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A New Criterion for Linear 2-Port Stability Using a 
Single Geometrically Derived Parameter 
Marion Lee Edwards, Senior Member, IEEE and Jeffrey H. Sinsky, Member, IEEE 

Abstruct-A new stability parameter “p(S),” is defined for 
linear 2-port circuits using a geometrical approach. It is shown 
that p > 1 alone is necessary and sufficient for a circuit to be 
unconditionally stable, where 

p =  1 - IS,112 

IS22 - G l A l  + lS2lSl2I’ 

This single parameter can replace the dual Rollet ( K  > 1) and 
auxiliary conditions for determining unconditional stability. 
The parameters K and p are compared by discussing their im- 
plications in terms of mapping circles. 

the degree of potential instability that exists, since the 
values associated with (1) and (2) provide little direct 
physical insight into the degree of stability or lack thereof. 

Mappings 
The input and output reflection coefficient are related 

to the load and source reflection coefficient by the well 
known linear fractional transformation which maps cir- 
cles into circles (where a straight line is the special case 
of a circle containing the point m) [12] 

I. INTRODUCTION 
LINEAR 2-port circuit is said to be absolutely, or A unconditionally, stable if there is no passive source 

(IrSl < 1) and passive load (IF,[ < 1) combination that 
can cause the circuit to oscillate. It is known [1]-[6] that 
the combination of the Rollet [7] condition 

together with any one of the following auxiliary condi- 
tions is necessary and sufficient for unconditional stabil- 
ity. 

- lAI2 > 0 (2a) B ,  = 1 + JS1112 - 

B2 = 1 - ISI1l2 + lS22I2 - \AI2 > 0 (2b) 

1A1 = lSllS22 - S12S21I < 1 

1 - lSI1l2 > I S 1 2 ~ 2 1 I  

1 - lS22I2 > IS12~21I. 

(2c) 

( 2 4  

(2e) 
Various authors have claimed that conditions (2d) and 

(2e) are both required [8]-[ll] while others have stated 
that only one of the conditions is required [3]. Appendix 
I shows explicitly that when K > 1, then auxiliary con- 
dition (2d) implies (2e) and vice versa, i.e., only one aux- 
iliary condition is needed. 

The design of active circuits requires that multiple pa- 
rameters be evaluated over a wide frequency range much 
larger than their intended pass-band. If a circuit or a de- 
vice fails to meet these conditions, it is difficult to assess 

Manuscript received March 31, 1992; revised July 27, 1992. 
The authors are with the Johns Hopkins University Applied Physics Lab- 

oratory, Johns Hopkins Road, 4-124, Laurel, MD 20723-6099. 
IEEE Log Number 9203703. 

and 

The inverses, rt = f -‘(Fin), and rs = g-l(rout), are 
well defined provided that S12S21 # 0 

Consequently, the approach in this paper is to initially 
assume that the circuit is not unilateral (S12S21 # 0) and 
then to examine the unilateral case afterwards. 

The function f and its inverse f - I  are mappings be- 
tween complex points in the Fin plane and the r, plane. 
Fig. 1 illustrates the domains and ranges of these maps 
that are necessary and sufficient for unconditional stabil- 
ity. A circuit is unconditionally stable if the function “f” 
maps the unit disk in the r,-plane into the unit disk in the 
r,,-plane. This is equivalent to saying that the inversef - I  

maps the unit disk in the r,,-plane onto a region which 
contains the unit disk in the rL-plane. Note that the unit 
disk is a set of complex reflection coefficient whose mag- 
nitude is less than or equal to one. This is exactly the 
region represented by the conventional or passive Smith 
Chart denoted in this paper as USC standing for Unit Smith 
Chart. Because of the circle preserving property of linear 
fractional transformations, the inverse mapping could 
typically look either like Fig. l(b) or (c). These functional 
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r Plane rL Plane r Plane 

Unit disk Unit disk 
(USC) (USC) 

(b) (C) 
Fig 1 Unconditional stability in terms of mapped regions 

characteristics and their analytical representation form the 
basis for defining the new measure of stability. 

