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Abstract. Several  types of methods can solve equations of satellite motion numerically.  These methods are

divided  into  single  and  multi-step  methods.  The  accuracy  of  each  method  depends  directly  on  adopted

integration step size between successive iterations. To achieve result with required accuracy it is important to

maintain appropriate size of integration step. Inappropriate step size could cause local errors between iterations

greater than accuracy of the method. Therefore, integration step size needs to be reduced until it does not affect

accuracy of the final solution. Group of Runge-Kutta (RK) methods for solving equations of satellite motion

have been analysed in this article. Five different methods: Runge-Kutta 4th order, Runge-Kutta 5th order and

Runge-Kutta-Fehlberg  4th and  5th order  methods  were  discussed.  Compared  to  the  classical  Runge-Kutta

integration method other methods are slower, but give results that are slightly more accurate. 
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1 INTRODUCTION

Equations  of  satellite  motion  could  be  solved  both  analytically  (Góral  and  Skorupa,  2012)  and  numerally

(Gaglione et al., 2011). Runge-Kutta (RK) methods are one of the well-known numerical methods for solving

differential equations (Kosti et al., 2009; Ozawa, 1999; Sermutlu, 2004), while 4 th order Runge-Kutta method is

recommended  to  solve  equations  of  satellite  motion  by  GLONASS  Interface  Control  Document  (ICD-

GLONASS, 2008).

Currently  there  are  very  few  publications  referring  to  comparison  of  numerical  methods  to  solve  GNSS

equations of satellite motion. Numerical integration of low Earth orbiting satellites was performed by (Es-hagh,

2005). The author compared two variable step integration methods: Adams and Runge-Kutta-Fehlberg (RKF)

methods. Adams' method is recommended for long arc orbit integration or in low resolutions (large step size)

orbit integration. In contrast, RKF method is better to be used for high-resolution (small step size) solutions.

(Sermutlu, 2004) presented the comparison of accuracy and speed tests of Runge-Kutta 4th and 5th order for

solving Lorenz equation. He noticed that 4th order method gives more accurate results for shorter running times,

but as step sizes decline, 5th  order method gives more accurate results. (Khodabin and Rostami, 2015) obtained

the same results.  The authors  analysed different  orders  of Runge-Kutta methods for  applications in electric

circuits.  They confirmed superiority of higher order RK methods over other methods. (Montenbruck, 1992)

compared  multistep,  interpolation  and  Runge-Kutta  methods  for  the  numerical  integration  of  ordinary

differential equations of orbital motion. The author showed that both single-step and multi-step methods are

competitive.  Equations  of  satellite  motion  were  also  solved  by  many  different  approaches,  e.g.

Runge-Kutta-Fehlberg  method  (Atanassov,  2010),  analytically  (Kudryavtsev,  1995),  by  MATLAB  ODE45

function (Bradley et al., 2014) or by new types of Runge Kutta methods (Gonzalez et al., 1999).

Runge-Kutta 4th order method to solve equations of satellite motion was presented by (ICD-GLONASS, 2008),

but without any data concerns accuracy. It is clear that the error in orbit integration strongly depends on a step



size.  GLONASS satellite integration results have no explicit  differences between solutions from 1 to 300 s

integration step size. The author suggested that 60 s GLONASS integration step width is sufficient in any case,

because for small angular distances the satellite orbit could be considered as nearly linear. 

2 KEPLERIAN MOTION

Simplified satellite orbiting is called Keplerian motion (Zare, 1982). In Earth-artificial satellite, setting the mass

of a satellite can be considered negligible and does not enter the motion equations system (Breiter and Elipe,

2006). This is due to its size and mass that are negligibly small relatively to the mass of the Earth. The satellites

motion is governed by the Newton's second law hence, according to the formula:

=
2

-
r r

m r
r

⃗⃗
&& (1)

where:

µ = GM - the product of Newton's gravitational constant and mass of the Earth

r - distance between the Earth and satellite centres

Equation 1 relates to a motion in an inertial system. Two vectors or 6 scalars are the solutions of this second

order differential equation (Keplerian elements). They are the results of double integration of (1). In case of the

Earth’s artificial satellite, perturbing forces affecting its position should also be taken into account (Bobojć and

Drożyner, 2011):
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where:

K - perturbing forces 

Gravitational forces due to the Earth as well as the strength of perturbing forces determine satellites motion.

