GaAs - Gallium Arsenide

Electrical properties

Basic Parameters Mobility and Hall Effect Transport Properties in High Electric Fields Impact Ionization Recombination Parameters

Basic Parameters

Breakdown field	$\approx 4 \cdot 10^5 \text{ V/cm}$
Mobility electrons	$\leq 8500 \text{ cm}^2 \text{ V}^{-1} \text{s}^{-1}$
Mobility holes	$\leq 400 \text{ cm}^2 \text{ V}^{-1} \text{s}^{-1}$
Diffusion coefficient electrons	≤200 cm ² /s
Diffusion coefficient holes	$\leq 10 \text{ cm}^2/\text{s}$
Electron thermal velocity	$4.4 \cdot 10^5 \text{ m/s}$
Hole thermal velocity	1.8·10 ⁵ m/s

Mobility and Hall Effect

Approximate formula for the Hall mobility

Electron density $n_0 [\text{cm}^{-3}]$

0 10¹⁴ 10¹⁵ 10¹⁶ 10¹⁷ 10¹⁸ 10¹⁸

. $\mu_n = \mu_{OH}/(1 + N_d \cdot 10^{-17})^{1/2}$, where $\mu_{OH} \approx 9400$ (cm² V⁻¹ s⁻¹), N_d in cm⁻³ (*Hilsum* [1974]).

Temperature dependence of the Hall factor for pure *n*-type GaAs in a weak magnetic field (*Rode* [1975]).

For GaAs at temperatures close to 300 K, hole Hall mobility

$$\mu_{pH} = \left[0.0025 \left(\frac{T}{300}\right)^{2.3} + 4 \times 10^{21} p \left(\frac{T}{300}\right)^{1.5}\right]^{-1} (cm^2 V^{-1} s^{-1}), (p - in cm^{-3})$$

For weakly doped GaAs at temperature close to 300 K, Hall mobility $\mu_{pH} = 400(300/T)^{2.3} (\text{cm}^2 \text{ V}^{-1} \text{ s}^{-1}).$

r_H=1.25.

0

2 4

Field F [kV cm⁻¹]

Transport Properties in High Electric Fields

60

Impact Ionization

There are two schools of thought regarding the impact ionization in GaAs.

The first one states that impact ionization rates α_i and β_i for electrons and holes in GaAs are known accurately enough to distinguish such subtle details such as the anisothropy of α_i and β_i for different crystallographic directions. This approach is described in detail in the work by Dmitriev et al.[1987].

Experimental curves a_i and β_i versus 1/F for GaAs.

<u>(Pearsall et al. [1978]).</u>

Experimental curves a_i and β_i versus 1/F for GaAs. (*Pearsall et al.* [1978]).

The second school focuses on the values of α_i and β_i for the same electric field reported by different researches differ by an order of magnitude or more. This point of view is explained by Kyuregyan and Yurkov [1989]. According to this approach we can assume that $\alpha_i = \beta_i$. Approximate formula for the field dependence of ionization rates: $\alpha_{i} = \beta_{i} = \alpha_{0} exp[\delta - (\delta^{2} + (F_{0}/F)^{2})^{1/2}]$

where $\alpha_0 = 0.245 \cdot 10^6 \text{ cm}^{-1}$; $\beta = 57.6 F_0 = 6.65 \cdot 10^6 \text{ V cm}^{-1}$ (Kyuregyan and Yurkov [1989]).

Breakdown voltage and breakdown field versus doping density for an abrupt *p-n* junction.

(Kvuregvan and Yurkov [1989]).

Recombination Parameter

Pure n-type material $(n_o \sim 10^{14} \text{ cm}^{-3})$

The longest lifetime of holes $\tau_p \sim 3 \cdot 10^{-6} \text{ s}$ $L_p \sim 30-50 \ \mu m.$ Diffusion length $L_p = (D_p \cdot \tau_p)^{1/2}$ Pure p-type material (a)Low injection level The longest lifetime of electrons Diffusion length $L_n = (D_n \cdot \tau_n)^{1/2}$ (b) High injection level (filled traps) The longest lifetime of electrons

 $\tau_n \sim 5 \cdot 10^{-9} \text{ s}$ $L_n \sim 10 \ \mu m$

 $\tau \sim 2.5 \cdot 10^{-7}$ s $L_n \sim 70 \,\mu \mathrm{m}$

Surface recombination velocity versus doping density (Aspnes [1983])

Different experimental points correspond to different surface treatment methods.

Radiative recombination coefficient (Varshni [1967])

90 K 1.8.10⁻⁸ cm³/s 185 K 1.9.10⁻⁹ cm³/s 300 K 7.2.10⁻¹⁰ cm³/s

Diffusion length L_n

Auger coefficient

 $300 \text{ K} \sim 10^{-30} \text{ cm}^{6}/\text{s}$ $500 \text{ K} \sim 10^{-29} \text{ cm}^{6}/\text{s}$

