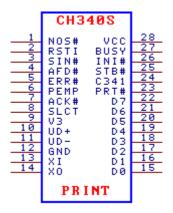

USB convert printer port chip CH340

the second DataSheet Version:1D http://wch.cn

1. Introduction

CH340 is a USB bus convert chip, it can realize USB convert serial, USB convert IrDA or USB convert printer port.


In printer port mode, CH340 supplies standard USB printer port which is compatible with USB criterion and Windows operation system, used to upgrade common parallel interface printer to USB bus directly. More detail about USB convert serial please consulting the first manual CH340DS1.

2. Features

- Full speed USB device interface, conforms to USB Specification Version 2.0, only needs crystal and capacitance external.
- Standard USB print interface, used to upgrade the original parallel printer, compatible with the relative USB criterion.
- Compatible with Windows operation system, drive program is not need in Windows 2000 and XP, the application program is totally compatible.
- Support bi-directional communication of IEEE-1284, and support signal directional and bi-directional transmit printer.
- Only application layer compatible, because of the printer port is changed from USB.
- Software compatible with CH341, use drive program of CH341 directly.
- Support 5V and 3.3V source voltage.
- Adapt SOP-28 package without lead, compatible with RoHS, pins compatible with CH341.

3. Package

Package shape	Width of plastic		pin dimensions		Instruction of package	Ordering type	
SOP-28	7.62mm	300mil	1.27mm	50mil	Small outline package of 28-pin	CH340S	

4. Pins

Pin No.	Pin Name	Pin Type	Pin Description(description in bracket is only about CH340R)				
			Positive power input port, requires an external 0.1uF power				
28	VCC	POWER	decoupling capacitance				
12	GND	POWER	Public ground, ground connection for USB				
9	V3	POWER	Connect with VCC to input outside power while 3.3V				
	V 3	TOWER	connects of 0.01uF decoupling capacitance outside while 5V				
13	XI	IN	Input of crystal oscillator, attachment of crystal and crystal				
			oscillator capacitance outside				
14	XO	OUT	Opposite output of crystal oscillator, attachment of crystal and				
			crystal oscillator capacitance outside				
10 UD+		USB signal	Directly connect to D+ data wire of USB bus, set up pull-up resistor internal				
11	UD-	USB signal	Directly connect to D- data wire of USB bus				
11	UD-	USB Signal	Forbid USB device suspending, active with low, set up pull-up				
1	NOS#	IN	resistor internal				
			Reset input from outside, active with high, set up pull-up				
2	2 RSTI		resistor internal				
22.15	22 15 D7 D0						
22~15	D7~D0	tri-state	Eight bits parallel data output, connect to DATA7~DATA0				
25	STB#	OUT	Data strobe output, active with low, connect to STROBE				
4	AFD#	OUT	Newline output automatically, active with low, connect to				
			AUTO-FEED				
26	INI#	OUT	Initial printer, active with low, connect to INIT				
3	SIN#	OUT	Select printer, active with low, connect to SELECT-IN				
5	5 ERR# II		Printer error, active with low, set up pull-up resistor internal,				
3	LINH#	IN	connect to ERROR or FAULT				
8	SLCT	IN	Printer online, active with high, set up pull-up resistor internal				
6	PEMP	IN	Printer is waiting for paper, active with high, set up pull-up				
	1 2.111	,	resistor internal, connect to PEMPTY or PERROR				
7 ACK#		IN	Printer data receive response, active with the rising edge, set				
			up pull-up resistor internal, connect to ACK				
27 BUSY IN		IN	Printer is busy, active with high, set up pull-up resistor				
23 PRT# IN			internal, connect to BUSY Work mode input, set up pull-up resistor internal, low-level is				
		IN	print interface mode, high-level is serial interface mode				
			When connect to PRT# is print mode, only compatible with				
24	C341	reserved	CH341				
L	l	<u> </u>	-				

5. Function description

CH340 sets up USB pull-up resistor internal, UD+ and UD- must be connected to USB bus.

CH340 set power up reset circuit. RSTI is used to input asynchronous reset signal from outside. When RSTI is high-level, CH340 chip is reset. When RSTI is low-level, CH340 will continue delay 20mS to reset and then step into normal work state. In order to reset credibly during power up period and weaken the disturber from outside, a 0.47uF capacitance between RSTI and VCC is recommended.

When CH340 chip is working normally, the outside must supply 12MHz clock signal to XI pin. In generally, clock signal is generated by inverter in CH340 through oscillating of crystal keeping frequency. A crystal of 12MHz between XI and XO, XI and XO connect a high frequency oscillator capacitance to ground respectively can compose the peripheral circuit.

CH340 supports 5V or 3.3V source power. When using 5V power, the pin of VCC input 5V power and V3 must connect with 4700pF or 0.01uF decoupling capacitance. When using 3.3V power, connects V3 with VCC, and input the 3.3V power. And the other circuit voltage which is connected with CH340 is no more than 3.3V.

CH340 automatically supports USB device suspending to save power consume. NOS# is low–level can forbid USB device suspending.

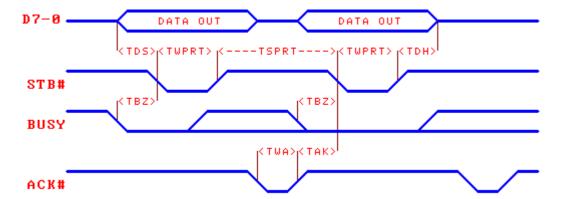
In print interface mode, the pins of CH340 chip can consult criterion Centronic printer interface signal.

