Surface Mount SMD Resistor Codes & Markings

- details of the SMD or SMT resistor markings and codes with the systems used to indicate the resistor values and information - including EIA SMD resistor marking / coding scheme.

IN THIS SECTION

- SMT overview (/info/data/smt/what-is-surface-mount-technology-tutorial.php)
- SMD component packages (/info/data/smt/smt_packages.php)
- SMD resistor (/info/data/resistor/smd_resistor/smd_resistor.php)
- SMD resistor markings (/info/data/resistor/smd_resistor/smt-resistor-markings-systems.php)
- MELF SMD resistor (/info/data/resistor/smd_resistor/melf-resistor-smt.php)
- SMD capacitor (/info/data/capacitor/smd_capacitor.php)
 Quad Flat Package, QFP (/info/data/smt/smd-qfp-quad-flat-package.php)
 BGA, Ball Grid Array (/info/data/smt/smd-bga-ball-grid-array-package.php)
- SMD PLCC (/info/data/smt/smd-plcc-plastic-leaded-chip-carrier.php)

Although not all SMD resistors, or SMT resistors are marked with their values, some are, and in view of the lack of space the SMD resistor code systems may not always provide an obvious indication of the resistor value.

The surface mount resistor code systems provide are mainly used to enable service, repair and fault-finding. During manufacture the resistors are held either in tapes that are reeled, or in hoppers used for the surface mount machines. The SMD resistor markings can be used as a check to ensure the correct values are being fitted, but normally the reels or hoppers will be suitable marked and coded.

Resistor value code

End contact

Typical surface mount resistor code

SMD resistor code systems

Many SMD resistors do not have any markings on them to indicate their value. For these devices, once they are loose and out of their packaging it is very difficult to tell their value. Accordingly SMD resistors are typically used within reels or other packages where there is no chance of different values being mixed.

Many resistors do have markings on them. There are three systems that are used:

- Three figure SMD resistor coding system
- Four figure SMD resistor coding system
- EIA96 SMD resistor coding system

3 figure SMD resistor code system

A three figure SMT resistor coding system is the one that is normally used for standard tolerance resistors.

As the name indicates this SMD resistor marking system uses three figures. The first two figures in the code indicate the significant figures, and the third is a multiplier. This is the same as the coloured rings used for wired resistors, except that actual numbers are used instead of colours.

Therefore an SMD resistor with the figures 472 would have a resistance of 47 x 10^2 ohms, or 4.7kΩ. However beware of resistors marked with figures such as 100. This is not 100 ohms, but it follows the scheme exactly and it
Therefore an SMD resistor with the figures 472 would have a resistance of 47 x 10^2 ohms, or 4.7kΩ. However beware of resistors marked with figures such as 100. This is not 100 ohms, but it follows the scheme exactly and it is 10 x 10^0 or 10 x 1 = 10 Ω.

![472]

Three figure SMD resistor code
Where resistance values less than ten ohms are used, the letter "R" is used to indicate the position of the decimal point. As an example, a resistor with the value 4R7 would be 4.7Ω.

4 figure SMT resistor code system
The four digit or four figure SMT resistor marking scheme is used for marking high tolerance SMD resistors. Its format is very similar to the three figure SMT resistor making scheme, but expanded to give the higher number of significant figures needed for higher tolerance resistors.

In this coding scheme, the first three numbers will indicate the significant digits, and the fourth is the multiplier. Therefore an SMD resistor with the figures 4702 would have a resistance of 470 x 10^3 ohms, or 47kΩ.

![4702]

Four figure SMT resistor code
Resistors with values of less than 100 ohms are marked utilise the letter 'R', as before, to indicate the position of the decimal point.

EIA96 SMD resistor code system
A further surface mount resistor code scheme or SMD resistor coding scheme has started to be used, and it is aimed at 1% tolerance SMD resistors, i.e. those using the EIA96 or E-96 resistor series. As higher tolerance resistors are used, further figures are needed. However the small size of SMT resistors makes the figures difficult to read. Accordingly the new system seeks to address this. Using only three figures, the actual characters can be made larger than those of the four figure system that would otherwise be needed.

The EIA SMD resistor coding scheme uses a three character code: the first 2 numbers indicate the 3 significant digits of the resistor value. The third character is a letter which indicates the multiplier. In this way this SMD resistor marking scheme will not be confused with the 3 figure markings scheme as the letters will differentiate it, although the letter R can be used in both systems.

To generate the system the E-96 resistor series has been taken and each value or significant figure set has been numbered sequentially. As there are only 96 values in the E-96 series, only two figures are needed to number each value, and as a result this is a smart way of reducing the number of characters required.