Table 1 shows the magnitude of perturbing forces and their effect on a GNSS satellite.

Source Acceleration 

[m/s2]

Orbit error after 

24 hours [m]

Two-body term of the Earth’s gravity field 0.59 ∞

Oblateness of the Earth 5 ∙ 10-5 10.000

Lunar gravitational attraction 5 ∙ 10-6 3.000

Solar gravitational attraction 2 ∙ 10-6 800

Other terms of the Earth’s gravity field 3 ∙ 10-7 200

Radiation pressure (direct) 9 ∙ 10-8 200

Y-bias 5 ∙ 10-10 2

Solid Earth tides 1 ∙ 10-9 0.3



Table 1: Perturbing accelerations acting on a GPS satellite (Dach et al., 2007).

The main perturbing force affecting a satellite is the Earth’s oblateness that characterizes polar flattening of the

Earth.  The effect  of  accelerations due to the luni-solar  gravitational  perturbations is  an order  of  magnitude

smaller than the second zonal harmonic. We can consider other forces as negligible. It  may be assumed that

perturbing forces acting on a GPS satellite affect will be different that on a GLONASS satellites due to two

reasons.  Firstly,  GLONASS satellite  orbit  the  Earth  much  lower,  that  is  mean  they are  much  sensitive  to

gravitational perturbations. Secondly, GLONASS satellites have larger area-to-mass ratios than GPS satellites,

which implies that the impact of solar radiation pressure is larger for GLONASS.

3 RUNGE-KUTTA METHODS

Numerical integration methods can be divided into single and multi-step methods. In case of multi-step methods,

to calculate the predicted value of the function, we must know values of the function at some previous time

points (e.g. tn-1, tn-2). The best known multi-step methods used to solve equations of satellite motion are Cowell

and Encke methods (Liu and Liao, 1994). Whereas single-step methods, based on a single initial point of time,

allow us to calculate predicted values of the function. The best-known single-step methods for solving satellite

equations of motion are Runge-Kutta 4th and higher order methods.

The equation of satellite’s motion is a second order differential equation. Therefore, it has to be converted to the

system of first order differential equations to be solved by RK methods as following:
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Runge-Kutta  method  allows  calculation  of  the  approximate  value  of  the  function  y (xn)  for

a = x0 < x1 < … < xn = b, as in the formula:
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where: 

a, b - constants

h - step size

s - Runge-Kutta method’s order

i=1,2,…,s

Expanding (2) into first order differential equations still makes it impossible to solve them analytically in a fast

and  simple  way.  GLONASS Interface  Control  Document  (ICD-GLONASS,  2008)  recommends  the  use  of



Runge-Kutta 4th order method for this purpose, as it ensures adequate accuracy altogether with the simplicity of

the solution. Equation (7) is an extension of (2) into a form of scalar functions. It takes into account perturbing

forces due to the flattening of the Earth (second zonal harmonic) and influence of the Sun and Moon (Poutanen

et al., 1996):
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where: 

x, y,z
- satellite coordinates

x, y,z&& &
- satellite velocities

LS LS LSx , y ,z&&&& &&
- lunisolar accelerations

a - semi-major axis of the ellipsoid

ω - the Earth rotation rate

C20 - second zonal harmonic coefficient of the geopotential

2 2 2r = x + y + z

m
 = GM

Second zonal harmonic is known from parameters of current PZ-90 (Параметры Земли 1990 года, Parameters

of the Earth 1990) realization. In calculations, it is adopted as the known parameter. Lunisolar accelerations are

varying in time, thus they are transmitted in GLONASS navigational (broadcast) message in 15 min intervals,

and they are assumed constant within ±15 min from the initial position.



