Slab

Many features of oblique incidence on multilayer slabs can be clarified by studying the
single-slab case, shown in Fig. 8.3.1. Assuming that the media to the left and right are
the same, n, = ny, it follows that 8, = 6, and also that pr; = —p72. Moreover, Snel’s
law implies n, sin 0, = n; sin 0.

I
ng| ny np
O
0a 01
Pri P12
1 2

Fig. 8.3.1 Oblique incidence on single dielectric slab.

Because there are no incident fields from the right, the reflection response at the
left of interface-2 is: I'rp = pr2 = —pr1- It follows from Eq. (8.1.7) that the reflection
response at the left of interface-1 will be:
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+ prae 2 (1—e%°)
[y = PTLEPT2 = P11 et (8.3.1)
L+ priprae=2%t 1 - pj e 2%

These are analogous to Egs. (5.4.6) and (5.5.4), i.e., the normal and oblique inci-
dence cases differ only in the definitions of the reflection coefficients. According to
Eq. (8.1.10), the phase thickness can be written in the following normalized form, where
L1 = nlll/A(]Z

01 :21T@L1C0591 ZZTTLL1COSQ1 :TrL (8.3.2)
A fo f1
_ fo
fi = 2L cos 0, 8.33)

At frequencies that are integral multiples of 1, f = mf}, the reflection response
vanishes because 28, = 2m(mf,)/fi = 2mtm and e %9 = 1. Similarly, at the half-
integral multiples, f = (m + 0.5)f1, the response is maximum because e 0 = 1,

Because f] depends inversely on cos 01, then as the angle of incidence 6, increases,
cos 07 will decrease and f; will shift towards higher frequencies. The maximum shift
will occur when 6, reaches its maximum refraction value 6. = asin(n,/n;) (assuming
Ng < nNy.)

Similar shifts occur for the 3-dB width of the reflection response notches. By the
same calculation that led to Eq. (5.5.9), we find for the 3-dB width with respect to the
variable 01:

AS 1-p§
tan (—1 ) = ple
2 L+ p7

Setting Ad; = Af/f1, we solve for the 3-dB width in frequency:

2
Af = 2—1’;1 atan (1&> (8.3.4)

The left/right bandedge frequencies are f; + Af/2. The dependence of Af on the
incidence angle 6, is more complicated here because pr; also depends on it.

In fact, as 0, tends to its grazing value 0, — 90°, the reflection coefficients for
either polarization have the limit |pr1| — 1, resulting in zero bandwidth Af. On the
other hand, at the Brewster angle, 6,3 = atan(n;/ng), the TM reflection coefficient
vanishes, resulting in maximum bandwidth. Indeed, because atan(1)= 7171/4, we have
Af max = 2f1atan(1) /11 = f1/2.

Fig. 8.3.2 illustrates some of these properties. The refractive indices were n, = n, =
1 and n; = 1.5. The optical length of the slab was taken to be half-wavelength at the
reference wavelength A, so that n;l; = 0.5A¢, or, L; = 0.5.

The graphs show the TE and TM reflectances |I'r1 (f) |? as functions of frequency
for the angles of incidence 6, = 75° and 0, = 85°. The normal incidence case is also
included for comparison.

The corresponding refracted angles were 0, = asin(n, asin(9,) /n;) = 40.09° and
01 = 41.62°. Note that the maximum refracted angle is 61, = 41.81°, and the Brewster
angle, 0,5 = 56.31°.
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Fig. 8.3.2 TE and TM reflectances of half-wavelength slab.

The notch frequencies were f; = fo/ (2L cos 81) = 1.31fp and f; = 1.34f, for the

angles 0, = 75° and 85°. At normal incidence we have f; = fo/(2L1)= fo, because

L; =0.5.
The graphs also show the 3-dB widths of the notches, calculated from Eq. (8.3.4).

The reflection responses were computed with the help of the function multidiel with
the typical MATLAB code:

na =1; nb
1.

1;
nl = 5; L1 =

o

0.5;

f = Tinspace(0,3,401);
theta = 75;

GO = abs(multidiel([na,nl,nb], L1, 1./F)).A2;
Ge = abs(multidiel([na,nl,nb], L1, 1./f, theta, ’te’)).A2;
Gm = abs(multidiel([na,nl,nb], L1, 1./f, theta, ’tm’)).A2;

The shifting of the notch frequencies and the narrowing of the notch widths is evi-
dent from the graphs. Had we chosen 0, = 0,5 = 56.31°, the TM response would have

been identically zero because of the factor pr; in Eq. (8.3.1).
The single-slab case is essentially a simplified version of a Fabry-Perot interferometer

[638], used as a spectrum analyzer. At multiples of fi, there are narrow transmittance
bands. Because f] depends on [/ cos 01, the interferometer serves to separate different

frequencies f in the input by mapping them onto different angles 6.
Next, we look at three further applications of the single-slab case: (a) frustrated total
internal reflection, (b) surface plasmon resonance, and (c) the perfect lens property of

negative-index media.

8.4 Frustrated Total Internal Reflection

As we discussed in Sec. 7.5, when a wave is incident at an angle greater than the total
internal reflection (TIR) angle from an optically denser medium n, onto a rarer medium
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np, with n; > np, then there is 100 percent reflection. The transmitted field into the
rarer medium ny, is evanescent, decaying exponentially with distance.

However, if an object or another medium is brought near the interface from the
nyp side, the evanescent field is “frustrated” and can couple into a propagating wave.
For example, if another semi-infinite medium n, is brought close to the interface, then
the evanescent field can “tunnel” through to the other side, emerging as an attenuated
version of the incident wave. This effect is referred to as “frustrated” total internal
reflection.

Fig. 8.4.1 shows how this may be realized with two 45° prisms separated by a small air
gap. With n; = 1.5 and np = 1, the TIR angle is 8, = asin(np/n,) = 41.8°, therefore,
0 = 45° > O.. The transmitted fields into the air gap reach the next prism with an
attenuated magnitude and get refracted into a propagating wave that emerges at the

same angle 0.

k
i 0.0
prism &a fields decay
df air gap &p ~——— exponentially
X prism N & across the gap

Fig. 8.4.1 Frustrated total internal reflection between two prisms separated by an air gap.

Fig. 8.4.2 shows an equivalent problem of two identical semi-infinite media ng, sep-
arated by a medium nj of length d. Let &, = nﬁ, Ep = nf) be the relative dielectric
constants. The components of the wavevectors in media n, and ny are:

w
Co
kza = \k3na — k& = kong cos 0 8.4.1)
ko\ln; — ngsin® 0, if 0<80,
kzb = . 3 ) .
—jkoy/nGsin® 0 — nj = —jozp, if 0 =0,
where sin 0. = np/n,. Because of Snel’s law, the ky component is preserved across the

interfaces. If @ > 0., then k,j, is pure imaginary, that is, evanescent.
The transverse reflection and transmission responses are:

_ Pa (1- ei2jk2bd)
1-— pée*zﬂvhd

kx = kona sin@, k() =

_ Pat ppe T
1 + pappekad

8.4.2
(1- pé)e’jkzhd ( )

_ TaTpetkad
T 1+ pappe—2kad = 1 _ ple-2iknd
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Fig. 8.4.2 Frustrated total internal reflection.

where pg, pp are the transverse reflection coefficients at the a, b interfaces and 17, =
1+ pg and T = 1 + pp are the transmission coefficients, and we used the fact that
Pp = —pa because the media to the left and right of the slab are the same. For the two
polarizations, p, is given in terms of the above wavevector components as follows:

kza — k k -k
pZE _ Kza zb , ZM _ zb€a za€b (8.4.3)
kza + kzp kzpea + kzagp
For 0 < 6., the coefficients p, are real-valued, and for 6 > 6., they are unimodular,

|pal = 1, given explicitly by

Ng cos 0 + jy/n3 sin? 0 — n3 —jng\/n3 sin® @ — ni — n cos 0
TE _ p™M = (8.4.4)

a . . ’ . .
Ngcos 0 — j\jnj sin? 6 — nj —jng\ln3 sin® 0 — ng + n cos 0

For all angles, it can be shown that 1 — |I'|?> = | T|?, which represents the amount of
power that enters perpendicularly into interface a and exits from interface b. For the
TIR case, I', T simplify into:

Pa(l— e~2nd)
Ir= T 9 o
1-— pae—zazbd

(1 _pz)eilebd 27T 2 . 2
T = l—péam , Ogp = )\70 \/n%sin? 0 — n; (8.4.5)
where we defined the free-space wavelength through ko = 27r/A¢. Setting p, = e/®a,
the magnitude responses are given by:
I = sinh? (& ,pd) 2 =
sinh? (xpd) + sin? ¢pg

sin® ¢g
sinh? (ozpd) + sin? ¢y

(8.4.6)

For a prism with n,; = 1.5 and an air gap np = 1, Fig. 8.4.3 shows a plot of Egs. (8.4.5)
versus the distance d at the incidence angle 6 = 45°. The reflectance becomes almost
100 percent for thickness of a few wavelengths.

Fig. 8.4.4 shows the reflectance versus angle over 0 < @ < 90° for the thicknesses
d = 0.4A¢ and d = 0.5A¢. The TM reflection response vanishes at the Brewster angle
Op = atan(np/ng) = 33.69°.

Fig. 8.4.3 Reflectance and transmittance versus thickness d.

The case d = 0.5A( was chosen because the slab becomes a half-wavelength slab at
normal incidence, that is, k,pd = 277/2 at 6 = 0°, resulting in the vanishing of I as can
be seen from Eq. (8.4.2).

The half-wavelength condition, and the corresponding vanishing of I', can be re-
quired at any desired angle 6y < 6., by demanding that k,,d = 271/2 at that angle,
which fixes the separation d:

2mrd A
S —ngsinf0p=m > d= —— 0
Ao 2./ni — n3 sin® 0

Fig. 8.4.5 depicts the case 8y = 20°, which fixes the separation to be d = 0.5825A.

kzbd=7T =

Reflectance, d/ro=0.4 Reflectance, d/Ao=0.5

- 1 =
— ™
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. K 6p = 33.69° I~
= _ o =
0.4 0c = 4181 0.4
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Fig. 8.4.4 Reflectance versus angle of incidence.

The fields within the air gap can be determined using the layer recursions (8.1.5).
Let E,+ be the incident transverse field at the left side of the interface a, and E. the
transverse fields at the right side. Using Eq. (8.1.5) and (8.1.6), we find for the TIR case:

E, = (1 + pa)Ea+

_ —pae=2%?9 (1 + pg)Egs
T 1= pée—thzbd ’

E_ = 1= ple 2 (8.4.7)
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Reflectance, half-wavelength at 20°
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Fig. 8.4.5 Reflectance vanishes at 0 = 20°.

The transverse electric field within the air gap will be then E7(z) = E e~ %% + E_e%zbZ,
and similarly for the magnetic field. Using (8.4.7) we find:

1+

Er(z) = [ 1-p2 e[,)g(x W :| [em % — PaeizaZbdeaZbZ]EaJr
- P4 Z

1 E (8.4.8)

_ ~ Pa —a —20pd pougpz) Lat

Hy(z) = [l—pée*ZO‘zhd][e bz 4+ pae bd o bz]naT

where n,r is the transverse impedance of medium ng, that is, with n, = no/ng:

_ | nacos 0., TM, or parallel polarization
Nat = Na/ cos @4, TE, or perpendicular polarization

Itis straightforward to verify that the transfer of power across the gap is independent
of the distance z and given by

|Eq+|?

_1 % — (11T
P:(2)= ZRE[ET(Z)HT(Z)] =(1-1IrP) 2Nt

Frustrated total internal reflection has several applications [556-592], such as in-
ternal reflection spectroscopy, sensors, fingerprint identification, surface plasmon res-
onance, and high resolution microscopy. In many of these applications, the air gap is
replaced by another, possibly lossy, medium. The above formulation remains valid with
the replacement &, = ni — &p = Epr — JEbi, Where the imaginary part &,; characterizes
the losses.

8.5 Surface Plasmon Resonance

We saw in Sec. 7.11 that surface plasmons are TM waves that can exist at an interface
between air and metal, and that their wavenumber ky of propagation along the interface
is larger that its free-space value at the same frequency. Therefore, such plasmons
cannot couple directly to plane waves incident on the interface.
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However, if the incident TM plane wave is from a dielectric and from an angle that is
greater than the angle of total internal reflection, then the corresponding wavenumber
will be greater than its vacuum value and it could excite a plasmon wave along the
interface. Fig. 8.5.1 depicts two possible configurations of how this can be accomplished.

k| k|
&a W prism & M prism
£ ke metal & fex /plasmon air
&p fex ;lasmon air & ke metal
Kretschmann-Raether Otto

Fig. 8.5.1 Kretschmann-Raether and Otto configurations.

In the so-called Kretschmann-Raether configuration [595,598], a thin metal film of
thickness of a fraction of a wavelength is sandwiched between a prism and air and the
incident wave is from the prism side. In the Otto configuration [596], there is an air
gap between the prism and the metal. The two cases are similar, but we will consider in
greater detail the Kretschmann-Raether configuration, which is depicted in more detail
in Fig. 8.5.2.

. XK -
prism metal air
&a & &

k
kx ke

kz kzh
kq ke

T™ wave
le— o —»

Py Py
a b

Fig. 8.5.2 Surface plasmon resonance excitation by total internal reflection.

The relative dielectric constant &, and refractive index n, of the prism are related
by &; = ng. The air side has &, = nlz, = 1, but any other lossless dielectric will do as
long as it satisfies np < n,. The TIR angle is sin 8, = np/ng, and the angle of incidence
from the prism side is assumed to be @ > 0. so that’

ky = kongsin 0 > kony, ko = Cﬂ 8.5.1)
0

TThe geometrical picture in Fig. 8.5.2 is not valid for 0 > 0. because the wavevectors are complex-valued.
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Because of Snel’s law, the ky component of the wavevector along the interface is
preserved across the media. The z-components in the prism and air sides are given by:

kza = yk3ni — k3 = kong cos 0

kzp = —jozp = —jo k)2< - k(z)}’ll% = —jko\/m

where k_j, is pure imaginary because of the TIR assumption. Therefore, the transmitted
wave into the &, medium attenuates exponentially like e /k#Z = =&z,

For the metal layer, we assume that its relative dielectric constant is € = —¢&, — jé&;,
with a negative real part (¢, > 0) and a small negative imaginary part (0 < &; < &,) that
represents losses. Moreover, in order for a surface plasmon wave to be supported on
the &-¢j, interface, we must further assume that &, > €. The k, component within the
metal will be complex-valued with a dominant imaginary part:

k, = —jké — ke = —j\[K3 + K3 (er +j&r) = —jkoynisin? 0 + & + j&;  (8.5.3)

If there is a surface plasmon wave on the e-¢j interface, then as we saw in Sec. 7.7,
it will be characterized by the specific values of ky, k, k,p:

(8.5.2)

. EEp koe ko&p
kxo = - =k ko= ——7"— k = — 5.4
x0 = Bxo —J&xo0 = ko cre K0 trg 0 oo T (8.5.4)

Using Eq. (7.11.10), we have approximately to lowest order in &;:

Erép
& — &

Eréh )3/2 &

Bxo = ko
X & — & 2es

, Oxo = ko ( (8.5.5)
b

and similarly for ko, which has a small real part and a dominant imaginary part:

. koe ko (&y — 2&p) &
kz0 = Bzo —Jj&z0, &z = L’ Bzo = ROSr T SEb Il

& — &b (& — &p)3/2 (8.5.6

If the incidence angle 0 is such that ky is near the real-part of kyg, that is, ky =
kong sin @ = By, then a resonance takes place exciting the surface plasmon wave. Be-
cause of the finite thickness d of the metal layer and the assumed losses ¢;, the actual
resonance condition is not ky = Bxo, but is modified by a small shift: kx = Bxo + Bxo, to
be determined shortly.

At the resonance angle there is a sharp drop of the reflection response measured
at the prism side. Let p,, pp denote the TM reflection coefficients at the &,-¢ and &-
&p interfaces, as shown in Fig. 8.5.2. The corresponding TM reflection response of the
structure will be given by:

+ ppe—2ik:d + ppe—20zd p-2jBzd
_ Pa+tPp _ Pa*tPp (8.5.7)

1+ pappeked 1+ pappe2ede-2ibid

where d is the thickness of the metal layer and k, = 8, — jx is given by Eq. (8.5.3). The
TM reflection coefficients are given by:

_ kz&gqa — kzac
kzeq + kzqe’

kzpe — kzep
b =
kpe + ky&p

(8.5.8)

a
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where k4, kzp are given by (8.5.2). Explicitly, we have for 6 > 0.:

s\/késa — k3 +jsa\/k§ —k3e £C0S 0 + jng\eqasin® 0 — €
Pa =~ 2 2 . > 2.
s\/kosa — ks _Jfa\/kx —k3e £€0S 0 — jng\easin® 0 — €

e\/k?( —k3ep — eb\/ki — ke g\/sa sin® 0 — & — sb\/sa sin 0 — ¢
2 12 2 2. P 2
s\/kx —kiep + eb\/kx — ke e\/sa sin‘ 0 — & + sb\/sa sinc 0 — &

We note that for the plasmon resonance to be excited through such a configuration,
the metal must be assumed to be slightly lossy, that is, & # 0. If we assume that it
is lossless with a negative real part, € = —¢&, then, p, becomes a unimodular complex
number, |ps| = 1, for all angles 6, while p;, remains real-valued for 8 > 6., and also k,
is pure imaginary, 8, = 0. Hence, it follows that:

(8.5.9)

Pp =

= |pal® + 2Re(pg) ppe =224 + ppe—oxed
= 1+ ZRe(pa)pbe_Zo(zd + |Pa|2p12,e_4‘xzd =
Thus, it remains flat for 0 > 6.. For 0 < 0., pg, is still unimodular, and pj also
becomes unimodular, |py| = 1. Setting p,; = /%2 and pp, = e/®», we find for 0 < 0,:

. . 2
eita 4 eibve=20zd |7 1 4 2cos(pg — Ppp)e 204 4 edozd
1 + ejbagidve-20:d 1+ 2cos(¢pg + Pp)e—20d 4 g—dozd

Ir|? = (8.5.10)
which remains almost flat, exhibiting a slight variation with the angle for 0 < 0.

As an example, consider a quartz prism with n,; = 1.5, coated with a silver film of
thickness of d = 50 nm, and air on the other side &, = 1. The relative refractive index
of the metal is taken to be € = —16 — 0.5j at the free-space wavelength of Ay = 632 nm.
The corresponding free-space wave number is kg = 277/Ao = 9.94 rad/pum.

Fig. 8.5.3 shows the TM reflection response (8.5.7) versus angle. The TIR angle is
0. = asin(np/ng) = 41.81°. The plasmon resonance occurs at the angle 05 = 43.58°.
The graph on the right shows an expanded view over the angle range 41° < 0 < 45°.
Both angles 0. and 6,5 are indicated on the graphs as black dots.