![68X]

EIA SMD resistor code
The details for the EIA SMT resistor code scheme are tabulated below:

<table>
<thead>
<tr>
<th>EIA SMD RESISTOR CODE SCHEME</th>
<th>CODE</th>
<th>MULTIPLIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Y or R</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>X or S</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>B or H</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>1 000</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>10 000</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>100 000</td>
<td></td>
</tr>
</tbody>
</table>

EIA SMT resistor code scheme multipliers

<table>
<thead>
<tr>
<th>CODE</th>
<th>SIG FIGS</th>
<th>CODE</th>
<th>SIG FIGS</th>
<th>CODE</th>
<th>SIG FIGS</th>
<th>CODE</th>
<th>SIG FIGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>100</td>
<td>25</td>
<td>178</td>
<td>49</td>
<td>316</td>
<td>73</td>
<td>562</td>
</tr>
<tr>
<td>02</td>
<td>102</td>
<td>26</td>
<td>182</td>
<td>50</td>
<td>324</td>
<td>74</td>
<td>576</td>
</tr>
<tr>
<td>03</td>
<td>105</td>
<td>27</td>
<td>187</td>
<td>51</td>
<td>332</td>
<td>75</td>
<td>590</td>
</tr>
<tr>
<td>04</td>
<td>107</td>
<td>28</td>
<td>191</td>
<td>52</td>
<td>340</td>
<td>76</td>
<td>604</td>
</tr>
<tr>
<td>05</td>
<td>110</td>
<td>29</td>
<td>196</td>
<td>53</td>
<td>348</td>
<td>77</td>
<td>619</td>
</tr>
<tr>
<td>EIA SMT resistor code scheme significant figures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For example a resistor that is marked 68X can be split into two elements, 68 refers to the significant figures 499, and X refers to a multiplier of 0.1. Therefore the value indicated is 499 x 0.1 = 49.9Ω.

By Ian Poole (https://plus.google.com/104687638164370436625?rel=author)

More circuits:
- Capacitor types: https://info/data/capacitor/capacitor_types.php
- Diodes: https://info/data/semicond/diodes/types-of-diodes.php
- SMD resistor: https://info/data/resistor/smd_resistor/smd_resistor.php
- Inductors: https://info/data/inductors/inductor-types.php
- Quartz crystals: https://info/data/crystals/quartz-crystals-resonator.php
- Resistors: https://info/data/resistor/resistor-types.php
- SMD Technology: https://info/data/smt/what-is-surface-mount-technology-tutorial.php
- Switches: https://info/data/switches/types-basics-tutorial.php
- Electronic Components: https://info/data/electronic_components.php

Want more like this? Register for our newsletter (/newsletter/)
VOLT VoLTE Testing Explained (http://www.radio-electronics.com/whitepapers/volte-testing-explained-20)
Download this free eBook to find out how testing addresses the challenges of bringing your VoLTE networks, VoLTE-enabled mobile devices and new services to market quickly and efficiently.

More whitepapers (http://www.radio-electronics.com/whitepapers.php)

This certification programme covers the principles and execution of LTE radio planning and optimisation.

More training courses (http://www.radio-electronics.com/learning-training-courses.php)

SOFTWARE CONFIGURATION MANAGEMENT HANDBOOK
Alexis Leon
In any development of software it is absolutely crucial to have well defined...
Read more... (http://www.radio-electronics.com/bookstore/featured-book.php)

Check out our excellent value eBooks (http://www.radio-electronics.com/bookstore/ebooks-list.php)
Forthcoming Events

- National Electronics Week 2015 (event/national-electronics-week-2015-9)
- ES Live 2015 (event/es-live-2015-33)
- IEEE MTT-S International Microwave Symposium (event/ieee-Mtts-international-microwave-symposium-29)
- Small Cells World Summit 2015 (event/small-cells-world-summit-2015-23)
- Introduction to Radar course (event/introduction-to-radar-course-51)
- Mobile World Congress Shanghai (event/mobile-world-congress-shanghai-32)

... More Events (http://www.radio-electronics.com/events-exhibitions-trade-shows/)

Popular Articles

- Practical PCB Design using DesignSpark PCB (/articles/circuit-design/practical-pcb-design-using-designspark-pcb-143)
- Security & Microcontroller Design (/articles/processing-embedded/security-amp-microcontroller-design-144)
- IoT connectivity unification; simplification; & security (/articles/wireless-technology/IoT-connectivity-unification-simplification-amp-security-139)
- Carrier Aggregation - How to Test the Key Enabler for LTE Advanced (/articles/cellular-telecoms/carrier-aggregation-how-to-test-79)

... More Articles (http://www.radio-electronics.com/articles.php)