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v. CoNCLUsroNs 1) Devise general methods of determining sufficient 

We have introduced and mathematically defined the conditions for network solvability in terms of specific 

concept of net,work-element-value solvability, the determi- network topology. 

nation of network-element values in terms of external 2) Determine computer programmable algorithms for 
behavior. Conditions for solvability of linear, passive, network element evaluation for solvable networks. 
lumped-parameter networks with possible internal energy 
sources have been obtained, relating the number of 
elements capable of being evaluated to the number of 

3) Develop methods of handling unilateral circuit 
elements. 

available and partly available terminals. 4) Minimize the effects of measurement errors by 
More work is required in the following areas: optimization of measurement procedures. 

Stability and Power-Gain Invariants of 
Linear Twoports* 

J. M. ROLLETT?, MEMBER, IRE 

Summary-It is shown that the stability of a linear twoport is 
invariant under arbitrary lossless terminations, under interchange 
of input and output, and under “immittance substitution,” a 
transformation group involving the arbitrary interchanging of 
impedance and admittance formulations at both ports. The quantity 

k = 2 Re hJ Re (x2) - Re hlz~zl) 
I Y12Y21 I 

(where the 7 may be any of the conventional immittance z, y, or 
hybrid h, 9 matrix parameters) is the simplest invariant under these 
transformations, and describes uniquely the degree of stability, 
provided Re(rii), Re(r.& > 0; the larger k is, the greater the 
stability, and in particular k = 1 defines the boundary between 
unconditional and conditional stability. The quantity k is thus the 
basic invariant stability factor. Its definition is also extended 
to include the effect of terminating immittances, which may be 
padding resistances or source and load immittances, or both. 

Certain power-gain functions, including the maximum available 
power gain, are shown to be invariant under immittance substitution, 
and k is identified as a function of ratios between them, where 
they exist. This provides a fundamental way of determining k, apart 
from calculating it from matrix parameters, and indicates that it is 
a measure of an inherent physical property. 

WO centers of interest in modern circuit theory are 
the passivity and stability of linear net,works.’ 
The concept of the passivity (or activity) of linear 
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twoports has .been greatly illuminated by Mason’s in- 
variant U function,2.3 but no similar invariant has so 
far been proposed for stability. The present work (sug- 
gested by the analogy between the two concepts) shows 
that there is an invariant stability factor which uniquely 
characterizes the degree of conditional or unconditional 
stability of a linear twoport, much as Mason’s invariant 
U function uniquely characterizes its passivity or activity. 

The stability of linear twoports has been discussed by 
many authors.184 A measure of stability, including the 
effect of source and load immittances, was first proposed 
by Stern”,’ and Rahrs,7Vs and has been discussed by 
Venkateswaran and Boothroyd.g The invariant stability 
factor introduced here is, in its basic form, identical with 
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March 30 IRE TRANXACTIONS ON CIRCUIT THEORY 

a quantity first defined by Aurell,” without any indication provided 
of its possible significance, and is the inverse of a “criti- 
calness factor” defined by Linvill and Schimpf.” It differs 911, 922 2 0 
from Stern’s in that it has only one unique value (a 
property half recognised by Aurell but not mentioned by where g,, = Re (yll), etc. Any quantity indicative of 

Linvill and Schimpf), whereas Stern’s takes on four conditional’or unconditional stability must include all the 

different values, depending on the formulation used.’ information contained in (I), which is clearly invariant 
under arbitrary lossless terminations and under inter- 

The Stability Transformation Group change of input and output. Now it can be shown that 

A linear twoport is unconditionally stable if, with the quantity ‘1 defi11ed by 
arbitrary passive terminations, its characteristic fre- 
quencies remain in the left half of the complex frequency k A Qllch - Re (y12y2d 