The computation can be carried out with the help of the MATLAB function multi-
diell.m, or alternatively multidiel.m, with the sample code:

na = 1.5; ea = naA2; % prism side

er = 16; ei = 0.5; ep = -er-j*ei; % silver layer

nb = 1; eb = nbA2; % air side

d = 50; 1a0 = 632; % in units of nanometers
th = Tlinspace(0,89,8901); % incident angle in degrees

nl = sqrte(ep); % evanescent SQRT, needed if & = 0
L1 = nl*d/T1a0; % complex optical length in units of Ao
%

n = [na, nl, nb]; input to multidiell

for i=1:Tength(th), % TM reflectance
Ga(i) = abs(multidiell(n, L1, 1, th(i), "tm’)).A2; % atA/Ag = 1
end

plot(th,Ga);
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surface plasmon resonance expanded view
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Fig. 8.5.3 Surface plasmon resonance.

Fig. 8.5.4 shows the reflection response when the metal is assumed to be lossless with
& = —16, all the other parameters being the same. As expected, there is no resonance
and the reflectance stays flat for 6 > 6., with mild variation for 6 < 0..

reflectance
:

...

1ri2

0 15 30 0 75 90

45 6
0 (degrees)
Fig. 8.5.4 Absence of resonance when metal is assumed to be lossless.

Let E4., E4— be the forward and backward transverse electric fields at the left side
of interface a. The fields at the right side of the interface can be obtained by inverting

the matching matrix:
E, _ 1 1 —Pa Eqy
E- 1=pa| —Pa 1 Eq-

Eq+ _ 1 1 pa E.
Eq- 1+pa|pPa 1 E_

Setting E;— = I'E4, with I given by Eq. (8.5.7), we obtain:

E - 1—pal _ (1+ pa)Eax
T 1-pa " 1+ pappekid

g - —Patl . ppe”d( + pa) Eas
T l-pa T 1+ pappe kA
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The transverse electric and magnetic fields within the metal layer will be given by:

Er(z)=Ee® % + E %% Hp(z)= ni [E e /ks? _ E_elks?]
T

Using the relationship n7/nar = (1 + pa) /(1 — pa), we have:

1+ pa ] ik, “2jk,d jk,
E = — JKzZ Jkzd pJk22| B
(@) [1 + pappekad [e pre [Eas ( )
8.5.11
1—-pq ] —ik, —2jk;d ik, Eay
H =/ JKzZ _ JKz 2Z
T [1 + pappe-2ikid | 1€ pre D ar

where n,7 = ng cos 0 is the TM characteristic impedance of the prism. The power flow
within the metal strip is described by the z-component of the Poynting vector:

P(z)= %Re[ET(z)H? (z)] (8.5.12)

The power entering the conductor at interface a is:

Earl? 1 .
) = —Rel[Er(2)H} (2)] (8.5.13)
2Nar

,Pin = (1 - |F|2
2 z=0

Fig. 8.5.5 shows a plot of the quantity 2 (z) / Pj, versus distance within the metal, 0 <
Z < d, at the resonant angle of incidence 6 = 0¢s. Because the fields are evanescent in
the right medium ny, the power vanishes at interface b, that is, at z = d. The reflectance
at the resonance angle is |I'|> = 0.05, and therefore, the fraction of the incident power
that enters the metal layer and is absorbed by itis 1 — |I'|? = 0.95.

power flow versus distance

0 10 20 30 40 50
z (nm)

Fig. 8.5.5 Power flow within metal layer at the resonance angle 0,.s = 43.58°.

The angle width of the resonance of Fig. 8.5.3, measured at the 3-dB level |I'|2 = 1/2,
is very narrow, A9 = 0.282°. The width A0, as well as the resonance angle 0.5, and
the optimum metal film thickness d, can be estimated by the following approximate
procedure.

To understand the resonance property, we look at the behavior of I' in the neigh-
borhood of the plasmon wavenumber ky = kyo given by (8.5.4). At this value, the TM
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reflection coefficient at the &-¢p, interface develops a pole, pp = o, which is equivalent
to the condition k po& + kzo&p = 0, with K 30, ko defined by Eq. (8.5.4).

In the neighborhood of this pole, ky =~ kxo, pp will be given by p ~ Ko/ (kx — kxo),
where Kj is the residue of the pole. It can be determined by:

kzbé—kzéb kzbf—szb

Ko= 1 ky — k =1 ky — k =
0 kxl'mx[)( X x0) Pb kxl—rilxo( X x0) ke + K, ep d
dky

(kzpe + kzep) kx=kxo

The derivative dk,/dky can be determined by differentiating k2 + k3 = k3&, that is,
k,dk, + kydkyx = 0, which gives dk,/dky = —kx/k;, and similarly for dk,,/dky. It

follows that:
kzpo€ — kzo€p

_ ko, kx
kzbO kz()
Inserting Kxo, K20, Kzpo from Eq. (8.5.4), we obtain:

3/2
Ko =k0< 2 )( £ ) (8.5.14)
Ep — & E+ &p

Ky =
&p

The reflection response can then be approximated near ky ~ kyo by

Ko ,-2jkea
kx - kxO
Ko  ojka
1+payg—7 e I
a kx - kx()

Pa +

I ~

4 can also be replaced by their values at kxo, kK0, K250,

The quantities p, and e~%/kz
thus obtaining:
kx — kxo + P;&Koefzjkz‘)d

Ir= .
pao kx — kxo + paoKoe~2/kzd

(8.5.15)

where
_ kzo€a — kzao€  €q ++E(€q — &) +Eqkp

Pao = =
kzo€a + kzao€ €4 —Je(€qa — &p) +E€acp

which was obtained using ka0 = \/k3&a — k3 and Egs. (8.5.4). Replacing € = —¢&, — je;,
we may also write:

Ea +J(&r + &) (€q — €p) —Ea&p

= . = = —by + ja (8.5.16)
Pa0 = e~ j\(er + JED) (a — £b) —ats 0 Jdo
which serves as the definition of b, ag. We also write:
1 &a—JjV (& +j&i) (€4 — €p) —Eatp by +jao _ .
= , : = - =—b, —ja (8.5.17)
Pao Ea +JV (& + jEi) (€a — €p) —€atp b§ + ap Lo

We define also the wavenumber shifts that appear in the denominator and numerator
of (8.5.15) as follows:

kxo = —paoKoe %24 = (b — jag)Koe k= = Bo — jxo
_ . N _ (8.5.18)
ki = —pagKoe % = (b1 + jar) Koe ¥4 = By + jéta
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Then, Eq. (8.5.15) becomes, replacing kxo = Bxo — J®Xxo0

I'= pao kx — kxo — Ifxl - puo (kx — Bxo — @xl)"".].(axo - ‘i‘xl) (8.5.19)
kx — kxo — kxo (kx = Bxo — Bxo) +Jj (&xo + &xo)
resulting in the reflectance:
— —_B.1)2 & 2
‘Flz _ |pa0‘2 (kx BxO Bxl) +(0(x0 0()(1) (8.5.20)

(kx — Bxo — BXO)Z"‘(O(XO + &xo)?

The shifted resonance wavenumber is determined from the denominator of (8.5.19),
that is, Kxres = Bxo + Bxo- The resonance angle is determined by the matching condition:

kx = kong sin Ores = kx,res = Bxo + on (8.5.21)

The minimum value of |I'|? at resonance is obtained by setting kx = Bxo + Bxo:

0‘2 (BXO - Bx1)2+(0(x0 - &xl)z

- .5.22
(0(><()“‘(5(x0)Z (®:5 )

\r |12nin = |pa
We will see below that on and BX1 are approximately equal, and so are &xo and &Xx;.
The optimum thickness for the metal layer is obtained by minimizing the numerator of
|I'|2,n by imposing the condition oty = &;. This condition can be solved for d.
The angle width is obtained by solving for the left and right bandedge wavenumbers,
say Ky,+, from the 3-dB condition:

_ _R 2 A 2
u-lz _ |Pa0|2 (kx = Bxo — Bx1)“+ (xXxo — &x1) _ 1 (8.5.23)

(kX_BXO_BX0)2+(O(XO+&XO)2 2
and then obtaining the left/right 3-dB angles by solving kong sin 0+ = kx +.

Although Egs. (8.5.16)-(8.5.23) can be easily implemented numerically, they are un-
necessarily complicated. A further simplification can be made by replacing the quanti-
ties Ko, pqo, and ko by their lossless values obtained by setting & = 0. This makes pg0
a unimodular complex number so that p,¢ = p¥,. We have then the approximations:

2 £, 3/2
K=o (g ) (555
E& + & & — &p

&q + jVeEr(€q — €p) —Eakp

a0 = . = —bo +jao, pas =—bo—jao (8.5.24)
ga —JVer(€a — €p) —€atp
kofy

kzO = _jO(zO, Xz0 = —(——
& — &p

so that

& (&g — &p) —Eq(Eq + €p)

_ 2&q\Er (&g — €p) —EqEp

by = , dop = 8.5.25
0 (a — &b) (&1 + &p) 07 (ea—p) (& + &p) ( )
The wavenumber shifts (8.5.18) then become:
kxo = (bo — jag)Koe 2%04 = Byo — j&xo
(8.5.26)

ki = (bo +jao) Koe 2%24 = By + jitxo = k}
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with

BXO = boKoeizazod, O_(x() = aoKoeilemd (8.5.27)
Then, the reflectance becomes in the neighborhood of the resonance:

(kx — Bxo — B:x0)2+(0(x0 - &XO)Z
(kx — Bxo — Bxo) %+ (xXxo + &x0)?

Ir|? = (8.5.28)

with a minimum value: )
(O(XO - O_(XO)

rp2. =-—x —X 8.5.29

‘ |m1n ((XXO + O_(XO)Z ( )

In this approximation, the resonance angle is determined from:

kong Sin Ores = Kres = Bx() + BxO = ko % + bOKoeizazod (8.5.30)
A/ .-

Since the second term on the right-hand side represents a small correction, a neces-
sary condition that such a resonance angle would exist is obtained by setting 6.5 = 90°
and ignoring the second term:

Er€ ;
ng > | —-2_ = pmin (8.5.31)
& —&p
For example, for the parameters of Fig. 8.5.3, the minimum acceptable refractive
index n,; would be ngﬂn = 1.033. Thus, using a glass prism with n; = 1.5 is more than
adequate. If the right medium is water instead of air with n, = 1.33, then nT" = 1.41,
which comes close to the prism choice. The 3-dB angles are obtained by solving
(kx*kres)er(O(xof0_(x0)2 1

Ir? = 2 X2 2
(kx — Kres) 2+ (0txo + &xo) 2

with solution ky .+ = Kpes = \/Gaxoé(xo — 0y — &2, or

KoMasin 0. = KoM sin Ores + /600 &x0 — &% — & (8.5.32)

The angle width shown on Fig. 8.5.3 was calculated by A0 = 0 — 6 _ using (8.5.32).
The optimum thickness dp; is obtained from the condition xxg = &xo, which drives
\r |r2nin to zero. This condition requires that &g = aoKope 2%»4 with solution:

- 2
1 ln<a0K0> Ao JVE&— & ln(s (4aosr )
i

dopt = (8.5.33)

20 Oy /AT & &+ &p)
where we replaced «xo from Eq. (8.5.5). For the same parameters of Fig. 8.5.3, we cal-
culate the optimum thickness to be dopr = 56.08 nm, resulting in the new resonance
angle of Ores = 43.55°, and angle-width A = 0.227°. Fig. 8.5.6 shows the reflectance
in this case. The above approximations for the angle-width are not perfect, but they are
adequate.

One of the current uses of surface plasmon resonance is the detection of the pres-
ence of chemical and biological agents. This application makes use of the fact that the
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surface plasmon resonance expanded view
1 .
< 06
[
0.4
0.2
% 15 30 45 60 75 90 41 42 43 44 45
6 (degrees) 6 (degrees)
Fig. 8.5.6 Surface plasmon resonance at the optimum thickness d = dop:.
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Fig. 8.5.7 Shift of the resonance angle with the refractive index njp.

resonance angle 0, is very sensitive to the dielectric constant of the medium ny. For
example, Fig. 8.5.7 shows the shift in the resonance angle for the two cases n, = 1.05
and np = 1.33 (water). Using the same data as Fig. 8.5.3, the corresponding angles and
widths were e = 46.57°, AQ = 0.349° and Ores = 70°, AO = 1.531°, respectively.

A number of applications of surface plasmons were mentioned in Sec. 7.11, such as
nanophotonics and biosensors. The reader is referred to [593-631] for further reading.

8.6 Perfect Lens in Negative-Index Media

The perfect lens property of negative-index media was originally discussed by Veselago
[391], who showed that a slab with € = —€y and u = —pg, and hence with refractive
index n = —1, can focus perfectly a point-source of light. More recently, Pendry [398]
showed that such a slab can also amplify the evanescent waves from an object, and
completely restore the object’s spatial frequencies on the other side of the slab. The
possibility of overcoming the diffraction limit and improving resolution with such a
lens has generated a huge interest in the literature [391-473].
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Fig. 8.6.1 shows the perfect lens property. Consider a ray emanating from an object
at distance z( to the left of the slab (z = —zj). Assuming vacuum on either side of
the slab (n; = np = 1), Snel’s law, implies that the angle of incidence will be equal to
the angle of refraction, bending in the same direction of the normal as the incident ray.

Indeed, because n; = 1 and n = —1, we have:
ngsinf, =nsinf = sinf;=-sinf@ = 6O,=-0
XK
0a,/\Oa
“Zo\_ 0 2 d 2d-z,
ng=1 n=-1 np=1
z=0 z=d

Fig. 8.6.1 Perfect lens property of a negative-index medium with n = —1

Moreover, 1 = \/u/€ = \/tlo/ €9 = no and the slab is matched to the vacuum. There-
fore, there will be no reflected ray at the left and the right interfaces. Indeed, the TE and
TM reflection coefficients at the left interface vanish at any angle, for example, we have
for the TM case, noting that cos 8 = cos(—60,) = cos 0,:

_ncos® —ngcosf, cosO —coslq

P ncos® +nocos@y cosO +cosOy

Assuming that zo < d, where d is the slab thickness, it can be seen from the geometry
of Fig. 8.6.1 that the refracted rays will refocus at the point z = zy within the slab and
then continue on to the right interface and refocus again at a distance d — zy from the
slab, that is, at coordinate z = 2d — zy.

Next, we examine the field solutions inside and outside the slab for propagating and
for evanescent waves. For the TM case, the electric field will have the following form
within the three regions of z < 0,0 <z <d,and z > d:

k

k—x i)ejkzz] e kX for z<0
A

E= [A+ (x - & z)e-fkéz +A_ (x + ]':—" z>eﬂ<22] e kX for 0<z<d (8.6.1)
Zz

k . .
EOT(X - k—x 2)e’ka(Z’d)e’kax, for z>d
zZ

where I', T denote the overall transverse reflection and transmission coefficients, and
AL, A_, the transverse fields on the right-side of the left interface (i.e., at z = 0+). The
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corresponding magnetic field is:

VEo (%) [ewJkez — [ekez]o=Tknx | for z<0
zZ
_ . (W€ —jk,z Jjk,z 1 p—Jjkxx
H=-7 o [AjeTkez — A_eiKzZ]e=JkX | for 0<z<d (8.6.2)
zZ
VE,T ((:—6) e Jkz(z=d) g—jkxx | for z>d
z

where ky is preserved across the interfaces, and k, k;, must satisfy:

k2 + k2 = w?poeg, k2 +kJP = w?ue (8.6.3)

Thus, k; = ++Jw2pp€o — k3 and k), = ++/w?ue — k3. The choice of square root

signs is discussed below. To include evanescent waves, we will define k, by means of
the evanescent square root, setting ko = w./Ho€o:

Jk3 = K3, if k2 <k?
kG —k3, if k2= K

We saw in Sec. 7.16 that for a single interface between a positive- and a negative-
index medium, and for propagating waves, we must have k, > 0 and k, < 0 in order for
the power transmitted into the negative-index medium to flow away from the interface.
But in the case of a slab within which one could have both forward and backward waves,
the choice of the sign of k/, is not immediately obvious. In fact, it turns out that the
field solution remains invariant under the substitution k;, — —k;, and therefore, one
could choose either sign for k;,. In particular, we could select it to be given also by its
evanescent square root, where n? = eu/eopo:

\kén2 — k%, if k3 < k3n?
—jy ki —k3n2, if k2= k3n?

By matching the boundary conditions at the two interfaces z = 0 and z = d, the
parameters I', A., T are obtained from the usual transfer matrices (see Sec. 8.1):

Eo | _ 1 1 pm || As

Eor 1+pm| Pv 1 A_

Ay | elkzd 0 1 1 —-pmm || EoT
A_ | 0 efjk'/ld 1-—pm| —Pm™m 1 0

ke —k,e -1 : k;

Jkekee Tvd o oM K€ (8.6.7)
k7€ + kze Cmv+1 N kz€

where 7y is a normalized characteristic impedance. The solution of Egs. (8.6.6) is then,

k, = sqrte(k3 — k2) = (8.6.4)

k, = sqrte(k3n® — k3)= (8.6.5)

(8.6.6)

where,

PtM

r- pru(1 — e~ ki) _ (Cin— 1) (1 — e~2ikid)
1 — phye2kid (Crm + 1) 2= (Cpu — 1) 2e-2/ked
. o (8.6.8)
7 U=phjesd 4Crm

1-— pZTMe—zjk;d (T + 1)2eikzd — (Cppp — 1)2e-Jked
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Similarly, the coefficients A. are found to be:

1-— I 1
A+=ﬂ=*[l+CTM+(1_CTM)F]EO
1-pm 2
v (8.6.9)
A_ = pL = 7[1—CTM+ (1+CTM)F]E0

1—-pm 2
The TE case is obtained from the TM case by a duality transformation, that is, by the
replacements, E -~ H, H—~ —E, € — u, € — p’,and pry — p7E, where

prE = ko' —kZu _ Cre—1 Cre = h _ k.’
ko' +kzu Trp+1’° nte  Kzp

The invariance under the transformation k;, — —k;, follows from these solutions.
For example, noting that 1y — —C 1y under this transformation, we have:

(Chy— 1) (1 - e¥49) _ @y - -e V)
(=T + 1) 2= (=Cm — 1)2e¥Ked (L +1)2— (L — 1) 2e-2ked

Similarly, we find T (—-k,)= T (k) and A.(—k,)= Az (k}). These imply that the
field solutions remain invariant. For example, the electric field inside the slab will be:

r(-ky)= =I'(k})

E(z,-k}) = [A+(4<’Z) (&7 _kI: z)e-f<-k’z>z +A_(-k) <f<+

Z

kx i)ej(—k’z)Z] 0Tk
kz

- [A+ (K.) (x - ’;— z)eﬂ‘kéz A (K) (x ; I’i— z>eﬂ<22] eI = E(z,4K))
zZ Z

Similarly, we have for the magnetic field inside the slab:

’ ~ UJG, ’ —j(=k’ ’ i(—k’ —j
H(Z,—kz) =y (_7](2) [A+(—kz)e Jj(-ky)z _Ai(_kz)ej( kz)z]e jkxx
-y (—“I’f ) [AL (Ky)e 7% — A (K)) el ]e b = H(z, +k})
zZ
Next, we apply these results to the case y = —pp and € = —€p, having n = —1.