Traditional stability circles are defined [9] in terms of 
the mappings fand  g as follows: 

Source Stability Circle = g -'(/I'outl = 1) 

Load Stability Circle = f-'(I'lnl = 1) 

The radius and center of these circles results in the 
commonly known expressions: 

IS21 SI21 
IISlIl2 - lN21 

r, = 

cs = ICs1 

IS21 s121 

I IS22 I2  - lAI21 

IS22l2 - 1A12 

r, = 

S$ - S l l A *  c, = 

Another set of circles, referred to as input and output 
mapping circles can be defined in the I?,, plane and ]rout 
plane as follows: 

Input Unit Mapping Circle = f(lrLI = 1) 

Output Unit Mapping Circle = g(lr,l = 1) 

The radius and center of these circles are 

C0"t = I tout I .  ( 5 )  
The mappings illustrated in Fig. l(b) and (c) appear to 

be different. However, a stereographic representation of 
the complex plane onto a unit sphere [ 131 reveals that they 
are inherently the same, and hence a single parameter 
should exist (see Appendix 11). A new parameter, "p,"  
will be defined based upon the mapping "f." It will be 
shown that the value of p alone, unambiguously deter- 
mines if the circuit is unconditionally stable or potentially 
(conditionally) unstable. A dual parameter designated p' 
can be defined based upon the mapping "g," and also 
uniquely determines whether the circuit is unconditionally 
stable. This approach also provides direct physical insight 
into the degree to which the Unit Smith Chart (USC), is 
encroached by possible unstable load and source regions, 
providing the engineer with a measure of the risk or mar- 
gin associated with his design. 
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Complex Representation of a Disk (or Disk 
Complement) 

The following inequality 

1212 - zu - Z * U *  < b (6) 

where a is a complex number and b is a real number such 
that (a(’ + b 1 0, describes a circular disk of complex 
points whose center is C = a*, and whose radius is 

Y = Jb  + (aI2. 

This is seen by adding the term laI2 to both sides of (6) 
and manipulating the results to get 

Iz - a * [  < m. 

12 - a*\  > m 
If the “less than” sign in (6) were reversed to be a 

“greater than” sign then 

which describes a region external to the above defined 
disk. This external region is referred to, therefore, as a 
“disk complement.” 

11. DEFINING THE NEW STABILITY FACTOR p 

The new parameter, p, is defined as the minimum dis- 
tance in the rL-plane between the origin of the Unit Smith 
Chart and the unstable region. A negative value for this 
distance parameter indicates that the unstable region over- 
laps the origin of USC. It turns out that p is described by 
a relatively simple expression whose analytical form is 
the same regardless of whether the inverse mapping, f - I ,  

is of the type illustrated by Fig. l(b), or (c). 
It will now be shown that the mapping ‘y-’,’’ illus- 

trated in Fig. l(b) and (e), will occur if and only if the 
distance p ( S )  > 1. This will be argued by showing that 
these mappings imply that p ( S )  > 1 and then justifying 
the reversibility of the steps. The above statement is 
equivalent to the following mathematical statement 

[ u s c  c {rL: rL = f - l ( l r l n l  < I)}] e c L ( ~ )  > 1. 

(7) 
The range of the map f -‘(lrlnl < l), is determined by 

If(r,)l < 1. Straight forward substitution from (3a) 
yields 

lrLl2[IS22l2 - lAl21 + r m I A *  - S221 

+ I’L[SFIA - S22] > IS11I2 - 1. 

Dividing this expression by lS2212 - (AI2, one obtains 
the complex variable representation of a disk or disk com- 
plement (see (6)) depending on whether or not lS2212 - 
IAI2 > 0 or lS2212 - [AI2 < 0. The resulting inequalities 
are as follows: 

where (S22(2 - (AI2 > 0, and 

where lS2212 - /AI2 < 0. 
The circle defined by replacing the inequalities in (8) 

and (9) with an equal sign is commonly referred to as a 
stability circle. This analysis can be carried further since 
(8) and (9) preserve the information about which region 
is the stable one. 

One can consider what is required for the USC to be 
contained in the range of the mapping f - ’  as illustrated 
in Fig. l(b) and ( c ) .  