(2) 
plane. An equivalent statement is that the real part of I Yl2Y21 I ’ 
the immittance looking in at only one of the two ports 
remains positive with arbitrary passive terminations at is invariant also under immittance substitution. It is 

the other, provided also that the characteristic frequencies therefore invariant under the complete group of trans- 

of the twoport with ideal terminations (infinite immit- formations associated with stability. As it is the simplest 

tances, i.e., open or short circuits, as appropriate) lie in such invariant, to which all others are trivially related 

the left half-plane. This last condition will be assumed to (in the mathematical sense), it will be called the in- 

hold in what follows. variant stability factor. Since the value of /G remains un- 

The stability of a twoport increases with lossy termina- changed when Z, h or g parameters are substituted for y 

tions, but remains constant with lossless terminations. parameters, it is convenient to generalize the notation, 

Thus any quantity which indicates conditional or un- and so y will be used for any of the z, y, h, g twoport 

conditional stability must (if it exists) be invariant under parameters. In this notation 

arbitrary lossless terminations. Furthermore, since (with 
the proviso above ) stability depends on the positive k & 2PllP22 - Re he’d 

I YlZY21 I ’ 
(3) 

realness of the immit,tance looking in at either port, it 
must be invariant under interchange of input and output; 
and since the immittance may be expressed either as where pll = .Re (yll), etc. The value of k lies between 

impedance or admittance, it must be invariant under the + 0~ and - 1, if pll, pzL 2 0. 

interchange of impedance and admittance formulations The criterion for unconditional stability may now be 

at either port. The arbitrary interchanging of impedance written as 

and admittance formulations is carried out most easily 
by substituting any one set of the conventional impedance, 

k>l (4) 

admittance or hybrid matrixlZ parameters (z, y, h, g) for 
any other, and it is easy to show that the substitution 

provided 

operators form a group (isomorphous with the “vierer- Pll, Pzz 2 0, 

gruppe”). This transformation group will be called im- 
mittance substitution. and this is the fundamental property of the invariant 

The quantity characteristic of stability we are looking stability factor. Furthermore, when k is positive and large 
for is therefore invariant under arbitrary lossless termina- compared with unity, the degree of unconditional stability 
tions, under interchange of input and output, and under is high; when lo is only just greater than unity, the two- 
immittance substitution. These transformations may be port is near the boundary between unconditional and 
combined to form a single infinite group, which is the conditional stability defmed by k = 1. When 1 > k 2 - 1, 
“direct product” of the three separate groups, and contains the twoport is in the region of conditional stability, and 

all the transformations associated with stability. it is always possible to choose terminations which will 

THE INVARIANT STABILITY FACTOR 
lead to negative real input or output immittances or 
which will result in oscillations; that is, the characteristic 

The well-known criterion for a linear twoport to be f requencies can be located in the right half-plane or on 
unconditionally stablele4 is, in admittance parameters, the real frequency axis. 

2gllgz2 2 I ~~~~~~ I + Re (~~2~4, (1) 
If external immittances Pl, pZ are added to the twoport 

so that they may be regarded as part of it from the view- 
point of stability, the definition of the stability factor 

lo C. G. Aurell, “Representation of the general linear four- 
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l2 R. F. Shea, Ed., “Principles of Transistor Circuits,” John 
Wiley and Sons, Inc., New York, N. Y.; 1953. 

may be extended, and an over-all stability factor K can 
be defined by 

K A 2(P, + p11)(P2 + PA - Re (-m4 , 

I YlZY21 I (5) 
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where P, = Re (I’,), etc. The external immittances may 
be padding resistances or source and load immittances 
or both. The over-all stability factor K is useful in char- 
acterizing the stability of practical tuned amplifiers, 
working between source and load immittances whose real 
parts are known. 

It is important to relate the invariant stability factor k, 
which so far has been introduced as a pure number, to 
other basic properties of the twoport. The next section 
shows how it is related to various invariant power gain 
functions, and indicates how it can in principle be de- 
termined, when it is positive, without knowing the matrix 
parameters. When it is negative, it can be determined 
indirectly by adding known padding resistances to make 
the overall stability factor positive,13 or by calculation 
from matrix parameters. 