It follows from Eq. (8.6.5) that k;, = ¥k, with k, given by (8.6.4). In this case, Ty =
k,e/k,€" = —k},/k, = +1. Then, Eq. (8.6.8) implies that I = 0 for either choice of sign.
Similarly, we have T = e/Xz4 again for either sign of Cpy:

wa |4 i kg <kg, ks = m
T=eld=q" . ) e (8.6.10)
ez y if k>2< = ko, kz = —J\/kxj = —joy,

Thus, the negative-index medium amplifies the transmitted evanescent waves, which
was Pendry’s observation [398]. The two choices for k;, lead to the A, coefficients:

k,=-k, = Cmu=+1 = A, =E, A_=0

K, =+k, = Tm=-1 = A,=0, A =E (8.6.11)

For either choice, the field solutions are the same. Indeed, inserting either set of
A4, A_ into Egs. (8.6.1) and (8.6.2), and using (8.6.10), we find:
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k ) .
Eo ()2 - k—x Z)e’szze’J"X", for z<0
z
E=1Ey (x + %z) elkazoikxx | for 0<z=<d (8.6.12)
zZ

k . . )
Eo ()2 - k—x i)e’sz(z’m)e’kax, for z=d
VA

and the corresponding magnetic field:

V Eo (%) e Jkaz g=jkix for z<0
z
€ ) )
H=1VE, (“;{ °> e/kaz g=jkix | for 0<z<d (8.6.13)
z
vV Eo (a:o) ek (z=2d) p=jkxx | for z>d
z

The solution effectively corresponds to the choice k;, = —k, and is valid for both
propagating and evanescent waves with k, given by (8.6.4). In Eq. (8.6.12) the constant
Ej refers to the value of the transverse electric field at z = 0. Changing the reference
point to z = —Zzp at the left of the slab as shown in Fig. 8.6.1, amounts to replacing
Eoy — Ege k220 Then, (8.6.12) reads:

. kx ; ;
Eo (x - k—x z)e’f"é (z+20) g =JkX for —zp<z=<0
zZ

E= E0<§( + % z)dkz (z=20) g=JkxX | for 0<z=<d (8.6.14)
VA

ke ) .
Eo (x - k—x z)e’sz(z’z"”“)e’JkX", for z>d
z

Setting k, = — as in (8.6.4), we find the evanescent fields:

Eo (x - Ifx i)e“"z(Z”O)e‘ﬂ“", for —zp<z=<0
—JXz
5 k 5 &, (z—20) ,—Jjkxx
E=1 Eg| X+ ——— 7 |eX#7%0) gmJKxX for 0<z=<d (8.6.15)
—J&z
E0<§(— 'f" z)e*“ﬂZ*Zd*zo)eﬂkﬂ, for z>d
—J&z

The field is amplified inside the slab. The propagation factors along the z-direction
agree at the points z = —zg, z = zg, and z = 2d — zo,

o Jkz(2+20) = otkz(z-20)

Z==Zo

— e—jkz(z—2d+z(7)

Z=Zy

z=2d-zy
(8.6.16)
&z (z-20)

e—(xz(erzO) _ e—(xz(z—2d+zo)

=e

zZ=—2y z=2z z=2d-2zg
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which imply the complete restoration of the source at the focal points inside and to the
right of the slab:

Ex(X%,2) | ;o 5y = Ex(X,2) | =5, = Ex(X,2) | 5005, (8.6.17)

Fig. 8.6.2 shows a plot of the evanescent component Ey (z) of Eq. (8.6.15) versus distance
z inside and outside the slab.

Ex(z)4 Ex(z) Ex(z)

4
N

Zp 0 Zo d 2d-z,

ng=1 n=-1 np=1

Fig. 8.6.2 Evanesenct wave amplification inside a negative-index medium.

Using the plane-wave spectrum representation of Sec. 19.2, a more general (single-
frequency) solution can be built by superposition of the plane waves (8.6.14) and (8.6.15).
If the field at the image plane z = —z has the general representation:

E(x,-z0) = 1 J Eo (ky) (x _kx z) e kX gk, (8.6.18)
2T ) k

zZ
where the integral over ky includes both propagating and evanescent modes and k is

given by (8.6.4), then, then field in the three regions to the left of, inside, and to the right
of the slab will have the form:

E(x,z)= i J Eo (ky) (x - ’;—* z) e ke (z+20) g=jkxx g | for —zp<z<0
e 5
1 (” o Kx S\ ik (2=20) o—jkex
E(x,z)=§ Eo(ky) x+k—z elkz o) eI X dky for 0<z=<d
e 5

E(x,z)= i Jio Eo (kx) (f(— ’;—X

2) e Jke(z=2d+z0) p-jhX g for z>d
zZ

It is evident that Eq. (8.6.17) is still satisfied, showing the perfect reconstruction of
the object field at the two image planes.

The perfect lens property is highly sensitive to the deviations from the ideal values of
€ = —€pand y = — Uy, and to the presence of losses. Fig. 8.6.3 plots the transmittance in
dB, that is, the quantity 101og;, |Te/%+4|2 versus k, with T computed from Eq. (8.6.8)
for different values of €, 4 and for d = 0.2A = 0.2(271/kq). In the ideal case, because
of the result (8.6.10), we have | Te k24| = 1 for both propagating and evanescent values
of ky, that is, the transmittance is flat (at O dB) for all ky.
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Transmittance Transmittance

40 — e=p=-1-0.001; | |

--- =y =-1-0010;
£=p=-1-0.100/

20
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_20 Y ~90 — &=y =-1.01-0.000j
--- &=y =-0.98-0.000]
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s £==-0.90 -0.001;
—40 N —40 " . J\\
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Fig. 8.6.3 Transmittance under non-ideal conditions (€, u are in units of €, Ho).

The left graph shows the effect of losses while keeping the real parts of €, u at the
ideal values —€g, —p. In the presence of losses, the transmittance acts like a lowpass
filter in the spatial frequency k.

The right graph shows the effect of the deviation of the real parts of €, u from the
ideal values. If the real parts deviate, even slightly, from —€q, — L, the transmittance
develops resonance peaks, which are related to the excitation of surface plasmons at the
two interfaces of the slab [407,408]. The peaks are due to the poles of the denominator
of T in Eq. (8.6.8), that is, the roots of

1-phye PKd =0 = el =pf = = appy

For evanescent ky, we may replace k, = —j&, and k, = —ja), where &, = \/k3 — k3
and o, = 4/k% — k3n2, and obtain the conditions:

!
ad _ o€0 — K€

=+ =+— 8.6.19
e Pt™M o€ T OE ( )
These are equivalent to [407,408]:
tanh(“zd) -8 tanh(“zd) = % (8.6.20)
2 Xz€p 2 Xz€

For kx > ko, we may replace &, = &, =~ ky in (8.6.19) in order to get en estimate of
the resonant ky:

€y — € €y — € 1 €y — €
eknresd — 4 =0 = eRekyres)d - ' 0-= ’ =  Re(kyres)= - In ‘ ¢ '
€0+ € €y + € d €0+ €

(8.6.21)

and for the TE case, we must replace €s by ps. The value ky = Re(kyres) Tepresents
the highest achievable resolution by the slab, with the smallest resolvable transverse
distance being of the order of Ax = 1/ Re (Kyres)-

If € is real-valued and near —€y, then, Ky res is real and there will be an infinite res-
onance peak at kx = Kxres. This is seen in the above figure in the first two cases of
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€/ep = p/po = —1.01 and €/€9 = p/po = —0.98 (the apparent finite height of these
two peaks is due to the finite grid of ky values in the graph.)

The last two cases have complex-valued €, 4 with a small imaginary part, with the
resulting peaks being finite. In all cases, the peak locations ky = Re (kx res) —0Obtained by
solving Egs. (8.6.20) numerically for ky res—are indicated in the graphs by bullets placed
at the peak maxima. The numerical solutions were obtained by the following iterative
procedures, initialized at the approximate (complex-valued) solution of (8.6.21):

R 1 €)— € 1 €)— € , ;
initialize: kx:aln<62+€) kx=aln(—€2?>, o, = k% — k3n?

fori=1,2,..., Nitr, do: fori=1,2,..., Nijtr, do:

o, = ki ~ Kn? S N

€ o,d , € o,d
az=—?0aztanh( £ ) azzf—txztanh< ; )

2 €o

kx = o2 + k3 kx =\ + k3n?
The number of iterations was typically Nj.r = 30. Both graphs of Fig. 8.6.3 also show
dips at kx = ko. These are due to the zeros of the transmittance T arising from the
numerator factor (1 — pZTM) in (8.6.10). At ky = ko, we have «; = 0 and ppy = 1,
causing a zero in T. In addition to the zero at ky = Kk, it is possible to also have poles
in the vicinity of kg, as indicated by the peaks and bullets in the graph. Fig. 8.6.4 shows
an expanded view of the structure of T near ko, with the ky restricted in the narrow
interval: 0.99k < kx < 1.01ky.

Transmittance

20

0.99 1.01

1
k./kg
Fig. 8.6.4 Expanded view of the zero/pole behavior in the vicinity of ky = kq.

For last two cases depicted on this graph that have |n?| = |eu|/€quo < 1, an ap-
proximate calculation of the pole locations near Ky is as follows. Since &, = 1/k3 — k% is

small, and &}, = y/&2 + ko (1 — n2), we have to first order in &, &}, = k3+/1 — n2 = «,
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which is itself small. Then, we apply Eq. (8.6.21) to get &, and from it, the resonant Ky res:

4
€ .,0d - ;
oy = 7—60 oy tanh( 20 ) Kxres = \ 0% + k3

8.7 Antireflection Coatings at Oblique Incidence

Antireflection coatings are typically designed for normal incidence and then used over
a limited range of oblique incidence, such as up to about 30°. As the angle of incidence
increases, the antireflection band shifts towards lower wavelengths or higher frequen-
cies. Any designed reflection zeros at normal incidence are no longer zeros at oblique
incidence.

If a particular angle of incidence is preferred, it is possible to design the antireflection
coating to match that angle. However, like the case of normal design, the effectiveness
of this method will be over an angular width of approximately 30° about the preferred
angle.

To appreciate the effects of oblique incidence, we look at the angular behavior of
our normal-incidence designs presented in Figs. 6.2.1 and 6.2.3.

The first example was a two-layer design with refractive indices n, = 1 (air), n; =
1.38 (magnesium fluoride), n, = 2.45 (bismuth oxide), and n, = 1.5 (glass). The de-
signed normalized optical lengths of the layers were L; = 0.3294 and L, = 0.0453 at
Ap = 550 nm.

Fig. 8.7.1 shows the TE and TM reflectances |I't; (A)|? as functions of A, for the
incidence angles 6 = 0°,20°,30°, 40°.

TE polarization TM polarization

| Iy (M) 12 (percent)
| Ty (M) 12 (percent)

- 0
550 600 650 700 400 450 500 550 600 650 700
A (nm) A (nm)

Fig. 8.7.1 Two-layer antireflection coating at oblique incidence.

We note the shifting of the responses towards lower wavelengths. The responses
are fairly acceptable up to about 20°-30°. The typical MATLAB code used to generate
these graphs was:

[1, 1.38, 2.45, 1.5]; L = [0.3294, 0.0453];

n =
1a0 550; la = Tinspace(400,700,101); pol="te’;
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GO0 = abs(multidiel(n, L, Ta/Ta0)).A2 * 100;
G20 = abs(multidiel(n, L, 1a/1a0, 20, pol)).A2 * 100;
G30 = abs(multidiel(n, L, 1a/1a0, 30, pol)).A2 * 100;

G40 = abs(multidiel(n, L, 1a/1a0, 40, pol)).A2 * 100;

plot(la, [GO; G20; G30;

G401);
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As we mentioned above, the design can be matched at a particular angle of incidence.

As an example, we choose 6, = 30° and redesign the two-layer structure.

The design equations are still (6.2.2) and (6.2.1), but with the replacement of n;,
p; by their transverse values nr;, pri, and the replacement of kql;, k»I> by the phase
thicknesses at A = Ao, thatis, ;7 = 21rL; cos 07 and &> = 27rL> cos 0>. Moreover, we
must choose to match the design either for TE or TM polarization.

Fig. 8.7.2 illustrates such a design. The upper left graph shows the TE reflectance
matched at 30°. The designed optical thicknesses are in this case, L; = 0.3509 and
L, = 0.0528. The upper right graph shows the corresponding TM reflectance, which
cannot be matched simultaneously with the TE case.

The lower graphs show the same design, but now the TM reflectance is matched at
30°. The designed lengths were L, = 0.3554 and L, = 0.0386.

TE matched at 30° TM unmatched at 30°
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The design steps are as follows. First, we calculate the refraction angles in all media
from Eq. (8.1.1), 0; = asin(n, sin@,/n;), for i = a, 1,2, b. Then, assuming TE polariza-
tion, we calculate the TE refractive indices for all media ny; = n;cos9;,i = a,1,2,b.

Then, we calculate the transverse reflection coefficients pr; from Eq. (8.1.3) and use
them to solve Eq. (6.2.2) and (6.2.1) for the phase thicknesses &1, 0. Finally, we calcu-
late the normalized optical lengths from L; = 6;/ (21 cos 0;), i = 1,2. The following
MATLAB code illustrates these steps:

n=[1, 1.38, 2.45, 1.5]; na = 1;
tha = 30; thi = asin(na*sin(pi*tha/180)./n);

nt = n.*cos(thi);
r = n2r(nt);

% for TM use nt = n./cos(thi)

¢ = sqrt((r(1A2*(1-r(2)*r(3))A2 - (r(2)-r(3))A2)/(4*r2)*r(3)*(1-r(1)A2)));
de2 = acos(c);

G2 = (r)+r(3)*exp(-2*j*de2))/(1 + r(2)*r(3)*exp(-2*j*de2));

del = (angle(G2) - pi - angle(r(1)))/2;

if del <0, del = del + 2*pi; end

L = [del,de2]/2/pi;

L = L./cos(thi(2:3));

Ta0 = 550; la = linspace(400,700,401);

G30 = abs(multidiel(n, L, 1a/1a0, 30, ’te’)).A2 * 100;
G20 = abs(multidiel(n, L, la/1a0, 20, ’te’)).A2 * 100;
G40 = abs(multidiel(n, L, la/1a0, 40, ’te’)).A2 * 100;

4 ™ 4 T
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Fig. 8.7.2 Two-layer antireflection coating matched at 30 degrees.

GO = abs(multidiel(n, L, 1a/1a0)).A2 * 100;

plot(la, [G30; G20; G40; GO1);

Our second example in Fig. 6.2.3 was a quarter-half-quarter 3-layer design with re-
fractive indices n; = 1 (air), n; = 1.38 (magnesium fluoride), n, = 2.2 (zirconium oxide),
n3 = 1.63 (cerium fluoride), and n, = 1.5 (glass). The optical lengths of the layers were
L1 = L3 = 0.25 and Lz =0.5.

Fig. 8.7.3 shows the TE and TM reflectances |I'r1(A)|? as functions of A, for the
incidence angles 6 = 0°,20°,30°,40°.

The responses are fairly acceptable up to about 20°-30°, but are shifted towards
lower wavelengths. The typical MATLAB code used to generate these graphs was:

n=1[1, 1.38, 2.2, 1.63, 1.5]; L = [0.25, 0.50, 0.25];

1a0 = 550; la = Tinspace(400,700,401);

GO = abs(multidiel(n, L, 1a/1a0)).A2 * 100;
G20 = abs(multidiel(n, L, 1a/1a0, 20, ’te’)).A2 * 100;
G30 = abs(multidiel(n, L, 1a/1a0, 30, ’te’)).A2 * 100;

G40 = abs(multidiel(n, L, Ta/1a0, 40, ’te’)).A2 * 100;

plot(la, [GO; G20; G30; G401);
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Fig. 8.7.3 Three-layer antireflection coating at oblique incidence.

8.8 Omnidirectional Dielectric Mirrors

Until recently, it was generally thought that it was impossible to have an omnidirectional
dielectric mirror, that is, a mirror that is perfectly reflecting at all angles of incidence
and for both TE and TM polarizations. However, such mirrors are possible and have
recently been manufactured [777,778] and the conditions for their existence clarified
[777-781].

We consider the same dielectric mirror structure of Sec. 6.3, consisting of alternating
layers of high and low index. Fig. 8.8.1 shows such a structure under oblique incidence.
There are N bilayers and a total of M = 2N + 1 single layers, starting and ending with
a high-index layer.
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oy = 2Tr£LHcos¢9H,

fo

oL = 2Tr£LLcoseL

fo

(8.8.2)

where Ly = ngly /Ao, Ly = nplp /A are the optical thicknesses normalized to some A,
and fo = co/A¢. Note also, cos §; = /1 — nasin® 8,/n?,i=H,L.

A necessary (but not sufficient) condition for omnidirectional reflectivity for both
polarizations is that the maximum angle of refraction 6y max inside the first layer be
less than the Brewster angle 0p of the second interface, that is, the high-low interface,
so that the Brewster angle can never be accessed by a wave incident on the first interface.
If this condition is not satisfied, a TM wave would not be reflected at the second and all
subsequent interfaces and will transmit through the structure.

Because sin Oy max = Nq/Ny and tan @ = ny/ny, or, sin@p = ny//n% + n?, the
condition O max < Op, or the equivalent condition sin O max < sin Op, can be written

as Ng/ny < np/n¥ +n?, or

ngnry
Jné +n?

We note that the exact opposite of this condition is required in the design of multi-
layer Brewster polarizing beam splitters, discussed in the next section.

In addition to condition (8.8.3), in order to achieve omnidirectional reflectivity we
must require that the high-reflectance bands have a common overlapping region for all
incidence angles and for both polarizations.