4 GLONASS NAVIGATION MESSAGE

GLONASS  navigation  message  contains  information  regarding  satellites’ position  parameters  for  a  single

observation epoch. Those data are recorded in RINEX format *.yyG (Gurtner and Estey, 2007) with 30-minutes

interval as vector components of satellite position, velocity and acceleration (Table 2).

Observation record Description Format

SV / EPOCH / SV CLK - Satellite system (R), satellite number 

(slot number in sat. constellation)

- Epoch: Toc - Time of Clock (UTC)

__- year (4 digits) 

__- month, day, hour, minute, second

- SV clock bias (sec) (-TauN) 

- SV relative frequency bias (+GammaN)

- Message frame time (tk+nd*86400) 

_ in seconds of the UTC week

A1, I2.2

1X, I4

5 (1X, I2, 2), 

3D19.12

BROADCAST ORBIT – 1 - Satellite position X __ __ __ (km)

- Satellite velocity X dot__ __ (km/sec)

- Satellite X acceleration__ __ (km/sec2)

- Satellite health (0=OK)

4X, 4D19.12

BROADCAST ORBIT – 2 - Satellite position Y________(km)

- Satellite velocity Y dot__ __ (km/sec)

- Satellite Y acceleration__ __ (km/sec2)

- Satellite frequency number__(-7…+12)

4X, 4D19.12

BROADCAST ORBIT – 3 - Satellite position Z________ (km)

- Satellite velocity Z dot__ __ (km/sec)

- Satellite Z acceleration__ __ (km/sec2)

- Age of oper. information__ _(days)

4X, 4D19.12

Table 2: GLONASS data record description (Gurtner and Estey, 2007).

Figure 1 contains a single record of GLONASS navigational message in RINEX format. It relates to the satellite

PRN 1 from 9th June 2013 at 0:00 GLONASS time. 

PRN y m d h m s SV clock bias (sec) SV relative frequency bias Message frame time
1 13 6 9 0 0 0.0 -0.172111205757E-03 0.000000000000E+00 0.846000000000E+05
Satellite  position  X

(km)

X velocity (km/sec) X acceleration (km/sec2) Health

0.144409179688E+05 -0.264622497559E+01 0.000000000000E+00 0.000000000000E+00
Satellite  position  Y

(km)

Y velocity (km/sec) Y acceleration (km/sec2) Frequency number

0.522635791016E+04 0.877996444702E+00 0.000000000000E+00 0.100000000000E+01
Satellite  position  Z

(km)

Z velocity (km/sec) Z acceleration (km/sec2) Age of oper. 

information
0.203675307617E+05 0.165256118774E+01 -0.279396772385E-08 0.000000000000E+00



Figure 1: Example of GLONASS navigation message

Contrary to  GPS,  GLONASS message  contains  information  about  satellites’ positions  in  ECEF coordinate

system (Gaglione et  al.,  2011).  Those data for  a single satellite  are stored in four 80-byte lines (Figure 1).

GLONASS  ephemeris  message  contains  information  about  satellites’ position  in  current  PZ-90  realization

(Boucher and Altamimi, 2001).  PZ-90.02 realization was obligatory since 2007 (Montenbruck et  al.,  2015),

currently PZ-90.11 is in use (IGSMAIL-6896).

5 GENERAL COMPARISON

In this paper,  a group of Runge-Kutta methods were analysed in resolving equations of satellite motion for

GLONASS satellite. Parameters of GLONASS space segment are presented in Table 3:

Parameter Value

Number of SV 24

Orbital planes 3

Orbital altitude (km) 19 100

Orbital inclination 64.8°

Ground track period 8 sidereal days

Layout Symmetric

Broadcast ephemerides ECEF

Datum PZ-90

Table 3: GLONASS space segment parameters (Angrisano et al., 2013).