INVARIANT POWER-GAIN FUNCTIONS 

There are three power-gain functions of interest which 
are invariant under immittance substitution and are 
directly related to the invariant stability factor. These 
are the maximum available power gain,14 the maximum 
stable power gain,15 and a function defined below as the 
minimum conjugate-termination transducer gain; each is 
introduced in turn. 

Maximum Available Power Gain 

The maximum available power gainX4 G,, of a two- 
port is obtained when the input and output port,s are 
simultaneously matched to their conjugate immittances. 
This is only possible if the device obeys the unconditional 
stability criterion (1). The expression for GJfIA is 

of Linear Twoports 

input and PzoDt at the output, then 
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r YlZY21 
1wt = 

lap2 - 1) + j 

[ 

Im h12d _ (Tll , (8) 

2P22 1 
(where rll = Im (yll), etc.) and similarly for rzopt. The 
total self immittances are particularly concise: 

r loDt + y 
11 

= Y12721 + I Y12YZl I [k + d(k” - l)] 
2P22 

(9) 

and similarly for ( Pz,,t + y&. 
The optimum load immittances (8) are invariant under 

immittance substitution, as would be expected on general 
physical grounds. However, the total self, immittances (9) 
are not invariant; that is, although the expressions for 
them are similar, using different matrix parameters, their 
physical values are different. 

The expression for maximum available power gain (7) 
is made up of two factors, the one involving k being re- 
ciprocal (i.e., invariant with respect to interchange of 
forward and reverse transfer parameters), while the other 
(which is discussed below) is nonreciprocal. Thus the 
factor [k - 4(/G’ - l)] is the maximum efficiencylO’la 
of the reciprocal part of the twoport, while its inverse 
fk + dw - l)] may be called the minimum reciprocal 
attenuation, provided the unconditional stability criterion 
holds. (It must be remembered that a device can be both 
reciprocal and active,17 and that it then necessarily violates 
the unconditional stability criterion.) The minimum 
reciprocal attenuation is purely a function of k, and this 
gives an insight into the nature of the physical property 
of which /? is a measure. 

G I Y2l I2 
‘WA = 

2PllP22 - Re h2-d + d{[2~~~~22 - Re (*/12~21)12 - ( ~~~~~~ 17 ' (6) 

or, in terms of the stability factor, 

G Y> 
I I 

1 

MA = YlZ k + $qlc2 - 1) 

= I i E [“- Z/(k2-l)]. (7) 1 

As expected on general physical grounds, GdlA is invariant 
under immittance substitution. Since t.he factor involving 
Ic is invariant, the other factor I y21/y,2 I is also invariant. 
It is discussed and identified in the next section. 

The optimum load immittances, which provide the 
simultaneous conjugate match, may be conveniently 
expressed using k. If they are denoted by plopt at the 

13 Thus if P., Pa are placed successively at one port, and the 
corresponding (positive) over-all stability factors K,, Kb are meas- 
ured, then the basic stability factor is given by K = (P,Kb - 
P,Kd/(p, - Pb). 

14 “IRE Standards on Electron Tubes,” PROC. IRE, vol. 45, 
pp. 983-1010; July, 1957. 

16 M. A. Karp, “Power gain and stability,” IRE TRANS. ON 
CIRCUIT THEORY, vol. CT-4, pp. 339-340; December, 1957. 

If the maximum available power gain in the reverse 
direction, found by interchanging the two ports, is de- 
noted by GkMA, then we have 

(10) 

and 

~(G,,G~J = k - ~42 - i), (11) 

which enable [ y21/~12 [ and k to be determined, provided 
k > 1 and pll, ,oz2 > 0. 

Maximum Stable Power Gain 

The maximum stable power gain15 is defined as follows. 
If k < 1 or if pll or pz2 < 0, then lossy padding immittances 

I6 This quantity is discussed in a paper which has just been 
brought to the attention of the author: S. Venkateswaran, “An 
invariant stability factor and its physical significance,” IEE Mono. 
No. 468E, September, 1961, to be republished in PTOC. IEE, pt. C. 

rr J. Shekel, ‘(Reciprocity relations in active 3-terminal elements,” 
PROC. IRE, vol. 42, pp. 1268-1270; August, 1954. 
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I1 and I’, can always be placed at the two ports so as to 
make the real parts of the self parameters (P, + pII), 
(PZ + pZs) > 0, and the over-all stability factor K -+ 1, 
i.e., so that the over-all twoport approaches the boundary 
between unconditional and conditional stability. The 
maximum available power gain then tends towards its 
maximum stable value, 

March 

unconditionally stable for 0 5 k < 1, it can easily be 
shown that when J? -+ 03, the sequence of operations 
outlined above always leads to the immittances looking 
in at both ports having positive real parts. 