To determine these bands, we note that the entire discussion of Sec. 6.3 carries
through unchanged, provided we use the transverse reflection coefficients and trans-
verse refractive indices. For example, the transverse version of the bilayer transition
matrix of Eq. (6.3.5) will be:

Ng < (8.8.3)

o Ly —— 1
ng ny np ny np ny nr ny np
X
z Ob
Ou Yoy 0 On 0, On 0, On
Op
P Pr| -Pr Pr| -Pr Pr| -Pr Pt
1 2
Fig. 8.8.1 Dielectric mirror at oblique incidence.
The incidence angles on each interface are related by Snel’s law:
Ngsin@, = ngsin@y = ny sin @ = ny sin 0y, (8.8.1)

The phase thicknesses within the high- and low-index layers are in normalized form:

1 ej(5H+6L) _ p%,ej((stéL) 72jpTe*j5H Sin6L
Fr=1"p2 2jpreldn sin sy oI (Bu+61) _ p2 oI (8=61) (8.8.4)
where pr = (ngr — nrr) / (ngr + nrr) and:
nH nL (TM polarization)
ngr =1 cosfy npr =+ cos0r o (8.8.5)
Ny cos Oy nr cos 01 (TE polarization)
Explicitly, we have for the two polarizations:
nyg cos 0 — ny cos Oy ny cos Oy — ny cos 0,
Pt™M = , = (8.8.6)
nyg cos 0p + ny cos Oy nyg cos Oy + ny cos 01,
The trace of Fr is as in Eq. (6.3.13):
_ cos(5H+5L)—p2Tcos(6H—5L) (8.8.7)
1-p7 o
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The eigenvalues of the matrix Fr are A = e*/K!, where K = acos(a)/landl = Iy +I;.
The condition a = —1 determines the bandedge frequencies of the high-reflectance
bands. As in Eq. (6.3.16), this condition is equivalent to:

6H+6L) _ %Cosz(aH—(SL)

2
cos? ( 5 p 5 (8.8.8)

Defining the quantities L+ = Ly cos @y + Li cos 01 and the normalized frequency
F = f/fo, we may write:

w = TrfL (LgcosOy =L cos@r)= 1FL-~ (8.8.9)
0

Then, taking square roots of Eq. (8.8.8), we have:

cos(mFL,)= +|pr|cos(mtFL_)

The plus sign gives the left bandedge, F1 = f1/fo, and the minus sign, the right
bandedge, F» = f>/fo. Thus, Fy, F, are the solutions of the equations:

cos(TmF Ly ) = |pr|cos(mmFL_)

(8.8.10)
cos(mF,L,) = —|pr|cos(mmF,L_)
The bandwidth and center frequency of the reflecting band are:
Al pp—p,—F, le_p _BirE (8.8.11)
fo fo 2

The corresponding bandwidth in wavelengths is defined in terms of the left and right
bandedge wavelengths:

A() Co 2\() Co
Ap=222200 =20 220
""F T f "R f

An approximate solution of Eq. (8.8.10) can be obtained by setting L_ = 0 in the
right-hand sides of Eq. (8.8.10):

AA =2 — Ay (8.8.12)

cos(F1Ly)= |prl, cos(mF2Ly)= ~|prl (8.8.13)
with solutions:
F, < 2coslprD . acos(=lprl) (8.8.14)
TrL+ 7TL+

Using the trigonometric identities acos(x|pr|)= 1/2 ¥ asin(|pr|), we obtain the
bandwidth and center frequency:

2foasinlprl) o _fitfe_ fo

Af = fo— f = = 8.1
f=r-h L, c > oL, (8.8.15)
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It follows that the center wavelength will be A; = co/fc. = 2L+ Ay or,

)\c = 2L+A0 = Z(IHI’IH CoSs QH + ILVIL Ccos 9]_) (8.8.16)

At normal incidence, we have A, = 2 (Ighg + Iy ny). For quarter-wavelength designs
at Ao at normal incidence, we have L. = 1/4 + 1/4 = 1/2, so that A, = Ag.

The accuracy of the approximate solution (8.8.14) depends on the ratiod = L_ /L.
Even if at normal incidence the layers were quarter-wavelength with Ly = Lp = 0.25,
the equality of Ly and L will no longer be true at other angles of incidence. In fact, the
quantity d is an increasing function of 6,. For larger values of d, the exact solution of
(8.8.10) can be obtained by the following iteration:

initialize with F; = F» = 0,
fori=0,1,..., Niter, do:

1
F., =
'L

acos(|pr|cos(TTF1L-)) (8.8.17)

+

acos(—|pr|cos(mmF,L_))

1
F> =
2T nL

+

Evidently, the i = 0 iteration gives the zeroth-order solution (8.8.14). The iteration
converges extremely fast, requiring only 3-4 iterations Nji. The MATLAB function
omniband implements this algorithm. It has usage:

[F1,F2]
[F1,F2]

omniband(na,nH,nL,LH,LL,theta,pol,Niter)
omniband(na,nH,nL,LH,LL, theta,pol)

% bandedge frequencies

% equivalent to Niter = 0

where theta is the incidence angle in degrees, poT is one of the strings ’te’ or ’tm’ for
TE or TM polarization, and Niter is the desired number of iterations. If this argument
is omitted, only the i = 0 iteration is carried out.

It is straightforward but tedious to verify the following facts about the above solu-
tions. First, f1, f» are increasing functions of 6, for both TE and TM polarizations. Thus,
the center frequency of the band f. = (f1 +f2) /2 shifts towards higher frequencies with
increasing angle 0,. The corresponding wavelength intervals will shift towards lower
wavelengths.

Second, the bandwidth Af = f> — fi is an increasing function of 8, for TE, and a
decreasing one for TM polarization. Thus, as 6, increases, the reflecting band for TE
expands and that of TM shrinks, while their (slightly different) centers f. shift upwards.

In order to achieve omnidirectional reflectivity, the TE and TM bands must have a
common overlapping intersection for all angles of incidence. Because the TM band is
always narrower than the TE band, it will determine the final common omnidirectional
band.

The worst case of overlap is for the TM band at 90° angle of incidence, which must
overlap with the TM/TE band at 0°. The left bandedge of this TM band, f1,7m (90°), must
be less than the right bandedge of the 0° band, f> (0°). This is a sufficient condition for
omnidirectional reflectivity.

Thus, the minimum band shared by all angles of incidence and both polarizations
will be [f1,7am (90°), f2(0°) ], having width:
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Af min = f2(0%) =f1,70 (90°) (minimum omnidirectional bandwidth)  (8.8.18)

In a more restricted sense, the common reflecting band for both polarizations and
for angles up to a given 0, will be [f1,7m (04), f2,7m (0°) ] and the corresponding band-
width:

Af(0a)= f2(0°) —f1,Tm (Ba) (8.8.19)

In addition to computing the bandwidths of either the TM or the TE bands at any
angle of incidence, the function omniband can also compute the above common band-
widths. If the parameter pol is equal to ’tem’, then Fy, F» are those of Egs. (8.8.18) and

(8.8.

19). Its extended usage is as follows:

[F1,F2] omniband(na,nH,nL,LH,LL,theta,’ tem’)
[F1,F2] = omniband(na,nH,nL,LH,LL,90,  tem’)
[F1,F2] omniband(na,nH,nL,LH,LL)

% Eq. (8.8.19)
% Eq. (8.8.18)
% Eq. (8.8.18)

Next, we discuss some simulation examples that will help clarify the above remarks.

Example 8.8.1: The first example is the angular dependence of Example 6.3.2. In order to flatten

I Tp; (M) 12 (percent)

out and sharpen the edges of the reflecting bands, we use N = 30 bilayers. Fig. 8.8.2 shows
the TE and TM reflectances |I'r; (A) |2 as functions of the free-space wavelength A, for the
two angles of incidence 0, = 45° and 80°.

Fig. 8.8.3 depicts the reflectances as functions of frequency f. The refractive indices were
ng = 1, ng = 2.32, np = 1.38, np = 1.52, and the bilayers were quarter-wavelength
Ly = L = 0.25 at the normalization wavelength Ay = 500 nm.

The necessary condition (8.8.3) is satisfied and we find for the maximum angle of refraction
and the Brewster angle: 0y max = 25.53° and 0 = 30.75° Thus, we have Oy max < 03.
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100 - - 1000 --——----—- "
! " hn
! " .
‘ ! 2 TR
i 8 o A .
— 7} Wi 3 R RN AR NAN
il 2 TS T S A
Wi 3 T I I A
Wi 2 Py ity
Wy, E s P g ot
i > i R
HHEHE R 2 Mgy v
Naii i A S
fosii N z
Ty i et IS
TR [ — o - — ™
EEATY | 20
A oo IR A ---TE
+’ A e N Y o
‘ N VARV i ‘ =
$00 400 500 600 700 800 $00 500 600 700 800
A (nm A (nm)

Fig. 8.8.2 TM and TE reflectances for ny = 2.32, ny = 1.38.

On each graph, we have indicated the corresponding bandwidth intervals calculated with
omniband. The indicated intervals are for 0° incidence, for TE and TM, and for the common
band Eq. (8.8.19) at 8,. We observe the shifting of the bands towards higher frequencies,
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Fig. 8.8.3 TM and TE frequency responses for ny = 2.32, ny = 1.38.

or lower wavelengths, and the shrinking of the TM and expanding of the TE bands, and the
shrinking of the common band.

At 45°, there is still sufficient overlap, but at 80°, the TM band has shifted almost to the
end of the 0° band, resulting in an extremely narrow common band.

The arrows labeled f¢y and f. represent the (TM) band center frequencies at 0° and 45° or
80°. The calculated bandedges corresponding to 90° incidence were Ay = Ag/Fp,7am (0°) =
429.73 nm and Ay = Ag/Fy,rm (90°) = 432.16 nm, with bandwidth AA = A, — A; = 2.43
nm. Thus, this structure does exhibit omnidirectional reflectivity, albeit over a very narrow
band. The MATLAB code used to generate these graphs was:

na 1; nb = 1.52; nH = 2.32; nL = 1.38;
LH = 0.25; LL = 0.25;

1a0 = 500;
la = linspace(300,800,501);

th = 45; N = 30;

n = [na, nH, repmat([nL,nH], 1, N), nb];

L = [LH, repmat([LL,LH], 1, N)I;

Ge = 100*abs(multidiel(n,L,1a/Ta0, th, ’'te’)).A2;
Gm = 100*abs(multidiel(n,L,Ta/Ta0, th, 'tm’)).A2;
GO = 100*abs(multidiel(n,L,Ta/1a0)).A2;

plot(la,Gm, la,Ge, 1a,G0);

[F10,F20] = omniband(na,nH,nL,LH,LL, 0, ’te’);
[Fle,F2e] = omniband(na,nH,nL,LH,LL, th,’te’);
[F1m,F2m] = omniband(na,nH,nL,LH,LL, th,’tm’);
[F1,F2] = omniband(na,nH,nL,LH,LL, th,’tem’);

Because the reflectivity bands shrink with decreasing ratio ny/ny, if we were to slightly
decrease ny, then the TM band could be made to shift beyond the end of the 0° band and
there would be no common overlapping reflecting band for all angles. We can observe this
behavior in Fig. 8.8.4, which has ny = 2, with all the other parameters kept the same.
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range of angles 0 < 0, < 90° for both polarizations. The left graph of Fig. 8.8.6 shows the
case nyg = 3, ny = 1.38, and the right graph, the case nyg = 2, ny = 1.38.
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Fig. 8.8.4 TM and TE reflectances for ny = 2, np = 1.38.

At 45° there is a common overlap, but at 80°, the TM band has already moved beyond the 0°
band, while the TE band still overlaps with the latter. This example has no omnidirectional
reflectivity, although the necessary condition (8.8.3) is still satisfied with 0y max = 30° and
Op = 34.61°.

On the other hand, if we were to increase ngy, all the bands will widen, and so will the
final common band, resulting in an omnidirectional mirror of wider bandwidth. Fig. 8.8.5
shows the case of ny = 3, exhibiting a substantial overlap and omnidirectional behavior.

Frequency Response at 45° Frequency Response at 80°

Fig. 8.8.5 TM and TE reflectances for ny = 3, ny = 1.38.

The minimum band (8.8.18) was [Fy,F>]= [1.0465,1.2412] corresponding to the wave-
length bandedges A; = Ag/F> = 402.84 nm and A, = Ag/F; = 477.79 nm with a width of
AN = Ay — A = 74.95 nm, a substantial difference from that of Fig. 8.8.2. The bandedges
were computed with Ny = 0 in Eq. (8.8.17); with Nj = 3, we obtain the more accurate
values: [Fq,F»]= [1.0505,1.2412].

To illustrate the dependence of the TE and TM bandwidths on the incident angle 6,, we
have calculated and plotted the normalized bandedge frequencies F; (0,), F2(0,) for the

TE and TM bandwidths TE and TM bandwidths

M band
TE band

0 . . . . . . . . 0
0 100 20 30 40 50 60 70 80 90 0 10 20 30
6, (degrees)

40 50 60 70 80 90
6, (degrees)

Fig. 8.8.6 TM/TE bandgaps versus angle for ny = 3, ny = 1.38 and ny = 2, ny = 1.38.

We note that the TE band widens with increasing angle, whereas the TM band narrows. At
the same time, the band centers move toward higher frequencies. In the left graph, there
is a common band shared by both polarizations and all angles, that is, the band defined
by F»(0°), and F; v (90°). For the right graph, the bandedge F; 1ty (04) increases beyond
F,(0°) for angles 0, greater than about 61.8°, and therefore, there is no omnidirectional
band. The calculations of F, (6,), F»(0,) were done with omniband with Ny, = 3. |

Example 8.8.2: In Fig. 8.8.7, we study the effect of changing the optical lengths of the bilayers

from quarter-wavelength to Ly = 0.3 and L; = 0.1. The main result is to narrow the
bands. This example, also illustrates the use of the iteration (8.8.17). The approximate
solution (8.8.15) and exact solutions for the 80° bandedge frequencies are obtained from
the two MATLARB calls:

[F1,F2] = omniband(na,nH,nL,LH,LL,80, tem’,0);
[F1,F2] omniband(na,nH,nL,LH,LL,80, tem’,3);

with results [Fy,F,]= [1.0933,1.3891] and [F,F>]= [1.1315,1.3266], respectively.
Three iterations produce an excellent approximation to the exact solution. m]

Example 8.8.3: Here, we revisit Example 6.3.3, whose parameters correspond to the recently

constructed omnidirectional infrared mirror [777]. Fig. 8.8.8 shows the reflectances as
functions of wavelength and frequency at 8, = 45° and 80° for both TE and TM polar-
izations. At both angles of incidence there is a wide overlap, essentially over the desired
10-15 pum band.

The structure consisted of nine alternating layers of Tellurium (ny = 4.6) and Polystyrene
(ng = 1.6) on a NaCl substrate (n, = 1.48.) The physical lengths were Iy = 0.8 and I} = 1.6
um. The normalizing wavelength was Aoy = 12.5 um. The optical thicknesses in units of
Ag were Ly = 0.2944 and Ly = 0.2112.

The bandedges at 0° were [F1, F»]= [0.6764, 1.2875] with center frequency Fqo = 0.9819,
corresponding to wavelength Ao = Ag/Fco = 12.73 um. Similarly, at 45°, the band centers
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Fig. 8.8.7 Unequal length layers Ly = 0.30, L; = 0.15.

for TE and TM polarizations were F.rg = 1.0272 and F.rm = 1.0313, resulting in the
wavelengths A¢ g = 12.17 and Aty = 12.12 um (shown on the graphs are the TE centers

Reflectance at 45° Reflectance at 80°
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Fig. 8.8.8 Nine-layer Te/PS omnidirectional mirror over the infrared.
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only.)

The final bandedges of the common reflecting band computed from Eq. (8.8.18) were
[Fy,F2]= [0.8207,1.2875], resulting in the wavelength bandedges A; = A¢/F, = 9.71
and A, = Ag/F; = 14.95 pum, with a width of AA = A, — A; = 5.24 um and band center
(A; 4+ A7) /2 =12.33 um (the approximation (8.8.15) gives 5.67 and 12.4 um.) The graphs
were generated by the following MATLAB code:

1a0 = 12.5; T1a = linspace(5,25,401);
na=1; nb =1.48; nH = 4.6; nL = 1.6;
TH = 0.8; 1L = 1.65; LH = nH*1H/Ta0; LL = nL*1L/1a0;

th = 45;

N = 4;

[na, nH, repmat([nL,nH], 1, N), nb];
L = [LH, repmat([LL,LH], 1, N)1;

Ge = 100*abs(multidiel(n,L,Ta/Ta0, th, ’'te’)).A2;
Gm = 100*abs(multidiel(n,L,Ta/1a0, th, ’tm’)).A2;
GO = 100*abs(multidiel(n,L,1a/7a0)).A2;

plot(la,Gm, l1a,Ge, T1a,G0);

Ni = 5;

[F10,F20] = omniband(na,nH,nL,LH,LL, O, ’te’, Ni); % band at 0°
[Fle,F2e] = omniband(na,nH,nL,LH,LL, th,’te’, Ni); % TE band
[F1m,F2m] = omniband(na,nH,nL,LH,LL, th,’tm’, Ni); % TM band
[F1,F2] = omniband(na,nH,nL,LH,LL, th,’tem’,Ni); % Eq. (8.8.19)
[F1,F2] = omniband(na,nH,nL,LH,LL, 90, tem’ ,Ni); % Eq. (8.8.18)

Finally, Fig. 8.8.9 shows the same example with the number of bilayers doubled to N = 8.
The mirror bands are flatter and sharper, but the widths are the same. [}

Reflectance at 45°

Reflectance at 80°
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Fig. 8.8.9 Omnidirectional mirror with N = 8.

Example 8.8.4: The last example has parameters corresponding to the recently constructed

omnidirectional reflector over the visible range [778]. The refractive indices were n,; = 1,
ng = 2.6 (ZnSe), ny = 1.34 (Na3AlFg cryolite), and np = 1.5 (glass substrate.) The layer
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lengths were Iy = I = 90 nm. There were N = 9 bilayers or 2N + 1 = 19 layers, starting
and ending with ny.

With these values, the maximum angle of refraction is 0y max = 22.27° and is less than the
Brewster angle 0 = 27.27°.

The normalizing wavelength was taken to be Ay = 620 nm. Then, the corresponding optical
lengths were L; = nplp/Ag = 0.1945 and Ly = nyly/Ag = 0.3774. The overall minimum
omnidirectional band is [A;,A»]= [605.42, 646.88] nm. It was computed by the MATLAB
call to omniband with N; = 5 iterations:

[F1,F2] = omniband(na,nH,nL,LH,LL,90,  tem’ ,Ni);
lal = 1a0/F2; 1a2 = 1a0/F1;

(The values of A1, A, do not depend on the choice of Ag.) Fig. 8.8.10 shows the reflectance
at 45° and 80°. The upper panel of graphs has N = 9 bilayers as in [778]. The lower panel
has N = 18 bilayers or 38 layers, and has more well-defined band gaps. The two arrows in
the figures correspond to the values of A1, A, of the minimum omnidirectional band. O
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Fig. 8.8.10 Omnidirectional mirror over visible band.
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8.9 Polarizing Beam Splitters

The objective of an omnidirectional mirror is to achieve high reflectivity for both polar-
izations. However, in polarizers, we are interested in separating the TE and TM polariza-
tions. This can be accomplished with a periodic bilayer structure of the type shown in
Fig. 8.8.1, which is highly reflecting only for TE and highly transmitting for TM polariza-
tions. This is the principle of the so-called MacNeille polarizers [640,644,647,666,669,684-
690].

If the angle of incidence 0, is chosen such that the angle of refraction in the first
high-index layer is equal to the Brewster angle of the high-low interface, then the TM
component will not be reflected at the bilayer interfaces and will transmit through. The
design condition is Oy = Op, or sin 0y = sin 8, which gives:

nyng
\né +n?