This paper discusses four variants of Runge-Kutta method: best-known 4th order method (RK4), 5th order method

(RK5) and Runge-Kutta-Fehlberg 4th (RKF4) and 5th (RKF5) order methods. Table 4 shows formulas of analysed

RK methods:
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Table 4: Parameter of analysed Runge-Kutta methods (Rentrop et al. 1989; Sermutlu, 2004)

The determination error of satellite position depends on Runge-Kutta method order and adopted for calculations

integration step.  In  principle,  position determination is  more  accurate for  smaller  integration steps.  Smaller

integration step (h) carries a serious increase of intermediate positions thus, it increases computation time. Each

step  h, depending on the adopted formula requires calculation of four, five or six intermediate values of the

function analysed in this paper (Table 4). Therefore, the best solution appears to be a method, which provides

required accuracy of a satellite position solution combined with the highest execution speed. It  is especially

important in case of real-time solutions. 

6. RESULTS

This  paper shows research of GLONASS’ satellite position determination by RK methods according to  the

integration step size and its effect on the accuracy and speed of solution. There has been analysed position of #10

GLONASS satellite (SV 717, orbit 2, launched 25/12/2006, active from 03/04/2007) due date 01/01/2012 at

three different moments of time: 1015, 1045 and 1115 UTC. The survey is based on broadcast orbit coordinates

taken with maximum available accuracy of 12 decimal digits (Figure 1). Accuracy analysis was performed based

on ORBGEN results, which is a part of Bernese GPS Software 5.0 (Dach et al., 2007). Comparison of numerical

solutions of (2) was carried out based on the author’s own scripts implemented in Matlab R2010b®. They were

run on Lenovo L420 computer equipped with Windows 7 Professional, with the Intel Core i5-2410M 2.30 GHz,

4.00 GB RAM.



Based on known initial function values of position, velocity and acceleration it is possible to determine satellite’s

position  for  any moment  within  the  range  ±15 min  (900 s).  This  time  span  comes  from the  fact  that  the

GLONASS ephemeris is updated every 30 minutes. If ephemeris data are used in the range exceeding ±15min

difference between calculated and actual position expected is grow rapidly every ±15 min (Figure 2).

Figure 2: Discrepancy of forward and backward 15 - minute integration

Figure 3 shows errors of XYZ components calculated based on initial satellite position by RK4 with integration

step h = 30 s. After 30 minutes, the error of each component does not exceed 1 meter, after 60 minutes error is

smaller  than  5  meters,  and  after  4  hours  exceeds  value  of  several  meters.  Therefore,  in  an  application  of

numerical  methods for  solving equations of satellite  motion information on satellite  position in the shortest

possible time intervals is very important.
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Figure 3: Increase of satellite position error (RK4, h = 30 s)

Figure 4 shows more detailed data presented on Figure 3. “Known” coordinate and speed components are at t = 0

s.  At  t = 900 s  follows  update  of  satellite  ephemeris  data  and  then  should  be  used  next  “known”  position



coordinate (t = 1800 s for this figure) and solved backward. So increase of XYZ components error magnitude

due to updated ephemeris parameters is very clearly visible.
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Figure 4: Increase of satellite position error (RK4, h = 1 s)

Figure 5 shows the difference between RK4 method with the step h = 1 s solution and the reference solution. The

figure presents three consecutive "backward" and "forward" solutions within 900 s interval. At 900 s, 2700 s and

4500 s moment, satellite coordinates, velocity and acceleration values are known. Solutions of three analysed,

successive time points have similar errors. The offset of each component is a result of its update. That is why the

determination of a single satellite position should  be done within ±900 s around the known position. Maximum

error in X component is around -0.1 m, Y around 0.9 m, and Z component up to 0.1 m error. Consequently,

maximum 3D position  error  is  0.15  m.  Thus,  this  type  of  calculation  can  be  considered  as  sufficient  for

GLONASS broadcast orbit determination, due to its accuracy of about several meters.
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Figure 5: Example of three consecutive integration steps

Table 5 presents a comparison of average speed of satellite position determination. These values are means of

100 000 consecutive solutions of  Runge-Kutta  methods.  It  depends on the adopted integration step  size  h.