Thus denoting by G’,, the reverse quantity, found by 
interchanging input and output, we have 

k = ~/~~(GcT&T) 

for k > 0, and provided pl1, pp2 > 0. 

(16) 

G MA ---f 

and GMs is called the maximum stable power gain.15 
It is also invariant under immittance substitution.’ 

The use of lossy elements means that K for the padded 
twoport must be greater than k for the basic twoport. 
This implies that GMs is only defined for devices where 
k < 1. However, it is useful to extend the definition of 
GAfs to include devices with k > 1, and this is done by 
observing that, in principle, negative resistances could 
be chosen for the terminations 11, p2, so as to allow K 
to be less than k. The stability boundary K = 1 can then 
again be approached, so that GMs can be defined as the 
maximum stable po,wer gain for all devices. 

Having identified the quantity 1 ysl/-rlZ 1, we can write, 
in general, for a device obeying the unconditional stability 
criterion, 

G MA = Gnfsl[k + .\/(k2 - 01; (13) 

i.e., the maximum available power gain is given by 
dividing the maximum stable power gain by the minimum 
reciprocal attenuation. The value of G,s may be found as 
indicated in the previous section. 

Minimum Conjugate-Termination Power Gain 

Here we introduce a power-gain function which suggests 
a method for determining k over a wider range of values 
than the previous method (11) allows. 

Consider the following sequence of operations. Con- 
jugately match at one port, with the second arbitrarily 
terminated in I?. Then remove the arbitrary termination I’ 
and conjugately match at the second port, thereby de- 
stroying the conjugate match at the first port (provided 
the device is nonunilateral). The transducer gain14 is now 
a function of the termination r and has a minimum 
which occurs when r is lossless. This may be called the 
minimum conjugate-termination transducer gain Gc,, where 

or, in terms of invariants already discussed, 

G 

This quantity has been introduced by Linvill and 
Schimpf ,I1 who call it ‘(P,,JPiO”, but make no mention 
of its extremum properties. Its importance in the present 
context lies in the fact that it enables us to determine k, 
except when k 2 0. For, although the device is not 

(15) 

DISCUSSION 

An invariant st#ability factor has been introduced, 
together with its associated transformation group, and its 
essential properties described. Its relationships with 
certain invariant power-gain functions have been in- 
vestigated, and shown to lead to basic methods of de- 
termining it, without calculating it from matrix param- 
eters. 

This suggests that k is a measure of a fundamental 
physical property, despite the fact that it can only be de- 
termined indirectly when it is negative.” Although k is 
the simplest stability invariant, to which all others are 
trivially related, in the mathematical sense, it may turn out 
that some function of k can be more closely identified with 
a physical property than k itself. However, its invariant 
properties ensure that no other quantity can convey more 
information about stability, and it is in this sense that k 
is unique. 

The extension of the definition to include the effects of 
terminating immittances in the over-all stability factor 
K should prove useful in the design of a common class 
of amplifier, i.e., those which are unneutralized, resistively 
mismatched and reactively tuned. In this connection it is 
worth pointing out that the transducer gain GT, 

G 4P,P, I Y21 I2 
TR = I (r, + ~~d(r~ + 722) - -h2~21 I’ 7 (17) 

(where P1, P2 are source and load immittances and 
P, = Re (I’,), etc.) is also invariant under immittance 
substitution.” If a manageable relation between the over- 
all K and GT could be found, it would enable gain to be 
exchanged with stability on a quantitative basis; this has 
so far eluded the present author. 
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