This condition can be solved either for the angle 6, or for the index n, of the incident
medium:

Ngsin0, = ngsin Oy = nysin 0 = (8.9.1)

ngng nyng
——— | or, |Ng=— ———
Ng\n% + n? sin @4 n% + n?

In either case, the feasibility of this approach requires the opposite of the condition
(8.8.3), that is,

sinf@, = (8.9.2)

ngng
Jn% +n?

If the angle 0, is set equal to the convenient value of 45°, then, condition Eq. (8.9.2)
fixes the value of the refractive index n, to be given by:

Ng > (8.9.3)

_ \2npng
Jné +n?

Fig. 8.9.1 depicts such a multilayer structure sandwiched between two glass prisms
with 45° angles. The thin films are deposited along the hypotenuse of each prism and
the prisms are then cemented together. The incident, reflected, and transmitted beams
are perpendicular to the prism sides.

Not many combinations of available materials satisfy condition (8.9.4). One possible
solution is Banning’s [647] with ny = 2.3 (zinc sulfide), n; = 1.25 (cryolite), and n, =
1.5532. Another solution is given in Clapham, et al, [669], with ng = 2.04 (zirconium
oxide), n; = 1.385 (magnesium fluoride), and n,; = 1.6205 (a form of dense flint glass.)

Fig. 8.9.2 shows the TE and TM reflectances of the case ny = 2.3 and n; = 1.25. The
incident and output media had n, = np = 1.5532. The maximum reflectivity for the TE
component is 99.99%, while that of the TM component is 3% (note the different vertical
scales in the two graphs.)

Ng (8.9.4)
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4 TE polarized

Glass 47 Ly

unpolarized TM polarized

45°

459
Glass

Fig. 8.9.1 Polarizing beam splitter.

The number of bilayers was N = 5 and the center frequency of the TE band was
chosen to correspond to a wavelength of A = 500 nm. To achieve this, the normal-
izing wavelength was required to be Ay = 718.38 nm. The layer lengths were quarter-
wavelengths at Ay. The TE bandwidth calculated with omniband is also shown.

The Brewster angles inside the high- and low-index layers are 6y = 28.52° and
01 = 61.48°. As expected, they satisfy 0y + 01 = 90°.
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Fig. 8.9.2 Polarizer with ny = 2.3 and n; = 1.25.

Fig. 8.9.3 shows the second case having ny = 2.04, n; = 1.385, ng = np = 1.6205.
The normalizing wavelength was Ag = 716.27 nm in order to give A, = 500 nm. This
case achieves a maximum TE reflectivity of 99.89% and TM reflectivity of only 0.53%.
The typical MATLAB code generating these examples was:

nH

; nL = 1.25;
LH L

2.3;
0.25; LL = 0.25;

na = nH*nL/sqrt(nHA2+nLA2)/sin(pi/4); nb=na;

[fle,f2e] = omniband(na,nH,nL,LH,LL,th,’te’,5);
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Fig. 8.9.3 Polarizer with ny = 2.04 and n; = 1.385.

lac
1a0

500;
Tac*(fle+f2e)/2;

because A¢ = Ag/Fc
Ta = Tinspace(300,800,301);

N =75;
n [na, nH, repmat([nL,nH], 1, N), nb];

L = [LH, repmat([LL,LH], 1, N)I;
Ge = 100*abs(multidiel(n,L,1a/Ta0, th, ’'te’)).A2;
Gm = 100*abs(multidiel(n,L,Ta/1a0, th, ’tm’)).A2;

plot(la,Ge);

8.10 Reflection and Refraction in Birefringent Media

Uniform plane wave propagation in biaxial media was discussed in Sec. 4.6. We found
that there is an effective refractive index N such that k = Nky = Nw/cgy. The index N,
given by Eq. (4.6.8), depends on the polarization of the fields and the direction of the
wave vector. The expressions for the TE and TM fields were given in Egs. (4.6.18) and
(4.6.27).

Here, we discuss how such fields get reflected and refracted at planar interfaces
between biaxial media. Further discussion can be found in [638,57] and [698-719].

Fig. 7.1.1 depicts the TM and TE cases, with the understanding that the left and
right biaxial media are described by the triplets of principal indices n = [ny, nz, n3]
and n’ = [n],n}, n4], and that the E-fields are not perpendicular to the corresponding
wave vectors in the TM case. The principal indices are aligned along the xyz axes, the
xy-plane is the interface plane, and the xz-plane is the plane of incidence.

The boundary conditions require the matching of the electric field components that
are tangential to the interface, that is, the components Ey in the TM case or E) in TE.
It proves convenient, therefore, to re-express Eq. (4.6.27) directly in terms of the Ey
component and Eq. (4.6.18) in terms of E),.
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For the TM case, we write E = XEyx + ZE, = Ex (f(_— 7 tan 0), for the electric field of
the left-incident field, where we used E; = —Ex tan 6. Similarly, for the magnetic field
we have from Eq. (4.6.26):

H= E}A’(EXCOSQ —E,sin0)= E}?Excose (1 - &tan9>
No No E

X

N n? N n3 cos? @ + n3 sin? 0
=~ VyFEycosO |1+ Stan?0 | = —VEycosd |2 !
no ) X ( nj no X nj cos? 0

N nin} Ex n?
= %vFE 0 3771 _ =X 1 &
o Y XS <N2n§c0520) no Ncos

where we replaced E,/Ey = —tan @ = — (n?/n%)tan @ and used Eq. (4.7.10). Thus,

n? ;
E(r) = Ex (f(— Z n—% tan@) e Jkr
’ (TM) (8.10.1)

2
Ex _nj Geikr _ Ex ye kv

H —
i No N cos 0 nm

Similarly, we may rewrite the TE case of Eq. (4.6.18) in the form:

E(r) = Eyyekr

E . E _ (TE) (8.10.2)
Hn = '71 nycos 0 (—% + 2tan0)e k" = rTy (—%x+2tan ) ek
0 TE

The propagation phase factors are:

e~JkT = g=JkoxNsin0—jkozN cos 0 (TM and TE propagation factors) (8.10.3)

Unlike the isotropic case, the phase factors are different in the TM and TE cases
because the value of N is different, as given by Eq. (4.6.8), or,

nin
173 , (TM or p-polarization)

N = \/n% sin? @ + n3 cos? @ (8.10.4)
no, (TE or s-polarization)

InEgs. (8.10.1) and (8.10.2), the effective transverse impedances are defined by ny =
Ex/Hy, and nr = —E),/Hy, and are given as follows:

N 0
ntm = No COQS , NT1E= Mo (transverse impedances) (8.10.5)
ng n; cos 0

Defining the TM and TE effective transverse refractive indices through n = no/nmm
and nrg = No/NtE, we have:
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" n3 nin;
™ = =
N cos 0 2 .2
ns — N2sin® 6

N1E = No oS O

(transverse refractive indices) (8.10.6)

where we used Eq. (4.6.23) for the TM case, that is,

Ncos0 = %w/ng — N2sin 0 (8.10.7)

3

In the isotropic case, N = n; = n, = n3 = n, Egs. (8.10.6) reduce to Eq. (7.2.13).
Next, we discuss the TM and TE reflection and refraction problems of Fig. 7.1.1.

Assuming that the interface is at z = 0, the equality of the total tangential electric
fields (Ex component for TM and E), for TE), implies as in Sec. 7.1 that the propagation
phase factors must match at all values of x:

e—ijx - e—jkx,x - e—jk;+x — e—jk;,x
which requires that kx+ = kx— = k;, = kj_, or, because kx = ksin 8 = Nkg sin 0:
Nsin0; =Nsin0_ = N'sin0’. = N'sin0_

This implies Snel’s law of reflection, thatis, 04, = 0_ = 0 and 0’, = 0" = 0’, and
Snel’s law of refraction,

Nsin® = N'sin@’ (Snel’s law for birefringent media) (8.10.8)

Thus, Snel’s law is essentially the same as in the isotropic case, provided one uses the
effective refractive index N. Because N depends on the polarization, there will be two
different refraction angles’ for the same angle of incidence. In particular, Eq. (8.10.8)
can be written explicitly in the two polarization cases:

ninssin 0 nyn;sin 0’

\/n§ sin @ + n3 cos? 0 \/n’12 sin® 0’ + n¥ cos? 6’

(TM) (8.10.9a)

N, sin @ = n, sin 0’ (TE) (8.10.9b)

Both expressions reduce to Eq. (7.1.6) in the isotropic case. The explicit solutions of
Eq. (8.10.9a) for sin 0" and sin O are:

nynzn; sin 0

sin@' =

\/[n’lzngz(n% —n3)-nin3(n¥ - n{?)]sin? 0 + n¥n¥n3
(8.10.10)
4 ’ : 4
njn;n;sin 0

sin @ =

\/[nfng(n’lz - n)-nn (n? — n)]sin® 0’ + n¥n3n}?

THence, the name birefringent.
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The MATLAB function snel, solves Egs. (8.10.9) for 8’ given the angle of incidence
0 and the polarization type. It works for any type of medium, isotropic, uniaxial, or
biaxial. It has usage:

thb = snel(na,nb,tha,pol);

% refraction angle from Snel’s law

The refractive index inputs na, nb may be entered as 1-, 2-, or 3-dimensional column
or row vectors, for example, n, = [n,] (isotropic), ng; = [Nge, Nge] (uniaxial), or n,; =
[Na1, a2, N3] (biaxial).

Next, we discuss the propagation and matching of the transverse fields. All the
results of Sec. 7.3 translate verbatim to the birefringent case, provided one uses the
proper transverse refractive indices according to Eq. (8.10.6).

In particular, the propagation equations (7.3.5)-(7.3.7) for the transverse fields, for
the transverse reflection coefficients I'r, and for the transverse wave impedances Zr,
remain unchanged.

The phase thickness &, for propagating along z by a distance [ also remains the same
as Eq. (7.3.8), except that the index N must be used in the optical length, and therefore,
0, depends on the polarization:

5, = k1 = kI cos 0 = Nkol cos 0 — 27" IN cos 0 (8.10.11)

Using Eq. (8.10.7), we have explicitly:

5, = 27" m \/m, (TM) (8.10.12a)

ns

2717 In, cos 0, (TE) (8.10.12b)

The transverse matching matrix (7.3.11) and Fresnel reflection coefficients (7.3.12)
remain the same. Explicitly, we have in the TM and TE cases:

6,

nt n?
, _
_hNmm—Npy — Ncos® N’ cosb’
P™ = = 2 2
Nrm + Ny ni n ny 8.10.13
Ncos@® N’cosO’ (8.10.13)
p Nrg— N N2c08 0 — ncos O’
TE = =
g+ Npp  N2c0860 + N cos 6

Using Eq. (8.10.6) and the TM and TE Snel’s laws, Egs. (8.10.9), we may rewrite the
reflection coefficients in terms of the angle 0 only:

nm:;\/n'gz — N2sin? 0 - n’ln’3\/n§ — N2sin® 0

nlng\/n§2 — N2sin® 0 + n’lng\/ng — N2sin® 0

Ny cos 6 — Aln%? — n3sin? 0
PTE = - -
Nz cos 0 +/n¥? — n3sin? 0

PtMm =

(8.10.14)
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The quantity N?sin? @ can be expressed directly in terms of 0 and the refractive
indices of the incident medium. Using Eq. (8.10.4), we have:

2,2 2
N?sin® 0 = nin; sin 0
2 i 29 2 29
ni sin® 6 + nj3 cos

(8.10.15)

The TE reflection coefficient behaves like the TE isotropic case. The TM coefficient
exhibits a much more complicated behavior. If n; = nj but n3 # nj, it behaves like the
TM isotropic case. If n3 = njy but n; # nj, the square-root factors cancel and it becomes
independent of 0:

n; — nj
= .10.1
P1™ ——y (8.10.16)

Another interesting case is when both media are uniaxial and n; = n; and n; = ns,
that is, the refractive index vectors are n = [nj,n;,n3] and n’ = [n3,n3, ny]. Itis
straightforward to show in this case that pp = prg at all angles of incidence. Multilayer
films made from alternating such materials exhibit similar TM and TE optical properties
[698].

The MATLAB function fresnel can evaluate Egs. (8.10.14) at any range of incident
angles 0. The function determines internally whether the media are isotropic, uniaxial,
or biaxial.

8.11 Brewster and Critical Angles in Birefringent Media

The maximum angle of refraction, critical angle of incidence, and Brewster angle, have
their counterparts in birefringent media.

It is straightforward to verify that 6’ is an increasing function of € in Eq. (8.10.9).
The maximum angle of refraction 6 is obtained by setting 6 = 90° in Eq. (8.10.9).

For the TE case, we obtain sin 0. = ny/nj. As in the isotropic case of Eq. (7.5.2), this
requires that n, < nj, that is, the incident medium is less dense than the transmitted
medium, with respect to the index n,. For the TM case, we obtain from Eq. (8.10.9a):

nsn;

sin 9; = (maximum TM refraction angle) (8.11.1)

\/n§n§2 +n2(n - nd)

This requires that n3 < n'3. On the other hand, if n3 > n'3, we obtain the critical
angle of incidence 6. that corresponds to 0" = 90° in Eq. (8.10.10):

nsn;

sinf. = (critical TM angle) (8.11.2)

\/ngngz +n3(n} — n?

whereas for the TE case, we have sin 6, = n;/n;, which requires n, > nj.
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In the isotropic case, a Brewster angle always exists at which the TM reflection coeffi-
cient vanishes, pry = 0. In the birefringent case, the Brewster angle does not necessarily
exist, as is the case of Eq. (8.10.16), and it can also have the value zero, or even be imag-
inary.

The Brewster angle condition pyy = 0 is equivalent to the equality of the transverse
refractive indices nny = n7,,. Using Eq. (8.10.6), we obtain:

nin3 njng

Nty = n’TM = - = (8.11.3)
\/n§ — N2sin® 0 \/ngz — N25sin® 0

where N2 sin? @ is given by Eq. (8.10.15). Solving for 6, we obtain the expression for the
Brewster angle from the left medium:

ni - nf?

L (8.11.4)
nz —nj

(Brewster angle)

n
tanf0p = —
n

Working instead with N’ sin’ = N sin 0, we obtain the Brewster angle from the
right medium, interchanging the roles of the primed and unprimed quantities:

ni - nf?
n3 - ny

4

nsn
tan 0y = ,23
ny

(Brewster angle) (8.11.5)

Egs. (8.11.4) and (8.11.5) reduce to Egs. (7.6.2) and (7.6.3) in the isotropic case. It is
evident from Eq. (8.11.4) that O3 is a real angle only if the quantity under the square
root is non-negative, that is, only if n; > n} and n3 > nj, or if n; < nj and n3 < nj.
Otherwise, Op is imaginary. In the special case, n; = nj but n3 # n'3, the Brewster
angle vanishes. If n; = n’3, the Brewster angle does not exist, since then py is given by
Eq. (8.10.16) and cannot vanish.

The MATLAB function brewster computes the Brewster angle 0p, as well as the
critical angles 0. and 0. For birefringent media the critical angles depend on the pola-

rization. Its usage is as follows:

% isotropic case
% birefringent case

[thB, thc] brewster(na,nb)
[thB, thcTE, thcTM] = brewster(na,nb)

In multilayer systems, it is convenient to know if the Brewster angle of an internal
interface is accessible from the incident medium. Using Snel’s law we have in this case
Ngsin0,; = Nsin 0, where 6, is the incident angle and N, the effective index of the
incident medium. It is simpler, then, to solve Eq. (8.11.3) directly for 0,:

niny’ (nf - n?)

O 8.11.6
n?n3 — n¥*ny? ( )

N2sin@% = N?sin® 03 =

Example 8.11.1: To illustrate the variety of possible Brewster angle values, we consider the
following birefringent cases:
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(a)
(b)
(c)
(d)

n = [1.63,1.63,1.5],
n=[1.54,1.54,1.63],
n=[1.8,1.8,1.5],
n=[18,1.8,15],
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n’ = [1.63,1.63,1.63]
n =[1.5,1.5,1.5]
n =[1.5,1.5,1.5]
n’ = [1.56,1.56,1.56]

These cases were discussed in [698]. The corresponding materials are: (a) birefringent
polyester and isotropic polyester, (b) syndiotactic polystyrene and polymethylmethacrylate
(PMMA), (c) birefringent polyester and PMMA, and (d) birefringent polyester and isotropic
polyester.

Because n; = nﬁ in case (a), the Brewster angle will be zero, 8 = 0°. In case (b), we
calculate 0p = 29.4°. Because ny > n5 and n3 > nj, there will be both TE and TM critical

angles of reflection: 0. 7 = 76.9° and 0,1y = 68.1°.

In case (c), the Brewster angle does not exist because n3 = nj, and in fact, the TM reflection
coefficient is independent of the incident angle as in Eq. (8.10.16). The corresponding
critical angles of reflection are: Oz = 56.4° and 0. = 90°.

Finally, in case (d), because ny > nj, but n3 < nj, the Brewster angle will be imaginary,
and there will be a TE critical angle of reflection and a TM maximum angle of refraction:
GC,TE = 60.1° and 9’C,TM = 74.1°.

Fig. 8.11.1 shows the TM and TE reflection coefficients |p1y(6)]| of Eq. (8.10.14) versus 6
in the range 0 < 6 < 90°.

TM Reflection Coefficients TE Reflection Coefficients

--- ()
(c)
- (@

4

®
o
®

o
=

I pra(O) ]
S
I pre(6)|

o
~

I
o
\

\

; . . ob=====z- . .
0 15 30 45 60 75 90 0 15 30 45 60 75 90
0 (degrees) 6 (degrees)

Fig. 8.11.1 TM and TE birefringent Fresnel reflection coefficients versus incident angle.

The TE coefficient in case (a) is not plotted because it is identically zero. In order to expand
the vertical scales, Fig. 8.11.2 shows the TM reflectances normalized by their values at
0 = 0°, that is, it plots the quantities | p(0) /P (0°) |2. Because in case (a) pp (0°) = 0,
we have plotted instead the scaled-up quantity [100p7y(0) |2.

The typical MATLAB code used to compute the critical angles and generate these graphs
was:

th = linspace(0,90,361); % 0 at 1/4° intervals

na = [1.63,1.63,1.5]; nb = [1.63,1.63,1.63]; % note the variety of
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Normalized TM Reflectance
2 . : - . .

! — (@
; - )
- (c)

' -- @

Reflectance

75 90

3 % 60
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Fig. 8.11.2 TM reflectances normalized at normal incidence.