CH340 supplies standard USB print interface, compatible with USB criterion. IEEE-1284 criterion and Windows operation system. Windows 2000 and XP in computer endpoint don't need drive program. (Actually, Windows has drive program) All the drive program and supported application program are totally compatible, without any modify.

CH340 supports signal directional transmit and bi-directional transmit, and can be used to upgrade original parallel printer to USB printer which is compatible with IEEE-1284 criterion.

6. Parameter

6.1. Absolute maximum rating (Stresses above those listed can cause permanent damage to the device. Exposure to maximum rated conditions can affect device operation and reliability.)


Name	Parameter note	Min.	Max.	Units
TA	Ambient operating temperature	-40	85	$^{\circ}\mathbb{C}$
TS	Storage temperature	-55	125	$^{\circ}\mathbb{C}$
VCC	Voltage source (VCC connects to power, GND to ground)	-0.5	6.5	V
VIO	The voltage of input or output pin	-0.5	VCC+0.5	V

6.2. Electrical parameter (test conditions: TA=25°C, VCC=5V, exclude pin connection of USB bus)

Name	Parame	Min.	Typical	Max.	Units	
VCC	Source voltage	V3 doesn't connect to VCC	4.5	5	5.3	V
		V3 connects to VCC	3.3	3.3	3.8	V
ICC	Total source curre		12	30	mA	
ISLP	Total source current v		0.1	0.2	mA	
VIL	Input Vol	-0.5		0.7	V	
VIH	Input Volt	2.0		VCC+0.5	V	
VOL	Output Voltage LOW			0.5	V	
VOH	Output Voltage HIGH (Output 100uA curre	VCC-0.5			V	
IUP	Input current with pu	5	150	300	uA	
IDN	Input current with pull	-50	-150	-300	uA	
VR	Restrict voltage w	2.3	2.6	2.9	V	

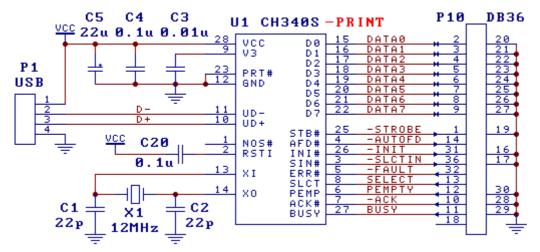
				0 0	
Name	Parameter note	Min.	Typical	Max.	Units
FCLK	Frequency of input clock in XI	11.98	12.00	12.02	MHz
TPR	Reset time of power-up		20	50	mS
TRI	Effective signal width of external reset input	100			nS
TRD	Reset delay time after external reset input		30		mS
TWPRT	The low-level effective width of data strobe STB#	450	1000	10000	nS
TSPRRT	The high-level space width of data strobe STB#	950			nS
TDS	Data erect time before STB# is effective	450		10000	nS
TDH	Data hold time after STB# is effective	450		10000	nS
TBZ	BUSY low-level to STB# is effective	250			nS
TWA	The low-level effective width of ACK#	100			nS
TAK	ACK# rising edge to STB# is effective	400			nS

6.3. Sequence parameter (test conditions: TA=25°C, VCC=5V, consult the following image)

7. Application

7.1. USB to printer port (the following image)

The PRT# pin connects to ground (or PRT# connects to CH341's pin) to configure CH340 as print interface mode in the following image, it is used to change parallel printer to USB printer. The signal wire in P10 endpoint is corresponding to IEEE-1284 criterion or standard Centronic printer interface signal wire, DB16 endpoint P10 can directly connect to the original parallel printer.


P1 is USB endpoint. USB bus contains a pair of 5V power wire and a pair of data signal wire. Usually, the +5V power wire is red, the black is ground. D+ signal wire is green and the D- signal wire is white. The max source current of USB bus is up to 500mA. In generally, CH340 and low power exhaust USB product can directly use the 5V power supplied by USB bus. If the USB product supplies stock power by other manner, CH340 must use this stock power. If the USB bus power and stock power are necessary at the same time, connect a 1Ω resistor between USB bus 5V power wire and USB product 5V stock power, and connect the two power wires' ground wire directly.

The capacitance of C3 varies from 4700pF to 0.02uF, used to internal power node decoupling of CH340. The C4 is 0.1uF, used to external power decoupling. Capacitance C20 is used to assist CH340 to realize power up reset. Crystal X1 capacitance C1 and C2 are used to clock surge circuit. The X1 is 12MHz quartz crystal, C1 and C2 are monolithic or high frequency stoneware capacitance with 22pF. If X1 is ceramic with low cost, C1 and C2 must use the recommend value of crystal manufacturer and generally is 47pF.

In actually, if the wire between CH340 and printer is too long, suggest to consult IEEE-1284 criterion when refer to impedance matching. Add a $2K\Omega{\sim}5K\Omega$ pull-up resistor to each signal wire of P10 print interface. And serial connect a $20\Omega{\sim}40\Omega$ resistor between CH340 and P10 each signal wire, then connect to original parallel printer.

When designing the PCB, pay much attention to some notes: decoupling capacitance C3 and C4 must

keep near to connection pin of CH340; makes sure D+ and D- are parallel and supply ground net or pour copper beside them to decrease the disturbance from outside signal; the relevant signal between XI and XO must be kept as short as possible. In order to lessen the high frequency disturbance, play ground net or pour copper to the relative equipment.