Case I :  lS22)2 - [AI2 > 0 

In this case the range of our mapping in the rL plane is 
the region outside the circle defined by (8) and must be 
of the type illustrated in Fig. l(b). It is clear that the USC 
is contained in the disk complement if and only if 

c - r >  1 (10) 
where 

c = the distance from the center of the Smith Chart to 
the center of the disk complement 

Y = the radius of the disk complement 

Substituting the values for c and r from (8) into (IO), 

Since the denominator of the expressions, ISz2 I - I A 1 
is positive, one can simplify to 

Case 2 :  (S2,I2 - /AI2 < 0 

In this case the range of the mapping “ f - I ”  is the re- 
gion inside the disk defined by (9) and must be of the type 
illustrated in Fig. l(c). It is clear that USC is contained 
in this disk if and only if 

r - c > l  (12) 

Substituting the values for c and r from (9) into (12), 

S,*, - S , I A *  1 > 1 .  
1A12 - lS2212 - I lS2212 - 1AI2 

IS21 SI21 

In this case the denominator, lS2212 - [AI2, is negative, 
and removal of the absolute value sign requires a re- 
arrangement, yielding 

By reordering the terms in the denominator, one arrives 
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at the following result: By noting that this mapping results in a disk that lies 
inside the USC in the rln plane (see Fig. l(a)), we see 
that c + r < 1. Moving r to the right hand side yields IS22 - s?14 - P 2 1 S 1 2 1  > 1. 

(13) 
IS22l2 - lAI2 

(20) 

Since the left side of (20) is greater than or equal to 

IS21 SI21 

1 - lS22(2' 
< 1 -  It is important to note that (13) is identical to (1 l ) ,  and 

thus a single stability parameter emerges regardless of the 
value of - 

lSll - Sf2AI 
1 - lS2*12 

The apparent singularity Presented by the de~cm-"tor  
of (13) can be eliminated and the expression further sim- zero. then 
plified by noting that 

IS21S121 < 1 - lS22I2. (21) 

. (14) Furthermore, squaring both sides of (20) and substitut- IS22 - S?IAl2 - IS21SI2l2 

1 - lSlIl2 ing 
lS22I2 - lAI2 = 

IS11 - S?2Al2 
Factoring the numerator of (14) which is the difference of 
two squares, and substituting lS2212 - (AI2 from (14) into 
(13) yields, = IS21S12l2 + [1 - lS22121 [ISll12 - lAl21 (22) 

> 1. (15) 
1 - IS11I2 

IS22 - s?lAl + IS21S121 
p =  

It is interesting to note that the case where I S2, 1 - I A 1 
= 0 results in a stability circle which is a straight line but 
presents no difficulty with (15). 

All steps taken above have been completely reversible, 
so it has been shown that the mapping 'If -'," illustrated 
in Fig. l(b) and (c), will occur if and only if p ( S )  > 1. 

Also note from ( 5 )  that the magnitude, I pi, is related 
to the output mapping circles by 

111. PROOF THAT p > 1 o UNCONDITIONAL 
STABILITY 

In order to prove that p > 1 if and only if unconditional 
stability exists, it must first be shown that the mapping 
'If" illustrated in Fig. l(a) implies that 

K >  1 (17a) 
and 

( 17b) 
The range of the mapping f(lr,l < l ) ,  is determined 

by I f-'(I',n)l < 1. Solving for rln, one obtains the fol- 
lowing, 

1 - IS22I2 > lS2lS12l. 

lr,"12[lS2212 - 11 + r,,[S?l - S22A*I 

+ rl*n[Sii - G 2 A l  > ISii12 - 1AI2. (18) 

It is now desirable to divide both sides of (1 8) by I SZ2 I 
- 1. If (S2,I2 - 1 > 0, the range of the mapping 'If" 
would be a disk complement and contradictory to the as- 
sumption that the mapping is that illustrated in Fig. l(a). 
Therefore, - 1 < 0. Dividing and using (6), one 
obtains 

into the result yields 

All of the steps taken from (1 8) to (23) are completely 
reversible, so it has been shown that the mapping 'If" 
illustrated in Fig. l(a) implies that 

K > l  

1 - lS2*12 > lS21S12I. 

This is exactly the two conditions of (1) and (2e) which 
are known to be necessary and sufficient for unconditional 
stability of a linear 2-port. Thus it has been shown that 
p > 1 if and only if a 2-port network is unconditionally 
stable. 