[rtel,rtml] = fresnel(na,nb,th); % equivalent ways of
% entering na and nb

[thbl, thcTE1l, thcTM1] = brewster(na,nb);

% FRESNEL and BREWSTER
% internally extend
% na,nb into 3-d arrays

na = [1.54,1.63];

nb = [1.5, 1.5];

[rte2,rtm2] = fresnel(na,nb,th);
[thb2,thcTE2,thcTM2] = brewster(na,nb);
na = [1.8, 1.5]; % same as na=[1.8,1.8,1.5]
nb = 1.5; % and nb=[1.5,1.5,1.5]
[rte3,rtm3] = fresnel(na,nb,th);
[thb3,thcTE3,thcTM3] = brewster(na,nb); % in this case, 0p =[]
na [1.8,1.5];

nb = 1.56;
[rte4,rtm4] = fresnel(na,nb,th);

[thb4,thcTE4,thcTM4] = brewster(na,nb);

plot(th, abs([rtml; rtm2; rtm3; rtm4]));

We note four striking properties of the birefringent cases that have no counterparts
for isotropic materials: (i) The Brewster angle can be zero, (ii) the Brewster angle may not
exist, (iii) the Brewster angle may be imaginary with the TE and TM reflection coefficients
both increasing monotonically with the incident angle, and (iv) there may be total internal

reflection in one polarization but not in the other.

8.12 Multilayer Birefringent Structures

With some redefinitions, all the results of Sec. 8.1 on multilayer dielectric structures

translate essentially unchanged to the birefringent case.

We assume the same M-layer configuration shown in Fig. 8.1.1, where now each layer
is a biaxial material. The orthogonal optic axes of all the layers are assumed to be aligned
with the xyz film axes. The xz-plane is the plane of incidence, the layer interfaces are

parallel to the xy-plane, and the layers are arranged along the z-axis.
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The ith layer is described by the triplet of refractive indices n; = [nj1, nj2, nj3],
i=1,2,...,M. The incident and exit media a,b may also be birefringent with n, =
[na1,na2, ng3] and ny = [Ny, Np2, Np3], although in our examples, we will assume that
they are isotropic.

The reflection/refraction angles in each layer depend on the assumed polarization
and are related to each other by the birefringent version of Snel’s law, Eq. (8.10.8):

(8.12.1)

NgsinO,; = Njsin0; = Npsinf0y |, i=1,2...,M

where N, Nj, Ny are the effective refractive indices given by Eq. (8.10.4). The phase
thickness of the ith layer depends on the polarization:

2 «inl
2Ty 1 - Nas0a -y
21 A \ i3
o;i = b IiNjcos 0; = (8.12.2)
2 «inl
Zj I,-n,-g 1- 4Nﬂ sm 941 y (TE)
A 2
\ Nip

where we used Eq. (8.10.7) and Snel’s law to write in the TM and TE cases:

N?sin? 0; N2sin? 0,
= 1 - et

Nin [ 5 2 w2
I n,-3—N,-sm 9i=n,-1 1—T 3
i3

ni3 Nj3

Njcos6; =
2
2sin” 04
2
an

[ . N,
Nij» COSQ,‘ = Njp/1 — Sll’l2 91' =nNjp |1 - ——5——

To use a unified notation for the TM and TE cases, we define the layer optical lengths
at normal-incidence, normalized by a fixed free-space wavelength Ag:

linyy (T™)
Li= 1292 , i=1,2,..,M (8.12.3)

11t

Ao’ (TE)

We define also the cosine coefficients c¢;, which represent cos ; in the TE birefringent

case and in the TM isotropic case:

N2sin® @
1— %, (TM)
\ iz )
ci = i=1,2,....M (8.12.4)
) N2 sin® 0,

— e

\ nj

At normal incidence the cosine factors are unity, ¢;
Eq. (8.12.2) can be written compactly in the form:

(TE)

= 1. With these definitions,

A
6i:27TTOLiCi=21Tf£L,-C,' ., i=1,2,....M (8.12.5)
0
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where A is the operating free-space wavelength and f = co/A, fo = co/Ap. This is
the birefringent version of Eq. (8.1.10). A typical design might use quarter-wave layers,
L; = 1/4, at Ay and at normal incidence.

The reflection coefficients pr; at the interfaces are given by Eq. (8.1.3), but now the
transverse refractive indices are defined by the birefringent version of Eq. (8.1.4):

nl_zl _ ni1Nj3 (TM)

np = NicosOin2 — NZsin® 0, . i=a1,2,....M,b (8.12.6)
\Jn% — N3sin?0,, (TE)

With the above redefinitions, the propagation and matching equations (8.1.5)-(8.1.9)
remain unchanged. The MATLAB function multidiel can also be used in the birefrin-
gent case to compute the frequency reflection response of a multilayer structure. Its
usage is still:

N> cos O

[Gammal,Z1] = multidiel(n,L,lambda,theta,pol); % birefringent multilayer structure

where the input nis a 1x (M + 2) vector of refractive indices in the isotropic case, or a
3X (M + 2) matrix, where each column represents the triplet of birefringent indices of
each medium. For uniaxial materials, n may be entered as a 2x (M + 2) matrix.

8.13 Giant Birefringent Optics

The results of Sec. 8.8 can be applied almost verbatim to the birefringent case. In
Fig. 8.8.1, we assume that the high and low alternating layers are birefringent, described
by the triplet indices nyg = [ng1, N2, Ng3] andng = [Ny, o, nr3]. The entry and exit
media may also be assumed to be birefringent. Then, Snel’s laws give:

Ngsin0,; = NgsinOy = Nrsin0; = Ny sin 0, (8.13.1)

The phase thicknesses 6y and ¢ within the high and low index layers are:

6H =27TLLHCH, 6L =27TLLLCL (8.13.2)
fo fo
where Ly,cy and Ly, c; are defined by Egs. (8.12.3) and (8.12.4) for i = H,L. The
effective transverse refractive indices within the high and low index layers are given by
Eq. (8.12.6), again withi = H, L.
The alternating reflection coefficient pr between the high/low interfaces is given by
Eq. (8.10.14), with the quantity N2 sin® 0 replaced by N2 sin 0, by Snel’s law:
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NE1NE3\N2 3 — N2 sin® 0, — npinpsn; — Nasin? 0,

pM = 2 2 «inl 2 2 il
NH1NH3\Ni3 — Nasin® 0 + npinpsyngs — Nasin® 0,4
\/nf{z — N2sin? 0, — \/niz — NZsin® 0,

PTE = -
\/ni,2 — N3sin? 0, + \/nfz — N%sin? 0,

(8.13.3)

The multilayer structure will exhibit reflection bands whose bandedges can be cal-
culated from Egs. (8.8.7)-(8.8.17), with the redefinition L+ = Lycy + Lycy. The MATLAB
function omniband2 calculates the bandedges. It has usage:

[F1,F2] = omniband2(na,nH,nL,LH,LL,th,poT,N);

where pol is one of the strings ’te’ or *tm’ for TE or TM polarization, and na, nH, nL
are 1-d, 2-d, or 3-d row or column vectors of birefringent refractive indices.

Next, we discuss some mirror design examples from [698] that illustrate some prop-
erties that are specific to birefringent media. The resulting optical effects in such mirror
structures are referred to as giant birefringent optics (GBO) in [698,1853].

Example 8.13.1: We consider a GBO mirror consisting of 50-bilayers of high and low index
quarter-wave layers with refractive indices ngy = [1.8,1.8,1.5], n, = [1.5,1.5,1.5] (bire-
fringent polyester and isotropic PMMA.) The surrounding media are air, n, = np = 1.

The layers are quarter wavelength at the normalization wavelength Ay = 700 nm at normal
incidence, so that for both polarizations we take Ly = L = 1/4.

Because the high/low index layers are matched along the z-direction, nys; = nrs, the TM
reflection coefficient at the high/low interface will be constant, independent of the incident
angle 0,4, as in Eq. (8.10.16). However, some dependence on 0 is introduced through the
cosine factors cy, c; of Eq. (8.13.2).

The left graph of Fig. 8.13.1 shows the reflectance |I't(A)|? as a function of A for an
angle of incidence 08, = 60°. The TM and TE bandedge wavelengths were calculated from
omniband2 to be: [A1,A>]= [540.24,606.71] and [A1, Ao ]= [548.55,644.37] nm.

The typical MATLAB code used to generate the left graph and the bandedge wavelengths
was as follows:

LH = 0.25; LL = 0.25;

na = [1; 1; 11;

nH = [1.8; 1.8; 1.5];
nL = [1.5; 1.5; 1.5];
nb = [1; 1; 11;

1a0 = 700;

la = linspace(400,1000,601);
th = 60; % angle of incidence

N = 50; % number of bilayers
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Fig. 8.13.1 Reflectance of birefringent mirror.

n

[na, repmat([nH,nL], 1, N), nb]; % 3% (2N + 2) matrix

L = [repmat([LH,LL], 1, N)];
Ge = 100*abs(multidiel(n, L, la/1a0, th, ’te’)).A2;
Gm = 100*abs(multidiel(n, L, 1a/1a0, th, ’tm’)).A2;

GO = 100*abs(multidiel(n, L, Ta/Ta0)).A2;
plot(la,Gm,’-’, la,Ge,’--", 1a,G0,’:");

[F1,F2]=omniband2(na,nH,nL,LH,LL,th, tm’,3);
lal = 1a0/F2; 1a2 = 1a0/F1; % TM bandedge wavelengths

The right graph shows the reflectance with a 25% thickness gradient (the layer thicknesses
Ly, Ly decrease linearly from quarter-wavelength to 25% less than that at the end.) This
can be implemented in MATLAB by defining the thickness vector L by:

-
I

= [repmat([LH,LL], 1, N)I;

L=1L .* (1 - Tinspace(0, 0.25, 2*N)); % 25% thickness gradient

The thickness gradient increases the effective bandwidth of the reflecting bands [696].
However, the bandwidth calculation can no longer be done with omniband2. The band
centers can be shifted to higher wavelengths by choosing A higher. The reflecting bands
can be made flatter by increasing the number of bilayers. m]

Example 8.13.2: In this example, we design a 30-bilayer GBO mirror with ny = [1.8,1.8,1.5]

and n; = [1.5,1.5,1.8], so that ny; = ny» = ny3 and ny3 = Ny = Npo. As we discussed
in Sec. 8.10, it follows from Eq. (8.10.14) that pry = p1¢ for all angles of incidence.

As in Ref. [698], the media a,b are taken to be isotropic with n, = n, = 1.4. The
normalization wavelength at which the high and low index layers are quarter-wavelength
is Ag = 700 nm.

The left graph of Fig. 8.13.2 shows the reflectance for a 45° angle of incidence. Because
P1m = PT1E, the reflection bands for the TM and TE cases are essentially the same.

The right graph depicts the asymptotic (for large number of bilayers) bandedges of the
reflecting band versus incident angle. They were computed with omniband2. Unlike the
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Fig. 8.13.2 Birefringent mirror with identical TM and TE reflection bands.

isotropic case, the TM and TE bands are exactly identical. This is a consequence of the
following relationships between the cosine factors in this example: ¢y, = ¢r,7¢ and
cu,1e = Cr,7m- Then, because we assume quarter-wave layers in both the TE and TM cases,
Ly = L = 1/4, we will have:

1 1
Ly v =Ly, mCH, ™ + L, imCLmm == 2 (CH,tM + CLTM) = 2 (cr,te + CH,E) = Ly 18
1 1
L_ v = LuvCu,m — L, mvCrmme == 2 (cu, v — CLTv) = 2 (crre— Ch1e)= =Ly 1%

Because the computational algorithm (8.8.17) for the bandwidth does not depend on the
sign of L_, it follows that Eq. (8.8.17) will have the same solution for the TM and TE cases.
The typical MATLAB code for this example was:

LH = 0.25; LL = 0.25;
na = [1.4; 1.4; 1.4];
nb = [1.4; 1.4; 1.4];
nH = [1.8; 1.8; 1.5];
nL = [1.5; 1.5; 1.8];
1a0 = 700;

la = linspace(400,1000,601);
tha = 45;
N = 30;

n = [na, repmat([nH,nL], 1, N), nb];
L = [repmat([LH,LL], 1, N)];

Ge 100*abs(multidiel(n, L, 1a/1a0, tha,
Gm = 100*abs(multidiel(n, L, 1a/1a0, tha,
GO = 100*abs(multidiel(n, L, T1a/T1a0)).A2;

“te’)).A2;
Ttm’)) . A2;

plot(la,Cm,’-’, l1a,Ge,’--", 1a,G0,’:’);
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In Fig. 8.13.3, the low-index material is changed slightly to n; = [1.5,1.5,1.9]. The main TM Polarizer TE Polarizer
behavior of the structure remains the same, except now the TM and TE bands are slightly wol e
different. B W
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LH = 0.25; LL = 0.25;

Fig. 8.13.3 Birefringent mirror with slightly different TM and TE reflection bands. [1: 1: 1]
na = [1; 1; 11;

nb = [1; 1; 11;
The MATLAB code used to compute the right graph was: nH = [1.86; 1.57; 1.57];
nL = [1.57; 1.57; 1.57];
theta = linspace(0,90,361); % incident angles 120 = 700;
Fle = [1; F2e = [1; Tla = Tinspace(400,1000,601);
Fim = [1; F2m = [1; N = 80;
s .. ) . . n = [na, repmat([nH,nL], 1, N), nb];
Ni = 3; % refinement iterations L = [repmat([LH,LL], 1, N)I;
for i=1:length(theta), L =1L .* Tinspace(1,0.75,2*N); % 25% thickness gradient
[fle,f2e] = omniband2(na,nH,nL,LH,LL, theta(i), te’,Ni); Ge = 100*abs(multidiel(n, L, 1a/1a0, 0, ’te’)).A2;
[flm,f2m] = omniband2(na,nH,nL,LH,LL,theta(i), tm’,Ni); Gm = 100%abs(multidiel( L. 1a/1a0, 0. 'tm’)y.A2:
Fle = [Fle,flel; F2e = [F2e,f2el; m = abs(muitidiel(n, L, la/1ad, 0, “tm=)).Az;
en(I;]_m = [Flm,flm]; F2m = [F2m,f2m]; % frequency bandedges plot(la,Gm,’-', 1a,Ge,’-=’);
lale = 1a0 ./ F2e; la2e = 1a0 ./ Fle; % wavelength bandedges A 25% thickness gradient was assumed in both cases. In the first case, the x-direction
lalm = 1a0 ./ F2m; 1a2m = 1a0 ./ Flm;

indices are different and the structure will act as a mirror for the TM polarization. The TE
polarization will be reflected only by the air-high interface.

plot(theta,lalm,’-’, theta,la2m,’-’, theta,lale,’--’, theta,la2e,’--’);

In the second case, the materials are matched in their y-direction indices and therefore,
As the incident angle increases, not only does the TM band widen but it also becomes wider the structure becomes a mirror for the TE polarization, assuming as always that the plane
! of incidence is still the xz plane. m]

than the TE band—exactly the opposite behavior from the isotropic case. m] p
Giant birefringent optics is a new paradigm in the design of multilayer mirrors and

Example 8.13.3: GBO Reflective Polarizer. By choosing biaxial high/low layers whose refractive . & . P . p o .g . 5 Y .

indices are mismatched only in the x or the y direction, one can design a mirror structure polarizers [698], offering increased flexibility in the control of reflected light. The re-
that reflects only the TM or only the TE polarization ’ cently manufactured multilayer optical film by 3M Corp. [1853] consists of hundreds to

thousands of birefringent polymer layers with individual thicknesses of the order of a
Fig. 8.13.4 shows the reflectance of an 80-bilayer mirror with ny = [1.86,1.57,1.57] for . . .
. ) wavelength and total thickness of a sheet of paper. The optical working range of such
the left graph, and ny = [1.57,1.86, 1.57] for the right one. In both graphs, the low index !
. ) films are between 400-2500 nm.
material is the same, withn; = [1.57,1.57,1.57]. T . ; . . X . .
Applications include the design of efficient waveguides for transporting visible light

o P . )
The angle of incidence was 0, = 0°. The typical MATLAB code was: over long distances and piping sunlight into interior rooms, reflective polarizers for
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improving liquid crystal displays, and other products, such as various optoelectronic
components, cosmetics, and "hot” and ”“cold” mirrors for architectural and automotive
windows.

8.14 Problems

8.1 Prove the reflectance and transmittance formulas (8.4.6) in FTIR.
8.2 Computer Experiment—FTIR. Reproduce the results and graphs of Figures 8.4.3-8.4.5.

8.3 Computer Experiment—Surface Plasmon Resonance. Reproduce the results and graphs of
Figures 8.5.3-8.5.7.

8.4 Working with the electric and magnetic fields across an negative-index slab given by Egs. (8.6.1)

and (8.6.2), derive the reflection and transmission responses of the slab given in (8.6.8).

8.5 Computer Experiment—Perfect Lens. Study the sensitivity of the perfect lens property to the
deviations from the ideal values of € = —€p and p = — g, and to the presence of losses by
reproducing the results and graphs of Figures 8.6.3 and 8.6.4. You will need to implement
the computational algorithm listed on page 329.

8.6 Computer Experiment—Antireflection Coatings. Reproduce the results and graphs of Figures
8.7.1-8.7.3.

8.7 Computer Experiment—Omnidirectional Dielectric Mirrors. Reproduce the results and graphs
of Figures 8.8.2-8.8.10.

8.8 Derive the generalized Snel’s laws given in Eq. (8.10.10). Moreover, derive the Brewster angle
expressions given in Egs. (8.11.4) and (8.11.5).

8.9 Computer Experiment—Brewster angles. Study the variety of possible Brewster angles and
reproduce the results and graphs of Example 8.11.1.

8.10 Computer Experiment—Multilayer Birefringent Structures. Reproduce the results and graphs
of Figures 8.13.1-8.13.2.

9

Waveguides

Waveguides are used to transfer electromagnetic power efficiently from one point in
space to another. Some common guiding structures are shown in the figure below.
These include the typical coaxial cable, the two-wire and mictrostrip transmission lines,
hollow conducting waveguides, and optical fibers.

In practice, the choice of structure is dictated by: (a) the desired operating frequency
band, (b) the amount of power to be transferred, and (c) the amount of transmission
losses that can be tolerated.

y
X
@ tWo-wire - - dielectric
= line IMICrostrip rectangular waveguide
coaxial line line waveguide

Fig. 9.0.1 Typical waveguiding structures.

Coaxial cables are widely used to connect RF components. Their operation is practi-
cal for frequencies below 3 GHz. Above that the losses are too excessive. For example,
the attenuation might be 3 dB per 100 m at 100 MHz, but 10 dB/100 m at 1 GHz, and
50 dB/100 m at 10 GHz. Their power rating is typically of the order of one kilowatt at
100 MHz, but only 200 W at 2 GHz, being limited primarily because of the heating of
the coaxial conductors and of the dielectric between the conductors (dielectric voltage
breakdown is usually a secondary factor.) However, special short-length coaxial cables
do exist that operate in the 40 GHz range.

Anotherissue is the single-mode operation of the line. At higher frequencies, in order
to prevent higher modes from being launched, the diameters of the coaxial conductors
must be reduced, diminishing the amount of power that can be transmitted.

Two-wire lines are not used at microwave frequencies because they are not shielded
and can radiate. One typical use is for connecting indoor antennas to TV sets. Microstrip
lines are used widely in microwave integrated circuits.
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Rectangular waveguides are used routinely to transfer large amounts of microwave
power at frequencies greater than 3 GHz. For example at 5 GHz, the transmitted power
might be one megawatt and the attenuation only 4 dB/100 m.