Increased integration step size decreases  time of  position determination.  For each integration step the most

efficient is Runge-Kutta 4th order method (RK4), due to the least complexity. The other three methods depending

on the step length are between 2 to 6 times slower than RK4 method. Despite of the most complex equations

RKF5 method is the second fastest after the RK4 method among analysed. RKM is the slowest method for each

step size. Speed of calculation in this method is comparable to other only for 1 and 3 s integration step sizes.

Step size h [s] 1 3 5 10 20 30 90 180 300 900

Number of steps 900 300 180 90 45 30 10 5 3 1

RK4 4.816 1.605 0.962 0.480 0.241 0.160 0.054 0.027 0.016 0.006

100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

RK5 7.374 2.881 1.758 0.992 0.468 0.353 0.147 0.084 0.060 0.038

153% 180% 183% 207% 194% 221% 272% 311% 375% 633%

RKF4 7.712 2.539 1.557 0.776 0.401 0.275 0.107 0.066 0.049 0.031

160% 158% 162% 162% 166% 172% 198% 244% 306% 517%

RKF5 8.047 2.719 1.608 0.774 0.403 0.275 0.113 0.079 0.054 0.033

167% 169% 167% 161% 167% 172% 209% 293% 338% 550%

Table 5: Average duration of positions calculation and percentage changes in relation to RK4 [ms].

Figure 6 presents calculated errors of "forward" satellite position. It reveals the difference between the author's

and model solution based on integration step size.  In  case of small step length,  less than 180 s, results are



comparable for all tested methods and the maximum error does not exceed 0.15 m. This accuracy is sufficient for

navigation purposes. 
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Figure 6: Runge-Kutta method determination error [mm]

With the increase of integration step length a distinct advantage of higher order Runge-Kutta methods may be

observed. It is clearly visible for integration steps  h = 300 s and  h = 900 s. RKF method projects satellite’s

trajectory with 0.60 cm accuracy for a single, 900 s step.

If  you  need  to  determine  denser  number  between  consecutive  positions/coordinates  (e.g.  coordinates  are

available every 60 s, but you want to have coordinates every 1 s) all you have to do is decrease step-size to

needed.  Therefore,  simplicity  is  the  main  advantage  of  using  this  method  against  GPS,  where  navigation

message  data  contain  Keplerian  elements,  which  must  have  analytical  solution.  Moreover,  GLONASS

navigation message contains Cartesian coordinates and velocities in current PZ-90 realization every 30 min, so it

is much affordable data than Keplerian elements in GPS navigation message available every 2 hours. 

7 CONCLUSIONS

The accuracy of GLONASS satellite’s position calculated numerically depends mostly on integration step size.

The influence of applied RK method type and order is smaller. Short integration step allows a relatively high

precision, but it involves extension of solution time. Error of calculated position from initial parameter (epoch)

increases together with “distance” from known coordinates. This study confirmed that higher order RK methods

are more accurate. This fact is more evident especially in large-size integration steps of RK computations. The

previous studies showed that the 5th order method or modified RKF methods are more accurate than the RK4

recommended by the GLONASS-ICD. On the other hand, due to the simplicity of equations RK4 order method

is the fastest of the all analysed methods. However, an argument of economical saving time was more important

in the 90s, when PCs’ computing power was less efficient smaller than today. Currently due the highest accuracy



of analysed methods, the most suitable for calculation of GLONASS satellite position is Runge-Kutta-Fehlberg

5th order method.
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