We now look at the unilateral case of p. It is clear by 
substitution that 

(24) 1 - IS11I2 

IS221 11 - IS11I2l 
p(unilatera1) = 

so it is immediately obvious that p > 1 if and only if (S221 
< 1 and 1 SI 1 < 1, which are the necessary and sufficient 
conditions for unconditional stability of a unilateral cir- 
cuit. 

IV. DEFINITION OF THE DUAL PARAMETER p' 

Another parameter, p', can be defined based on the 
mapping function "g" in (3) and likewise p' > 1 if and 
only if a 2-port network is unconditionally stable. The 
dual parameter is given by 

This further implies that p ( S )  > 1 e p' (S) > 1. Also, 
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V .  GEOMETRIC IMPLICATIONS OF K > 1 
VERSUS p > 1 

The criterion p > 1 has been shown to be necessary 
and sufficient for unconditional stability. It is well known 
that K > 1 is only a necessary condition. A better under- 
standing of these criteria can be seen by examining their 
geometric implications in terms of mapping circles. 

The following proof will show that K > 1 is geometri- 
cally equivalent to stating that the input and output map- 
ping circles and the source and load stability circles do 
not intersect the boundary of the USC. Although Meys 
[5] has proven this using a Y-parameter formulation, the 

geometrical relationship between K and p .  K > 1 implies 
following S-parameter approach is useful in seeing the (a) 

+ Tln Plane 

1 -I s,, 12 > IS,, s,, I 
r + c < 1  

1 - IS22I2 > ISlIl2 - lAI2 -I- 21S21S12I. (27) 
Since the left hand side of the inequality is the denom- 

inator term in the input mapping circle expressions ( 5 ) ,  it 
is desirable to divide the inequality (27) by 1 - 
However, division requires a knowledge of the sign of 
this term. Since this unknown, one must consider both 
cases, i.e., when the quantity is positive and when it is 
negative. 

Case A :  1 - lS2,I2 > 0 

In this case division results in 

lSll12 - PI2 + 21S21S12l 
1 - lS22I2 

1 >  

Multiplying the numerator and denominator of the right 
hand side by 1 - and substituting the identity 

(1 - IS2212)(I~l112 - lAI2) = lSll - S,*,A12 - IS21SI2l2 

results in  

Applying a square root operation to the inequality (28) 
requires that consideration be given to the fact that the 
left hand side could be positive or negative. Each of these 
possibilities is handled separately. 

Cltse AI: 1 - lS22I2 > IS21Sl21 

In this case (28) becomes 

+ IS11 - Sf2Al IS21S121 < 1. 
1 - lS22I2 1 - lS22I2 

From (5) this means that the radius and center of the input 
mapping circles satisfy 

Cin + Ti” < 1 

This is the case of unconditional stability and is illustrated 
in Fig. 2(a). 

CUSC A,: 1 - lS22I2 < (S2lSl21 

0<1-I s,, I,< IS,, S,,I 

r - c > l  

1-1 s,, 12 < 0 
c -  r > l  

(c) 
Fig. 2. Illustration of possible mapping circles for K > 1. 

In this case, simple algebraic manipulation results in 

resulting in the case illustrated by Fig. 2(b). Clearly, the 
input mapping circle does not intersect the boundary of 
the USC, and the circuit is potentially unstable since the 
mapped region contains values of rln whose magnitude 
exceeds unity. 
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Case B: 1 - lSZ2l2 < 0. 

to those of Case A results in 

to unconditional stability, it does imply the nonintersec- 
tion of the USC boundary with mapping and stability cir- 
cles. Furthermore, it specifies possible mapped regions 
associated with each of the three scenarios. 

In this division of (27) and manipulations similar 

VI. EXAMPLES 
The square root operation can be unambiguously Per- 
formed in this case since the quantities inside the brackets 
are known to be positive. After performing the square root 
operation, a rearrangement of terms yields 

A table has been constructed to compare the value of 
K ,  1 AI, B , ,  and B2 to the two new stability criteria, p ,  and 
p r .  The following nine sets of 2-poa S-parameters have 
been used to calculate the stability factors: 

cin - Tin > 1 
Again the input mapping circles does not intersect the 
boundary of the USC (see Fig. 2(c)), and also, the circuit 
is potentially unstable. 

Interchanging the subscripts, (2 + 1, and 1 + 2) in the 
previous argument and replacing r,, and c,, with rout and 
tout, reveals that the output mapping circle also does not 
intersect the USC, and the same three identical scenarios 
illustrated in Fig. 2 will occur in the rout plane as well. 
Since the function 'y" and "g" are one to one map- 
pings, the output and input mapping circles intersect the 
boundary of the USC if and only if the source and load 
stability circles intersect the boundary of the USC. There- 
fore, K > 1 is equivalent to the nonintersection of stabil- 
ity circles with the boundary of the USC. 

The condition K > 1 implies that one of three possible 
mapping of the USC into the rln or rout plane can occur. 
The parameter K can be compared to the new stability 
parameter p by discussing the implications of p > 1 geo- 
metrically in terms of mapping circles. From (16), if 
I p ]  > 1, then rout + tout < 1, and the output mapping 
circle lies inside the USC. This circle is the image of the 
USC boundary from the rs plane. However, 1 pl does not 
provide enough information to determine whether the USC 
in the rs plane is transformed to the interior of the map- 
ping circle (a disk) or the external region of the mapping 
circle (a disk complement). The sign of p resolves this 
ambiguity. If p is positive, the mapped region is disk and 
the circuit is unconditionally stable, otherwise the mapped 
region is a disk complement permitting reflection coeffi- 
cients of unlimited magnitude (i.e., conditionally unsta- 
ble). 

This can be contrasted to the ambiguity that results 
when only the condition K > 1 is known. With only this 
information three possible mapping scenarios are implied 
and only one is correct (Fig. 2). One of the scenarios cor- 
responds to unconditional stability, while the other two 
correspond to potential instability. An auxiliary condition 
(2) is, therefore, required to determine which of these 
three scenarios is the correct one. Accordingly, it can be 
seen geometrically why p > 1 is equivalent to uncondi- 
tional stability. Although K > 1, alone, is not equivalent 

1. Unconditional Stability 

SI1 = .20 L 20" 

SI2 = .05 L 120" S22 .5 L -50" 

S2, = 3 L 40" 

2. Conditionally Unstable: K > 1 and B I  < 0 

SI! = .75 L -60" 5'21 = 6 L 90" 

St2 .3 L 70" S2, = .5 L 60" 

3. Conditionally Unstable: K < 1 and B ,  > 0 

Si, = 1.05 L 20" 

SI2 = .05 L 120" 5722 = .5 L -50" 

S2, = 3 L 40" 

4. Unconditionally Stable: Unilateral Case 

SI, = .10 L 0" s,, = 0 L 0" 

S22 = 0.3 L 0" Sl2 = 0 L 0" 

5. Input Unstable: Unilateral Case 

s,, = 1.2 L 0" s,, = 0 L 0" 

SI2 = 0 L 0" S2, = 0.3 L 0" 

6. Output Unstable: Unilateral Case 

SI, = .10 L 0" s,, = 0 L 0" 

SI2 0 L 0" S,, 1.3 L 0" 

7. Unconditionally Stable: lAl' = 
Stability Curve 

Straight Line 

s,, = 2 L 0" SI1 = .5 L 0" 

SI2 = 0.25 L 180" S22 = 0.1 L 0" 

8. Conditionally Unstable: NEC710 at 2 GHz 

Si1 = 0.95 L -22" S21 = 3.5 L 165" 

Si2 = 0.04 L 80" S22 = 0.61 L -13" 

9. Unconditionally Stable: NEC710 at 18 GHz 

Si1 = 0.69 L -123" S2, = 1.29 L 78" 

S12 = 0.11 L 48" S22 = 0.52 L -77" 

The stability factors for the nine sets of S-Parameters 
listed above have been tabulated in the table below: 
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TABLE I 
STABILITY PARAMETER COMPARISON 

Sparameter 
Set K 14 B ,  B? P P' 

2.5735 
1.3435 
0.3358 

00 

-ca 
--m 

7.5 
0,1880 
1.1203 

0.2491 
2.1562 
0.6732 

.03 
0.36 
0.130 
0.10 
0.5721 
0.2539 

0.7280 
-3.3367 

1.3993 
,9191 

2.2204 
- 0.6969 

1.23 
1.2032 
1.1412 

1.1480 
-3.9617 
-0.3057 

1.0791 
-0.4796 

2.6631 
0.75 
0.1424 
0.7298 

VI. CONCLUSIONS 
It has been shown that a single parameter, p, exists that 

is necessary and sufficient to show unconditional stability 
of any 2-port network. A companion parameter, p', also 
exists and is necessary and sufficient to show uncondi- 
tional stability of any 2-port as well. Although the con- 
dition K > 1 implies that the mapping and stability circles 
do not intersect the boundary of the USC, an ambiguity 
involving three possible mapped regions, not all uncon- 
ditionally stable, results, and thus requires an auxiliary 
condition for resolution. No such ambiguity occurs with 
the p (or p') approach. A comparison of the new stability 
parameter ( p  or p' ) for S-parameter values that satisfy or 
violate the traditional stability conditions (1) and (2) has 
been illustrated. 

1.5987 
0.1485 

-0.2862 
3.333 

-3.333 
0.7692 
7.5 
0.3307 
1.0484 

- 

3.3004 
0.3381 . 
0.8683 

10 
0.8333 

10.0 
1.833 
0.8294 
1.0305 

APPENDIX I 
It will be shown that if K > 1 and 1 - lS22I2 > 

> (S21S12(. Expanding A and (S21S121, then 1 - 
rearranging terms in (20) yields 

IS11I2(1 - lSZ2l2) + Sl,(S;2S;lS22) + S?l<ST2S,*,S22>* 

< 1 - lS22I2 - 2lS12S21I + IS12S21I2. 

Dividing by the positive quantity 1 - yields 

From (4), one notes that this is the equation for a disk in 
the S ,  I plane and can be expressed as follows 

It is clear that S I I  can only take on values that fall inside 
this disk. Such value must obey the following inequality 

IS111 ?- + c 

where Y is the radius of the disk in the SI1 plane and c is 
the magnitude of the center of the disk in the SI1 plane. 

This results in 

Substituting for lS221 in (29) with (30), 

Simplifying, one obtains 

P l l I  < J1 - lS12S21I 

1 - IS1112 > IS21S12l 

and therefore 

as was to be shown. 
In order to show the converse one can repeat this proof 

by substituting S2, for S1 and visa versa. The result is the 
proof that if K > 1 and 1 - ISI1l2 > (SZ1Sl21, then 1 - 
1 S2, I > I S2, SI2 I . If K > 1 ,  then only one of the auxiliary 
conditions (2) is needed for the unconditional stability. 

. 

APPENDIX I1 
For an unconditionally stable circuit it would appear 

that two different stability circle configurations are pos- 
sible as illustrated in Fig. l(b) and (c). That these two 
distinct cases are really the same, provided the motivation 
for recognizing that a single stability parameter p was 
possible, as can be seen by examining the stereographic 
representation of the complex plane as a sphere. 

Stereographic projection [ 131 is accomplished by plac- 
ing a sphere with unity diameter on the complex plane. 
As illustrated in Fig. 3(a), the south pole is located at the 
origin and the north pole on the z axis, perpendicular to 
the plane. Points on the sphere are identified with points 
on the plane by projecting a line from the north pole 
through the sphere to the plane. Therefore, a circle of unit 
radius in the plane is equivalent to the equator of the 
sphere. In general circles in the plane are transformed into 
circles on the sphere, and straight lines in the plane be- 
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I’ 

7 - - \  1 /m \* / \/  

(b) 
Fig. 3 .  Stereographic projection. 

come circles on the sphere that pass through the north 
pole. Therefore, from the point of view of the stereo- 
graphic projection, circles and straight lines are equiva- 
lent. Also, orthogonality is preserved. 

Points inside the USC transform to points on the south- 
em hemisphere, while points outside transform to the 
northern hemisphere as illustrated in Fig. 3(b). The two 
stability circle cases illustrated in Fig. l(b) and (c) are 
now represented using stereographic projection to get Fig. 
4(a) and (b). In both cases the boundary between the un- 
stable and stable region is defined by a circle in the north- 
em hemisphere. While the situations appear different in 
the complex plane, they are recognized in the spherical 
representation as the same. The only difference on the 
sphere is that in one case the stability circle encloses the 
north pole. Therefore, topologically it should be possible 
to determine when the cases represented by Fig. 4(a) and 
(b) occur using only one parameter. The parameter p (or 
p ‘ )  does this. 
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