Optical fibers operate at optical and infrared frequencies, allowing a very wide band-
width. Their losses are very low, typically, 0.2 dB/km. The transmitted power is of the
order of milliwatts.

9.1 Longitudinal-Transverse Decompositions

In a waveguiding system, we are looking for solutions of Maxwell’s equations that are
propagating along the guiding direction (the z direction) and are confined in the near
vicinity of the guiding structure. Thus, the electric and magnetic fields are assumed to
have the form:

E(x,y,z,t)= E(x,y)e/®t=ipz

H(x,y, 2, 0) = H(x,y)eft-ifz ©-1.)

where f is the propagation wavenumber along the guide direction. The corresponding
wavelength, called the guide wavelength, is denoted by A4 = 271/ B.

The precise relationship between w and 8 depends on the type of waveguiding struc-
ture and the particular propagating mode. Because the fields are confined in the trans-
verse directions (the X,y directions,) they cannot be uniform (except in very simple
structures) and will have a non-trivial dependence on the transverse coordinates x and
y. Next, we derive the equations for the phasor amplitudes E(x,y) and H(x,y).

Because of the preferential role played by the guiding direction z, it proves con-
venient to decompose Maxwell’s equations into components that are longitudinal, that
is, along the z-direction, and components that are transverse, along the x,y directions.
Thus, we decompose:

E(X,y)=XEx(x,y)+VE, (X,y) +ZE,(X,y) = Er(X,y)+2E;(X,y) 9.1.2)
~ J %,—4
transverse longitudinal

In a similar fashion we may decompose the gradient operator:

V=X0x+V0y+20,=Vr+20,=Vr—jB2 (9.1.3)
\—(_4'
transverse
where we made the replacement 0, — —jB because of the assumed z-dependence. In-
troducing these decompositions into the source-free Maxwell’s equations we have:

V XE=—jwuH (V1 —jBz) x(Er + 2E;) = —jwu (Hr + 2H})

V X H=jweE (V7 —jBz)x(Hy +2H;)= jwe(Er + ZE,)
9.1.4)

V.E=0 T (Vi —jB2)-(Er+2E)=0
V-H=0 (Vr—jBz)-(Hr +zH;)=0
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where €, u denote the permittivities of the medium in which the fields propagate, for
example, the medium between the coaxial conductors in a coaxial cable, or the medium
within the hollow rectangular waveguide. This medium is assumed to be lossless for
now.

Wenotethatz-z2 =1,ZX2=0,Z-Er =0,Z-VrE, = 0 and that Z X Er and
7z X VTE, are transverse while V1 X Er is longitudinal. Indeed, we have:

2 X Er = 2X (REx + VEy) = yEx — X Ey
Vi X Er = R0y + ¥ 0y) X (REy + ¥ Ey) = 2(3xEy — OyEy)

Using these properties and equating longitudinal and transverse parts in the two
sides of Eq. (9.1.4), we obtain the equivalent set of Maxwell equations:

VrE, XZ—jBZX Er = —jwuHy
VrH, Xz - jBZX Hr = jweEr
Vr X Er +j(,()[,lin =0
VrxHr—-jwezE, =0
Vr-Er—jBE; =0
Vr-Hr—jBH, =0

(9.1.5)

Depending on whether both, one, or none of the longitudinal components are zero,
we may classify the solutions as transverse electric and magnetic (TEM), transverse elec-
tric (TE), transverse magnetic (TM), or hybrid:

E, =0, H, =0, TEM modes

E,=0, H, # 0, TE or Hmodes

E,+#0, H, =0, TM or E modes

E, #0, H, # 0, hybrid or HE or EH modes

In the case of TEM modes, which are the dominant modes in two-conductor trans-
mission lines such as the coaxial cable, the fields are purely transverse and the solution
of Eqg. (9.1.5) reduces to an equivalent two-dimensional electrostatic problem. We will
discuss this case later on.

In all other cases, at least one of the longitudinal fields E,, H, is non-zero. It is then
possible to express the transverse field components E, Hr in terms of the longitudinal
ones, E,, H,.

Forming the cross-product of the second of equations (9.1.5) with Z and using the
BAC-CAB vector identity, Z X (Z X Hr)= z(z - Hy)—Hr(Z - Z)= —Hry, and similarly,
zZX (VrH, x z)= V1H,, we obtain:

VrH, +jﬁHT =j(x)€i X ET

Thus, the first two of (9.1.5) may be thought of as a linear system of two equations
in the two unknowns 2z X Er and Hr, that is,

Bz X Er — wuHy = jZ X VTE,
(9.1.6)
wezx Er — BHyr = —jVTH,
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The solution of this system is:

2% Er = {(B 2x V71E, - J‘]:;“ VrH,
‘ 9.1.7)
Hr = J(X;€ X VTEZ — lj VTHZ
ké ké
where we defined the so-called cutoff wavenumber k. by:
. . . w? . . .
k2 = wleu - B* = "z B% =k? - B? | (cutoff wavenumber) (9.1.8)

The quantity k = w/c = w,/€u is the wavenumber a uniform plane wave would
have in the propagation medium €, p.

Although k2 stands for the difference w?eu — B2, it turns out that the boundary
conditions for each waveguide type force k? to take on certain values, which can be
positive, negative, or zero, and characterize the propagating modes. For example, in a
dielectric waveguide k2 is positive inside the guide and negative outside it; in a hollow
conducting waveguide k2 takes on certain quantized positive values; in a TEM line, k2
is zero. Some related definitions are the cutoff frequency and the cutoff wavelength
defined as follows:

o

we =cke, Ac= 3
c

(cutoff frequency and wavelength) (9.1.9)

We can then express f in terms of w and w¢, or w in terms of B and w,. Taking
the positive square roots of Eq. (9.1.8), we have:

S N R O RN e ©9.1.10)

Often, Eq. (9.1.10) is expressed in terms of the wavelengths A = 2mr/k = 211¢/ W,
Ac = 210/k¢, and A4 = 277/ B. It follows from k? = k2 + B2 that

1 1 1 A
- = — 4+ = > A= —— (9.1.11)
A2 AZ A I A7

AZ

Note that A is related to the free-space wavelength Ay = 271co/w = co/f by the
refractive index of the dielectric material A = Ag/n.

It is convenient at this point to introduce the transverse impedances for the TE and
TM modes by the definitions:

nNte = ?“ =n %, N = wﬂ =n w (TE and TM impedances) (9.1.12)
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where the medium impedance is n = /u/€, so that n/c = p and nc = 1/€. We note the
properties:

2
_p2 N _ W
nNreNT™ = N°, N = B2 (9.1.13)
Because Bc/w =+/1 — w2/ w?, we can write also:
n wg
Nie= —fF7—=, Nm=N4/1-—"73 (9.1.14)
[ w? w
1-— —c
w2
With these definitions, we may rewrite Eq. (9.1.7) as follows:
25 Er = 1B (2 x vrE V1H,)
T = kzl TEz + NTEV TH,
(9.1.15)
N/
Hr = ( ZXVTEZ+VTHZ)
k2 Ny
Using the result Z X (Z X Et) = —Er, we solve for Ey and Hr:
Er = ;fj (VTE; — Nz x VrHy)
) (transverse fields) (9.1.16)
Hr = Jé (VTHZ + —2X VTEZ)
kg nmm

An alternative and useful way of writing these equations is to form the following
linear combinations, which are equivalent to Eq. (9.1.6):

HT*LQXET: iVTHZ
nmm B
. (9.1.17)
Er —nreHr X2 = % VrE,
So far we only used the first two of Maxwell’s equations (9.1.5) and expressed Er, Hy
in terms of E,, H,. Using (9.1.16), it is easily shown that the left-hand sides of the
remaining four of Egs. (9.1.5) take the forms:

Vi X Er +jouzH, = z(VTHZ+k2HZ)

k2
(UE
kZ

V1 X Hr — jwe2E, = 2 (V3E, + K’E,)
. _ JB 2
VT'ET_JBEZ—_k (VZE, + kZE,)

Vr-Hr - jBH; = - (V H, +kZH,)



9.1. Longitudinal-Transverse Decompositions 367

where va is the two-dimensional Laplacian operator:

Vi=Vr-Vr=0;+0; (9.1.18)

and we used the vectorial identities Vr X V1E, =0,V X (ZX VTH,)=12 VZTHZ, and
V- (zZxV7tH,)=0

It follows that in order to satisfy all of the last four of Maxwell’s equations (9.1.5), it
is necessary that the longitudinal fields E, (x,y), H,(x,y) satisfy the two-dimensional
Helmholtz equations:

V3E, + k%E, =
) (Helmholtz equations) (9.1.19)
ViH, +kH, =0

These equations are to be solved subject to the appropriate boundary conditions for
each waveguide type. Once, the fields E,, H, are known, the transverse fields Et, Hy are
computed from Eq. (9.1.16), resulting in a complete solution of Maxwell’s equations for
the guiding structure. To get the full x,y, z, t dependence of the propagating fields, the
above solutions must be multiplied by the factor e/®!=J6z,

The cross-sections of practical waveguiding systems have either cartesian or cylin-
drical symmetry, such as the rectangular waveguide or the coaxial cable. Below, we
summarize the form of the above solutions in the two types of coordinate systems.

Cartesian Coordinates

The cartesian component version of Egs. (9.1.16) and (9.1.19) is straightforward. Using
the identity Z X VyH, = y 0xH, — X 0,,H,, we obtain for the longitudinal components:

(02 + 02)E, + k2E, = 0

(9.1.20)
(03 +02)H, +k2H, =0
Eq. (9.1.16) becomes for the transverse components:
1
B - @k, 4 mwo ) || =B - o)
K ke nmm
JjB ’ iB 1 (9.1.21)
Ey = 7(ayEz_nTEaXHZ) H, = Jz(asz + —— 0xEz)
ke ke nrm

Cylindrical Coordinates

The relationship between cartesian and cylindrical coordinates is shown in Fig. 9.1.1.
From the triangle in the figure, we have x = pcos¢ and y = psin¢. The transverse
gradient and Laplace operator are in cylindrical coordinates:

.0 ;10 , 10 0 1 02
Vr=p +<I>p V7= pap<pap>+pza¢2 (9.1.22)
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X

Fig. 9.1.1 Cylindrical coordinates.

The Helmholtz equations (9.1.19) now read:

10 ( 9E\ . 10%, .. _
pop (p op ) p? 02 k2 =0
(9.1.23)
10 ( oH,\ 1*H, ...
pap (p op )+p2 392 +kiH, =0

Noting that Z X p = ¢p and Z X ¢ = —p, we obtain:
- 2 !
2XViH, = $(3,H,)—p 5 (00H)

The decomposition of a transverse vector is Er = pE, + (i)Eq,. The cylindrical
coordinates version of (9.1.16) are:

__JB I § __JB 1
E, = K2 (0pE; nTEp8¢HZ) H, = K2 (0pH, + nTMpa¢EZ)
B 1 s B 1 ) (9.1.24)
Ey = {(z (= 54)EZ + ”TEapHZ) Hy = iz ( ad)HZ - 750152)

For either coordinate system, the equations for Hr may be obtained from those of
E7 by a so-called duality transformation, that is, making the substitutions:

E-H, H--E, €e—-Uu, U—€ (duality transformation) (9.1.25)

These imply that n — n~! and Nz — n7. Duality is discussed in greater detail in
Sec. 18.2.

9.2 Power Transfer and Attenuation

With the field solutions at hand, one can determine the amount of power transmitted
along the guide, as well as the transmission losses. The total power carried by the fields
along the guide direction is obtained by integrating the z-component of the Poynting
vector over the cross-sectional area of the guide:
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Pr =I P,dS | where P,= %Re(Ex H*)-2 9.2.1)
s

It is easily verified that only the transverse components of the fields contribute to
the power flow, that is, 7, can be written in the form:

1
2

For waveguides with conducting walls, the transmission losses are due primarily to
ohmic losses in (a) the conductors and (b) the dielectric medium filling the space between
the conductors and in which the fields propagate. In dielectric waveguides, the losses
are due to absorption and scattering by imperfections.

The transmission losses can be quantified by replacing the propagation wavenumber
B by its complex-valued version . = B — j&, where « is the attenuation constant. The
z-dependence of all the field components is replaced by:

P, = —Re(Er X Hy) -2 (9.2.2)

e Bz oiBez — o= (a4jB)z _ p-azo—jBz 9.2.3)

The quantity « is the sum of the attenuation constants arising from the various loss
mechanisms. For example, if &z and . are the attenuations due to the ohmic losses in
the dielectric and in the conducting walls, then

X =g+ X (9.2.4)

The ohmic losses in the dielectric can be characterized either by its loss tangent,
say tan ¢, or by its conductivity o4—the two being related by o; = wetand. More
generally, the effective dielectric constant of the medium may have a negative imaginary
part €; that includes both conductive and polarization losses, €(w)= € — je, with
€; = €tand. Then, the corresponding complex-valued wavenumber f3. is obtained by

the replacement:
B=yw?ue—ki — Bc=+w?ue(w)-k;

For weakly lossy dielectrics (€; < €), we may make the approximation:

) - L w?pe RO
Be = \Jw?pu (e — jer) —k2 = B — jew?per = By 1~ j B‘; L=B-j 2; :

Resulting in the attenuation constant, after setting pe = 1/c2 and fc/w = /1 — w2/ w?,

2ue 1 w?ue tand
g = W Her LW H tand = . wtno (dielectric losses) (9.2.5)
2B 2 B 2041 — w2/ w?

The conductor losses are more complicated to calculate. In practice, the following
approximate procedure is adequate. First, the fields are determined on the assumption
that the conductors are perfect.
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Second, the magnetic fields on the conductor surfaces are determined and the corre-
sponding induced surface currents are calculated by J; = fi X H, where 11 is the outward
normal to the conductor.

Third, the ohmic losses per unit conductor area are calculated by Eq. (2.8.7). Figure
9.2.1 shows such an infinitesimal conductor area dA = dldz, where dl is along the
cross-sectional periphery of the conductor. Applying Eq. (2.8.7) to this area, we have:

dPloss _ dPloss _ l 2
A~ dldz ~ 2! ©20

where R; is the surface resistance of the conductor given by Eq. (2.8.4),

wu we 1 2 .
Ry=,—= —=—, = |—— =5k h 2.7
s =4/ 20 N 0 - 8 o=/ wono skin dept 9.2.7)

Integrating Eq. (9.2.6) around the periphery of the conductor gives the power loss per
unit z-length due to that conductor. Adding similar terms for all the other conductors
gives the total power loss per unit z-length:

=) DRI SRRl ©.28)
Ca 2 cp 2

Fig. 9.2.1 Conductor surface absorbs power from the propagating fields.

where C,; and C}, indicate the peripheries of the conductors. Finally, the corresponding
attenuation coefficient is calculated from Eq. (2.6.22):

’
_ Ploss

= 2py (conductor losses) (9.2.9)

Xc

Equations (9.2.1)-(9.2.9) provide a systematic methodology by which to calculate the
transmitted power and attenuation losses in waveguides. We will apply it to several
examples later on. Eq. (9.2.9) applies also to the dielectric losses so that in general Py
arises from two parts, one due to the dielectric and one due to the conducting walls,

_ Plloss P(,iiel + Péond

= opy = T = g + K¢ (attenuation constant) (9.2.10)
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Eq. (9.2.5) for x4 can also be derived directly from Eq. (9.2.10) by applying it sepa-
rately to the TE and TM modes. We recall from Eq. (1.9.6) that the losses per unit vol-
ume in a dielectric medium, arising from both a conduction and polarization current,
Jiot = J+ jwD, are given by,

dPpP 1 1
WDSS = ERe[Jtot “E*] = 5 Wer |E- E*|

Integrating over the cross-sectional area of the guide gives the dielectric loss per unit

waveguide length (i.e., z-length),

, 1
Pl = 3 0€1 LIEIZdS
Applying this to the TE case, we find,
Pl = Sewe j E2dS = Lwe j \Er|? dS
diel = 5 WEI | = ywer | IEr
_[1 sao_ 1 S 2
Pr = RQ(ETXH}k-)-ZdS— \ET| ds = |ET| das
52 2nTe Js s

2w

/ 2
_ Paie _ w7pe;

T 2Pr 2B

X4

The TM case is a bit more involved. Using Eq. (9.13.1) from Problem 9.11, we find,
after using the result, 8% + k2 = w?ue,

’ 1 1
Pl = 5 W L |E|2dS = 5 Wer L[IEZI2 +|Er|?]dS

1wqj E2 4 B veE 2 | ds = Lwe (14 JIEZIZdS
2 s 1% 2 k2 ) Js

1 we [ p?
P=—JE2dS=— o |VrE,|*dS =
T now sl T 28 sk‘él TE,|

wepP
2Kk?

j \E,1? dS
S

1 ﬁz)
, —werll+
oy = Pae _ 2 ( ki) _ w?ue
2Pt wepB B

2k2

9.3 TEM, TE, and TM modes

The general solution described by Egs. (9.1.16) and (9.1.19) is a hybrid solution with non-
zero E, and H, components. Here, we look at the specialized forms of these equations
in the cases of TEM, TE, and TM modes.

One common property of all three types of modes is that the transverse fields E7, Hr
are related to each other in the same way as in the case of uniform plane waves propagat-
ing in the z-direction, that is, they are perpendicular to each other, their cross-product
points in the z-direction, and they satisfy:
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1
Hr = —ZXEr (9.3.1)
nr

where nr is the transverse impedance of the particular mode type, that is, n, ne, nTm
in the TEM, TE, and TM cases.

Because of Eq. (9.3.1), the power flow per unit cross-sectional area described by the
Poynting vector 2, of Eq. (9.2.2) takes the simple form in all three cases:

1 1 1 .
P, = =Re(Er x HY)-2 = — |Er|®> = = nr|Hr|? 3.2
2= e(Er )2 ZHT‘ Tl ZUT\ Tl 9.3.2)

TEM modes

In TEM modes, both E, and H, vanish, and the fields are fully transverse. One can set
E, = H, = 0 in Maxwell equations (9.1.5), or equivalently in (9.1.16), or in (9.1.17).

From any point view, one obtains the condition kg = 0, or w = fBc. For example, if
the right-hand sides of Eq. (9.1.17) vanish, the consistency of the system requires that
N1e = N1Mm, Which by virtue of Eq. (9.1.13) implies w = Bc. It also implies that g, N
must both be equal to the medium impedance . Thus, the electric and magnetic fields
satisfy:

Hr = %2 X Er (9.3.3)

These are the same as in the case of a uniform plane wave, except here the fields
are not uniform and may have a non-trivial x,y dependence. The electric field Er is
determined from the rest of Maxwell’s equations (9.1.5), which read:

VT X Er =0
(9.3.4)
Vr-Er=0

These are recognized as the field equations of an equivalent two-dimensional elec-
trostatic problem. Once this electrostatic solution is found, Er (x,y), the magnetic field
is constructed from Eq. (9.3.3). The time-varying propagating fields will be given by
Eq. (9.1.1), with w = Bc. (For backward moving fields, replace 8 by —f.)

We explore this electrostatic point of view further in Sec. 11.1 and discuss the cases
of the coaxial, two-wire, and strip lines. Because of the relationship between Et and Hr,
the Poynting vector 2, of Eq. (9.2.2) will be:

1 R 1 1
Py =y Re(Er x Hf)-2 = 5 |Erl* = o nlHr ) (9.3.5)
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TE modes

TE modes are characterized by the conditions E, = 0 and H, # 0. It follows from the
second of Egs. (9.1.17) that E7 is completely determined from Hr, thatis, ET = nqgHr XZ.

The field Ht is determined from the second of (9.1.16). Thus, all field components
for TE modes are obtained from the equations:

V3H, +k*H, =0
__JB
Hr = 2 VrH, (TE modes) (9.3.6)
Cc

Er =nmpHr X2

The relationship of Er and Hr is identical to that of uniform plane waves propagating
in the z-direction, except the wave impedance is replaced by ng. The Poynting vector
of Eq. (9.2.2) then takes the form:

1 1 1 1 B>
P,=-Re(Er X Hf)-2=——|Er|®> = > nrelHr|> = > ne 5 IVTH,>  (93.7
z=5 e(Er X Hy) -2 ZUTEI Tl ZT]TE| il ZnTEkél TH,| ( )

The cartesian coordinate version of Eq. (9.3.6) is:

(02+03)H, +kH, =0

He=-Pom, Bv,-Pom, 9.3.8)
ks ke

Ex=nmHy,, E,=-nreHx

And, the cylindrical coordinate version:

li aHZ iasz 2 _
p@p( ap)+p2 o2 +kiH, =0

_ _JB oH, _ _JB10H, (9.3.9)
TR 0, 0 TP T K2 p 0y

E,=nrHy, Ep=-nmH)

where we used Hr x 2 = (pH, + ¢ Hp)x2 = —p H, + pHy.

TM modes

TM modes have H, = 0 and E, # 0. It follows from the first of Egs. (9.1.17) that Hry is
completely determined from Er, that is, Hr = n},}ﬁ X Er. The field Er is determined
from the first of (9.1.16), so that all field components for TM modes are obtained from
the following equations, which are dual to the TE equations (9.3.6):
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V2E, +k3E, =0
Er = JB V71E,

K2 (TM modes) (9.3.10)

1
Hr = — Z X Er
Nt

Again, the relationship of Er and Hr is identical to that of uniform plane waves
propagating in the z-direction, but the wave impedance is now ny. The Poynting vector
takes the form:

1 1
Py = S Re(Er xHp)-2= o — |Er|* = |V 1E,|? (9.3.11)

9.4 Rectangular Waveguides

Next, we discuss in detail the case of a rectangular hollow waveguide with conducting
walls, as shown in Fig. 9.4.1. Without loss of generality, we may assume that the lengths
a, b of the inner sides satisfy b < a. The guide is typically filled with air, but any other
dielectric material €, 4 may be assumed.

v

En

Fig. 9.4.1 Rectangular waveguide.

The simplest and dominant propagation mode is the so-called TE;p mode and de-
pends only on the x-coordinate (of the longest side.) Therefore, we begin by looking
for solutions of Eq. (9.3.8) that depend only on x. In this case, the Helmholtz equation
reduces to:

02H, (x)+k*H,(x)=0

The most general solution is a linear combination of cos kcx and sin k.x. However,
only the former will satisfy the boundary conditions. Therefore, the solution is:

H,(x)= Hycoskcx 9.4.1)

where Hj is a (complex-valued) constant. Because there is no y-dependence, it follows
from Eqg. (9.3.8) that 0,,H, = 0, and hence Hy, = 0 and Ex = 0. It also follows that:

JB

He(= 15

0xH, = —i—é (=k¢)Hosinkcx = ;{—‘BHO sink.x = H; sink¢x
C C
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Then, the corresponding electric field will be:

Ey(X)= —neHy(x) = —rmjf

—— Hysinkc.x = Ep sinkcx
C

where we defined the constants:

_JB

H, =
1 kc

Hyp
(9.4.2)

JB LW
Ey=-nmreH =- Hy = — H
0 nreltiy nrte k. 0 Jn W, 0

where we used nrg = nw/Bc. In summary, the non-zero field components are:

H,(x)= Hycoskex H,(x,y,z,t)= Hpcoskex e/®t-ibz
Hy(x)= H; sinkcx = Hx(Xx,y,z,t)= H; sinkcx e/wt-iBz (9.4.3)

Ey(x,y,7,1) = Egsinkcx e/wt-iBz

Ey (x) = Epsinkcx

Assuming perfectly conducting walls, the boundary conditions require that there be
no tangential electric field at any of the wall sides. Because the electric field is in the
y-direction, it is normal to the top and bottom sides. But, it is parallel to the left and
right sides. On the left side, x = 0, E, (x) vanishes because sink:x does. On the right
side, x = a, the boundary condition requires:

Ey,(a)=Eypsinkca=0 = sinkca=0

This requires that k.a be an integral multiple of 1t:

kea=nm = ko= g (9.4.4)

These are the so-called TE,o modes. The corresponding cutoff frequency w. = ck,
fc = wc/21, and wavelength A = 211/k = c/f; are:

cnTt cn 2a
we = o fe=o, Ac = y (TEno modes) (9.4.5)

The dominant mode is the one with the lowest cutoff frequency or the longest cutoff
wavelength, that is, the mode TE;( having n = 1. It has:

ke=—, we=—, f¢ Ac=2a (TE1o mode) (9.4.6)

m cTT o
a a 2a’

Fig. 9.4.2 depicts the electric field Ey (x) = Egsink¢x = Eq sin(1rx/a) of this mode
as a function of x.
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va

Fig. 9.4.2 Electric field inside a rectangular waveguide.

9.5 Higher TE and TM modes

To construct higher modes, we look for solutions of the Helmholtz equation that are
factorable in their x and y dependence:

H;(x,y)=Fx)G(y)
Then, Eq. (9.3.8) becomes:

Frr (X) . G// (y)
F(x) G(y)

Because these must be valid for all x, y (inside the guide), the F- and G-terms must
be constants, independent of x and y. Thus, we write:

F'(X)G(Y)+F(X)G" (y) +k*F(x)G(y)=0 +k2=0 (9.5.1)

F// (X) _ » G// (y> _ »
Foo ks, GO ) = ky or
F' (x)+kiF(x)=0, G" () +k;G(y)=0 (9.5.2)

where the constants k2 and k§ are constrained from Eq. (9.5.1) to satisfy:

k= kg +k;, (9.5.3)

The most general solutions of (9.5.2) that will satisfy the TE boundary conditions are
cos kxx and cos kyy. Thus, the longitudinal magnetic field will be:

H,(x,y)= Hqcos kyx cos kyy (TEnm modes) (9.5.4)

It then follows from the rest of the equations (9.3.8) that:

Hx(x,y) = H; sinkxx cos kyy Ex(x,y) = E; cos kxxsink,y
(9.5.5)

Hy (x,y) = Hy coskyx sinkyy Ey(x,y) = E» sinkxx coskyy

where we defined the constants:

iBk Bk
HlZJBZXHo, HZZJﬁzyHo
ke ke
wk wk
Ey =nmHy =jn——>Hy, E»=-nmH =—j ~H
1 =N1ef? anckc 05 2 nreltiy anckc 0
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The boundary conditions are that E, vanish on the right wall, X = a, and that Ex
vanish on the top wall, y = b, that is,

Ey(a,y)= Egysinkxacoskyy =0, Ex(x,b)= Eoxcoskxxsinkyb =0

The conditions require that kxa and kyb be integral multiples of Tt:

kea =nm, kyb=mm = |ke= 0, k, =0

p b (9.5.6)

These correspond to the TE,;;; modes. Thus, the cutoff wavenumbers of these modes
ke = ki + k3 take on the quantized values:

ke = \/<”—")2 + (%)2 (TEpm modes) 9.5.7)

a

The cutoff frequencies fnm = we/21 = cko /21 and wavelengths A, = ¢/fum are:

fam = C (1)2+(ﬂ>2, Anm = ! 9.5.8)
R N )

The TEy; modes are similar to the TE,( modes, but with x and a replaced by y and
b. The family of TM modes can also be constructed in a similar fashion from Eq. (9.3.10).

Assuming E, (x,y)= F(x)G(y), we obtain the same equations (9.5.2). Because E,
is parallel to all walls, we must now choose the solutions sinky and sinky,y. Thus, the
longitudinal electric fields is:

E,(x,y)= Eosinkxxsinky,y (TMpm modes) (9.5.9)

The rest of the field components can be worked out from Eq. (9.3.10) and one finds
that they are given by the same expressions as (9.5.5), except now the constants are
determined in terms of Ej:

JBkx JBky
E,=- Ey, E,=-— E
1 kg 0 2 kg 0
1 Jwky 1 1 Jwky 1
Hi=—-——E, = —Ey, Hy=—E = -—"—-—
! nmm ¢ wcke n 0 : nr ! wcke n 0

where we used nv = npfc/w. The boundary conditions on Ex, Ey, are the same as
before, and in addition, we must require that E, vanish on all walls.

These conditions imply that ky, k), will be given by Eq. (9.5.6), except both n and m
must be non-zero (otherwise E, would vanish identically.) Thus, the cutoff frequencies
and wavelengths are the same as in Eq. (9.5.8).

Waveguide modes can be excited by inserting small probes at the beginning of the
waveguide. The probes are chosen to generate an electric field that resembles the field
of the desired mode.
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9.6 Operating Bandwidth

All waveguiding systems are operated in a frequency range that ensures that only the
lowest mode can propagate. If several modes can propagate simultaneously,’ one has
no control over which modes will actually be carrying the transmitted signal. This may
cause undue amounts of dispersion, distortion, and erratic operation.

A mode with cutoff frequency w,. will propagate only if its frequency is w > w,,
or A < Aq. If w < w¢, the wave will attenuate exponentially along the guide direction.
This follows from the ),  relationship (9.1.10):

2 2
w* — ws

w?=w?+pic? = pE= =

If w = w¢, the wavenumber B is real-valued and the wave will propagate. But if
w < We¢, B becomes imaginary, say, § = —j«, and the wave will attenuate in the z-
direction, with a penetration depth 6 = 1/ «:

e—jﬂz — e ¥z

If the frequency w is greater than the cutoff frequencies of several modes, then all
of these modes can propagate. Conversely, if w is less than all cutoff frequencies, then
none of the modes can propagate.

If we arrange the cutoff frequencies in increasing order, (w¢ < W2 < Wez < -+ -,
then, to ensure single-mode operation, the frequency must be restricted to the interval
We1 < W < We2, so that only the lowest mode will propagate. This interval defines the
operating bandwidth of the guide.

These remarks apply to all waveguiding systems, not just hollow conducting wave-
guides. For example, in coaxial cables the lowest mode is the TEM mode having no cutoff
frequency, w. = 0. However, TE and TM modes with non-zero cutoff frequencies do
exist and place an upper limit on the usable bandwidth of the TEM mode. Similarly, in
optical fibers, the lowest mode has no cutoff, and the single-mode bandwidth is deter-
mined by the next cutoff frequency.

In rectangular waveguides, the smallest cutoff frequencies are fio = c/2a, f2o =
c/a = 2f19, and fo; = c/2b. Because we assumed that b < a, it follows that always
fio < fo1. If b < a/2,then 1/a < 1/2b and therefore, f>9 < fo1, so that the two lowest
cutoff frequencies are f1¢ and f»o.

On the other hand, if a/2 < b < a, then fo1 < f>0 and the two smallest frequencies
are f10 and fo; (except when b = a, in which case fy; = f1¢ and the smallest frequencies
are f10 and f>p.) The two cases b < a/2 and b > a/2 are depicted in Fig. 9.6.1.

It is evident from this figure that in order to achieve the widest possible usable
bandwidth for the TE;p mode, the guide dimensions must satisfy b < a/2 so that the
bandwidth is the interval [f,, 2f.], where f. = f10 = ¢/2a. In terms of the wavelength
A = c¢/f, the operating bandwidth becomes: 0.5 < a/A <1,or,a < A < 2a.

We will see later that the total amount of transmitted power in this mode is propor-
tional to the cross-sectional area of the guide, ab. Thus, if in addition to having the

TMurphy’s law for waveguides states that “if a mode can propagate, it will.”
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Fig. 9.6.1 Operating bandwidth in rectangular waveguides.

widest bandwidth, we also require to have the maximum power transmitted, the dimen-
sion b must be chosen to be as large as possible, that is, b = a/2. Most practical guides
follow these side proportions.

If there is a “canonical” guide, it will have b = a/2 and be operated at a frequency
that lies in the middle of the operating band [f¢, 2f.], that is,

f=1.5f =075 g 9.6.1)

Table 9.6.1 lists some standard air-filled rectangular waveguides with their naming
designations, inner side dimensions a, b in inches, cutoff frequencies in GHz, minimum
and maximum recommended operating frequencies in GHz, power ratings, and attenua-
tions in dB/m (the power ratings and attenuations are representative over each operating
band.) We have chosen one example from each microwave band.

name a b fe fmin fmax band P %

WR-510 5.10 2.55 1.16 1.45 2.20 L 9 MW 0.007
WR-284 2.84 1.34 2.08 2.60 3.95 S 2.7 MW | 0.019
WR-159 1.59 0.795 3.71 4.64 7.05 C 0.9 MW | 0.043

WR-90 0.90 0.40 6.56 8.20 12.50 X 250 kw | 0.110
WR-62 0.622 | 0.311 9.49 | 11.90 18.00 Ku 140 kW | 0.176
WR-42 0.42 0.17 14.05 | 17.60 26.70 K 50 kW | 0.370
WR-28 0.28 0.14 21.08 | 26.40 40.00 Ka 27 kW | 0.583
WR-15 0.148 | 0.074 | 39.87 | 49.80 75.80 \% 7.5 kW | 1.52
WR-10 0.10 0.05 59.01 | 73.80 | 112.00 w 3.5 kW | 2.74

Table 9.6.1 Characteristics of some standard air-filled rectangular waveguides.

9.7 Power Transfer, Energy Density, and Group Velocity

Next, we calculate the time-averaged power transmitted in the TE;y mode. We also calcu-
late the energy density of the fields and determine the velocity by which electromagnetic
energy flows down the guide and show that it is equal to the group velocity. We recall
that the non-zero field components are:

H,(x)= Hopcoskex, Hx(x)=H;sinkex, Ey(x)=Epsinkcx (9.7.1)
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where

j . w
H, = “;TBHO, Eo=-nmeHy = —jn—Hy 9.7.2)
c We

The Poynting vector is obtained from the general result of Eq. (9.3.7):

1 ; 1 . 1 . ,
P, =——|Er|> = ——|E,(X)|*> = —— |Eg|?sin® kcx
27 2nm 2ne 2NtE 0 ‘

The transmitted power is obtained by integrating 7, over the cross-sectional area
of the guide:

a b 1 .
Pr = I J —— |Epl|? sin® kex dxdy
0o Jo 2nte
Noting the definite integral,
a a
J sin® kexdx = J sin® (T dx = 2 (9.7.3)
0 0 a 2

and using N7z = nw/Bc = n/4/1 — w2/ w?, we obtain:

1 1 2
Pr = ——|Eyl?ab = —|Eyl%ab+/1 - ®e (transmitted power) (9.7.4)
4ane 4n w

2

We may also calculate the distribution of electromagnetic energy along the guide, as
measured by the time-averaged energy density. The energy densities of the electric and
magnetic fields are:

1 1 1
We = ~Re(5€E- E¥) = —€|Ey|?
) (2 ) 4 €IE
1 1 * 1 2 2
Wm = ~Re(SpH- H*) = ~u(|Hyl? + |H,|?)

2 2 4

Inserting the expressions for the fields, we find:

1 1
We = €|Eo|? sin® kex, Wm = Zu(lHl 12 sin® kex + |Hol? cos? kex)
Because these quantities represent the energy per unit volume, if we integrate them

over the cross-sectional area of the guide, we will obtain the energy distributions per
unit z-length. Using the integral (9.7.3) and an identical one for the cosine case, we find:

a b a b 1 1
W, = J J We (X,y) dxdy = J J = €|Eg|?sin® kexdxdy = = €|Eg|%ab
0 Jo 0 Jo 4 8

a b
4 1 . 1
Wi, = JO JO Zlu(|H1|2sm2 kex + |Hol? cos? kex) dxdy = gu(|Hl|2 + |Hy|?)ab
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Although these expressions look different, they are actually equal, W, = W},. In-
deed, using the property f2/k? + 1 = (B2 + k2) /k? = k?/k? = w?/w? and the relation-
ships between the constants in (9.7.1), we find:

2 w?
pu(1H1 12 + [Hol?) = H(|H0|237 + [Hol?) = ulHol*— = %Ufol2 = €|Eol?
k& we n

The equality of the electric and magnetic energies is a general property of wavegui-
ding systems. We also encountered it in Sec. 2.3 for uniform plane waves. The total
energy density per unit length will be:

4 ! 4 r 1
W' =W+ Wy, =2W, = €|Eq|?ab (9.7.5)

According to the general relationship between flux, density, and transport velocity
given in Eq. (1.6.2), the energy transport velocity will be the ratio Ve, = P1/W’. Using
Egs. (9.7.4) and (9.7.5) and noting that 1/ne = 1/./u€ = ¢, we find:

[ 2
Ven = % =C+/1— % (energy transport velocity) (9.7.6)

This is equal to the group velocity of the propagating mode. For any dispersion
relationship between w and f3, the group and phase velocities are defined by

dw w

@ , Vph = E (group and phase velocities) 9.7.7)

Vgr =

For uniform plane waves and TEM transmission lines, we have w = Bc, so that vy =
Vph = c. For a rectangular waveguide, we have w? = w? + B?c?. Taking differentials of
both sides, we find 2wdw = 2¢?Bd B, which gives:

_dw  Bc® w?
Ve =8 = w V! (9.7.8)

where we used Eq. (9.1.10). Thus, the energy transport velocity is equal to the group
velocity, Ven = Vgr. We note that vgr = Bc?/w = ¢?/Vpp, or

VgrVph = C* (9.7.9)

The energy or group velocity satisfies vy < ¢, whereas vy, > ¢. Information trans-
mission down the guide is by the group velocity and, consistent with the theory of
relativity, it is less than c.

9.8 Power Attenuation

In this section, we calculate the attenuation coefficient due to the ohmic losses of the
conducting walls following the procedure outlined in Sec. 9.2. The losses due to the
filling dielectric can be determined from Eq. (9.2.5).
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The field expressions (9.4.3) were derived assuming the boundary conditions for
perfectly conducting wall surfaces. The induced surface currents on the inner walls of
the waveguide are given by J; = fi X H, where the unit vector i is +%X and +y on the
left/right and bottom/top walls, respectively.

The surface currents and tangential magnetic fields are shown in Fig. 9.8.1. In par-
ticular, on the bottom and top walls, we have: