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Summary-The problem of the mlnimum loss in relation to the
singing point is investigated for generalized transmission systems
that must be stable for any combination of passive terminating
impedances. It is concluded that the loss may approach zero db
only in those cases where the image impedances seen at the ends of
the system are purely resistive. Moreover, in such cases, the method
of overcoming the transmission loss, whether by conventional re-
peaters or by series and shunt negative impedance loading, or
otherwise, is quite immaterial to the external behavior of the system
as long as the image impedances are not changed. The use of im-
pedance-correcting networks provides one means of insuring that
phase of the image impedance of the over-all system approaches zero.

General relations are derived which connect the image imped-
ance and the image gain of an active system with its over-all per-
formance properties.

S INCE THE TIME when amplifiers first were intro-
duced into the telephone plant, the properties of
two-way repeaters have been subjected to exten-

sive analysis. From this it might be inferred that further
study is likely to uncover very little that is not already
known. Nevertheless, it frequently happens that new
types and permutations of repeater and loading circuits
are proposed, and current methods of analysis are found
to be quite difficult.

In the face of this situation, the present paper is
intended to review the underlying fundamentals, and to
present them in what is hoped to be a form that will
allow them to be simply and easily applied in de-
termining the over-all performance. In a wider sense,
what is attempted is to state certain basic physical
properties and limitations in a way that allows one to
say, "Regardless of detail, if these rules are violated, it
follows that the circuit cannot perform as predicted,"
or, on the other hand, to say, "The ideal performance of
such-and-such a system is so-and-so. If the proposed
plan does not approximate this ideal, it must be
possible to find a better one."
As sometimes happens, this review of the properties

of transmission systems has led to several concepts
which are thought to be new. Their importance becomes
more pronounced in connection with the current tend-
ency to reduce the net operating loss of telephone sys-
tems to lower values than were customary in the past.

In the case of the telephone repeater, the extent of
the various combinations and permutations that are en-
countered in practice has made difficult the statement
of generalizations in simple terms. The present at-
tempt is based on the development of linear network
theory in respect to active four-poles that has been
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progressing perhaps quietly but nonetheless steadily in
the past years. Like most mathematical generaliza-
tions, the solution of one problem is really the solution
of a class of problems, and it will be found that in their
broadest form, the generalizations which are now pre-
sented are just as applicable to the case of four-wire
telephone and radio systems as they are to the conven-
tional two-way repeater.
The system to be considered may contain repeaters

of the 22-type, such as is illustrated in Fig. 1, or it
may contain any of the other varieties. Moreover, there
is no restriction placed on whether the gain is the same
in both directions or not, and sections of line or of other

ZaH

Fig. 1-Schematic of 22-type repeater.

circuit networks may be included as part of the unit
under consideration. Even more broadly, the unit con-
sidered may consist either of a single repeater section,
or of an unlimited number of repeater sections in tandem
comprising an entire system. Restrictions are placed on
these broad limits only in dealing with specific applica-
tions.
The analysis then directs itself to the general linear

four pole such as is illustrated in Fig. 2 where the
rectangular box may contain as much or as little as
meets the needs of the particular situation. When
terminations are added, the diagram illustrates the
situation.

Fig. 2-Diagram of linear four-pole with terminations.

The equations describing Fig. 2 may be written:

ZllI1 + Z1212 = V1
Z2111 + Z2212 = V2

Zb

(1)

where the Z's are characteristic of the four-pole only,
and do not involve the terminations. More will be said
later about their properties and how they are derived.
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The corresponding equations including the terminations
may be written down immediately by noting that the
terminations Za and Zb are related to the currents and
voltages by the formulas

Vi = Va -Zali
V2 = Vb - ZbI2.

When combined with (1) these give

(Zll + Za)I1 + Z1212 = Va
Z211I + (Z22 + Zb)72 = Vb,

which may be solved for the currents,

Va(Z22 + Zb) - VbZl2
I1T =

(2)

From these last two relations, it is possible to find the
impedance values for the terminations Za and Zb that
would simultaneously match the impedances ZA and ZB.
These are the so-called image impedances, and are
found by putting

Za - ZA - ZI
Zb = ZB = ZII,

and solving (12) and (13) simultaneously. The result is:

(3)

(4)

(Za + Zll)Vb - Z21Va
12= (5)

where

A = Z11Z22 -Z12Z21 + ZaZ22 + ZbZll + ZaZb (6)

is the determinant of the system of (3). It will be
noted, and later use will be made of the fact, that the
determinant of (1) does not depend on the termina-
tions, and is given by

AO= Z.1Z22 -Z12Z21, (7)

and, consequently, that (6) may be written

A = AO + ZaZ22 + ZbZll + ZaZb. (8)
When the four-pole of Fig. 2 is driven from the left,

V, may be set equal to zero in (4) and (5). Under these
conditions, the generator Va sees the internal imped-
ance Za in series with the impedance presented by the
four-pole. From (4) we have then

va=II
Z22 + Zb

(9)

But we can write

Va =I1(Za + ZA) (10)
where ZA is the input impedance of the four-pole when
it is terminated by Zb. It results from (9) and (10) that

ZA Za. (11)
Z22 + b

or, by (8),

AO + Zbll
ZA =

Z22 + Zb
(12)

An exactly similar procedure based on driving the
four-pole from the right instead of from the left, gives
the impedance seen looking into that end when the left-
hand termination is Za. The result is:

AO + ZaZ22 (13)

2.11+ Za

Zr= A/O
Z22

ZII = V -A0.

(14)

(15)

When the terminations have these values, there are no
reflections from the terminating impedances (although
there may be internal reflections within the four-pole)
and, in the cases where the image impedances (14) and
(15) are pure resistances, the gain in power resulting
from the presence of the four-pole is a maximum.

Concerning these power relationships, there is a
good deal more that needs to be said. In the first place,
it turns out to be more convenient to deal in terms of
"virtual" power rather than real power. The difference
is that the former is given by I2Z in general, even when
the currents are represented by complex numbers in-
volving imaginaries, while the latter is equal to the
product of the square of the magnitude of the current
times the resistive component of the impedance. Con-
sequently, the writing is greatly simplified by the con-
cept of virtual power, whereas the real power may be
found from it when that is required, and the phase of
the terminations is known.
When the four-pole is driven from the left, so that

Vb may be put equal to zero in (5), the virtual power in
the output termination Zb is given by

122Zb = Va2Zb- 2V 2Z- Zb.
,A2 Z1 A2

(16)

The operating gain is defined as the ratio of this to the
virtual power that the generator Va would deliver
directly to a matched load, Za. Thus, when the gen-
erator Va is connected to a matched load, the current is
Va/2Za, and the virtual power in the load is Va'/4Za.
The operating gain' is therefore

Z21 Z127214
F21 4ZaZ b

Z.12 A2
(17)

where symbol F21 indicates that the gain is from left to
right. In the opposite case, where the four-pole is driven
from Vb on the right while the virtual output power is
absorbed in Za on the left, the corresponding expression
for operating gain is

' The insertion gain may be found by multiplying the operating
gain by (Za + Zb)-

4ZaZb
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Z12 Z12-za721
P12 = 24ZaZb.Z21 A2

(18)

It is obvious, therefore, that the ratio of the gains in
the two directions is (Z21/Z12)2. When Z12 is equal to Z21,
the gain (or loss, which is the reciprocal of the gain) in
the two directions is likewise the same.
The expressions (17) and (18) are not particularly

complicated, but for physical interpretation they may
be put into very much better shape. This requires a little
algebra, but, to make our proofs complete, it is worth
outlining the procedure in some detail, rather than
merely stating the final result.
The first two steps may probably be combined into

one without impossing undue difficulties. Thus, from (7)
the expression Z12/Z21 may be replaced by Z11Z22-AO.
This is the first step. The next one is a matter of defi-
nition, and merely eliminates Za and Zb by introducing
the ratios

a = Za/Zi
b = Zb/ZII.

When these substitutions are made in (17), remember-
ing that A is given by (8), we have, with the help of (14)
and (15),

Z21 L[Z1Z22-Ao]4abAo
Z12 [Ao(1i+ ab)+ (a+ b)VZ11Z22A 0 ]2

Z21

Z12

Ao 4ab
++Zl+Z22 ]

[a+b+ (1+ab)
O-

Z2 A0Z 1+ 12

=___________ 4ab.(20)

1+ a+b+ (1+ab)

In the event that the terminations on input and
output sides are matched to the image impedances, so

that a and b are both equal to unity, the gain from (20)
is given by

/\0

Z21 ~z11Z22
P21'= _-'V (21)

Z12 1+ AO

Z11Z22

which is often written in the alternative form

Z21 1-tanh 0
Z12 1 + tanh e

where is the propagation constant of the four-pole. It is
convenient to write this matched gain in the more con-

densed form
Z21

- 21= - ro
Z12

(19)

where the image gain ro is defined by the relation

/ AO

'+A0

z11z22

(22)

The quantities under the radical may then be written
as follows by solving (22):

A01 -ro
/Z11Z22 1 + PO

(23)

For its physical meaning, note that in the matched con-
dition, ro is the geometric mean between the gains in
the two directions.

Substitution of (23) into (20) gives:
Z21 4a 4b

Z12 (1+a)2 (I+b)2
1

( 1-a 1 -bI2
1 - rO

1l+a I+b/

(24)

The expression (24) is now in the form which we were
seeking. Its advantage is the physical interpretation
which may be given to factors of the form

4a 1-a
and

(1+ a)2 1 + a

The first of these might be called the "mismatch"
factor, and expresses the ratio of the virtual power which
a generator puts into a load connected directly across
its terminals to the virtual power it would put into a
matched load similarly connected. The situation is well
known for the case where a is a real number, and calcu-
lation illustrates how slowly the gain departs from its
matched value as the impedance ratio departs from
unity. For example, a two-to-one impedance mismatch
means a loss of 0.5 db only. Even a ten-to-one mismatch
gives only 4.8 db loss. Note, too, the curve is symmetri-
cal about the value of unity for the impedance ratio.
The other factor is the ratio of the reflected to the

incident current at the end of a line terminated by an
impedance mismatch. Its reciprocal is thought to con-
stitute a more precise definition of "return loss" than is
usually given in current literature. Note also that the
two factors are related through the equation

4a 1-a 2

(1+ a)2 +1+ a) (25)
which states the physical fact that the sum of the ab-
sorbed power and the reflected power is equal to the
incident power.
With these relations in mind, it is possible now to

interpret the various factors in (24) in connection with
the diagram of Fig. 2. Imagine the generator Va to send
a wave into the four-pole represented by the rectangle
in the drawing. Disregarding the factor Z21/Z12 for the
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moment, we can visualize the wave as progressing from
the generator V. toward the right until it meets the
impedance discontinuity between Za and ZI, the image
impedance of the four-pole seen from the left. Of the
virtual power in the incident wave, the fraction
4a/(l +a)2 progresses on into the four-pole while the
remainder is reflected and lost in the generator imped-
ance. Having entered the four-pole, the current wave
is amplified by the factor VIr0Z21/Z12, and emerges
from the right-hand end of the rectangle. Here another
impedance discontinuity is encountered and the fraction
4b/(l +b)2 of the power enters the load, while the frac-
tion (1 -b)/(I +b) of the current is reflected and pro-
gresses back toward the left through the four-pole. The
current is amplified by the amount \/'0Z21/Z12, is re-
flected in part by the factor (1-a)/(1+a) at the left-
hand termination, and moves once more toward the
right. Thus, within the four-pole there is set up a to-
and-fro surging which, each time the wave arrives at
the right, contributes a little more to the power in the
output.

In a single round trip through the four-pole, the
wave of current or voltage is modified by the factor

Z21 Zl2 1-a 1-b 1-a l-b
Z12 Z21 + aI+1bLA + 1+b

and the sum of an infinite number of round trips as-
sumes the form

S =1+ X+ X2+ X3+ .. =. - (26)

where
1-a 1-b

x-= r ____

1+a 1 + b

and when x < 1. The square of the sum must be taken
in (24) because S represents a current, while (24) repre-
sents a power ratio. It is thus seen then that all of the
factors in (24) may be accounted for on a physical
basis, and the whole action may consequently be
thought of in pictorial perspective. The usefulness of
introducing the image gain Po, which is the geometrical
mean of the forward and reverse gains, has also been
demonstrated in this connection.

However, its usefulness does not stop with (24), and
the impedances presented by the four-pole may also be
expressed in terms of Po. Thus (12) and (13) may be
written respectively, with the help of (23):

ZA
zI

1-b
1 -boro

1 + b

1-b

1 +

1-a

1 - rO-
ZB 1+ a

ZII 1 - a
1 + rO-

1+a

These show immediately that the impedance pre-
sented by the four-pole becomes the same as the image
impedance whenever a= 1 in the one case, or b =1 in
the other. This is, of course, axiomatic. A much more
striking property is shown by noting that the intrinsic
algebraic sign of the impedance must perforce be the
same as that of the image impedance whenever the
magnitude of Io(l-b)/(1-+b) in the one case, and of
ro(1-a)/(1+a) in the other, is less than unity. The
converse is true when the magnitudes are greater than
unity, so that whenever the image gain is sufficiently
large, the input impedance is the negative of the image
impedance unless a or b, as the case may be, is identically
unity.
When Jo = 1, it is interesting to note that

ZA- ZbZI/Zi, and when ro = --1, that ZA= ZIZII/Zb.
Having dealt now with the derivation and discussion

of expressions for impedances and gains, we come to the
very important question of stability, that is, freedom
from oscillation. This may be approached in several
ways, but the most rigorous is probably to return to
the general equations (3), and their solutions given by
(4) and (5). From (4) and (5) it is seen that the currents
h1 and 12 may be different from zero even in the ab-
sence of the driving sources V7, and Vb whenever A = 0.
But A is a function of all of the internal network imped-
ances as well as of the terminations Za and Zb. In turn,
all of these impedances are functions of jw. For pur-
poses of analysis, ji may be replaced by the more
general variable p-=a+jco, so that currents and volt-
ages of the form ei'ot now become ePt = e(a+iw)t. The sig-
nificance of a then becomes apparent. When it is posi-
tive, the currents and voltages increase indefinitely
with time. When it is zero, they are the usual sinusoids
of constant amplitude, and when it is negative, the
currents and voltages decrease with time and eventually
die away altogether.

For stability it is evident that the relation A = 0 must
be satisfied for negative values of a only, and not for
positive values, as otherwise the currents in (4) and (5)
would increase indefinitely with time, even in the ab-
sence of the driving sources Va and Vb. If the equation
A =O is satisfied only for negative values of a, the cur-
rents die away when the sources are removed and the
system is stable, except in the contingency that one of
the coefficients of Va or Vb in (4) or (5) should become
infinite for some positive value of a while, at the same
time, A itself remained finite. Since A may be written

A = (Z1l + Za)(Z22 + Zb) -Z12Z21,
and consequently involves all of the aforementioned
coefficients, A can remain finite when one of the coeffi-
cients becomes infinite only if the coefficient with which
it is paired in the above expression for A becomes zero
simultaneously or (a more usual situation) is identically
zero for all values of p. That is, either (Zll+Za) is in-
finite for the same value of p that causes (Z22+Zb) to be-
come zero, or vice versa, or else Z12 is infinite for the
same value of p that causes Z21 to become zero. In
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either event, instability would require that the real
part of p should be positirve. This alternative con-
tingency seldom occurs in bilateral systems, but is not
infrequently encountered in unilateral cases. One par-
ticular example that is illustrative happens when the
interstage coupling circuit between two unilateral
amplifier stages contains negative impedances and,
when isolated, is unstable. Connecting it between two
vacuum tubes does not cause it to become stable, and
it will be found that the four-pole equations for the
system show that Z12 iS zero for all frequencies, but that
Z21 may become infinite for a positive value of a.
Whenever (3) is derived by first writing the mesh

equations for the entire multi-mesh network, one equa-
tion for each mesh, and from these equations eliminating
all currents but the two corresponding to the input and
output meshes, the stability conditions are completely
determined either by the vanishing of A, or by the simul-
taneous vanishing of one of a pair of factors forming A
together with the vanishing of the reciprocal of the
other.

Possibility of trouble occurs, however, when approxi-
mations are made. For example, when a vacuum tube
with feedback is considered, the impedance looking into
a pair of terminals may become negative in certain fre-
quency ranges. There is then a strong inclination to
simplify by replacing the complete details of the circuit
which produced the negative impedance by the negative
impedance itself. Actually, there is no objection to doing
this providing that the negative impedance is com-
pletely and accurately specified over the whole fre-
quency range.

This point is very important. For example, note that
a negative impedance which was the exact negative of
some passive impedance over the whole frequency
range from zero to infinity, could not possibly be un-
stable on either open or short circuit. This is at once
evident when it is considered that the values of p which
satisfy the passive equation

Z(p) = 0

are identical with those that satisfy the active equation
- Z(p) = 0

and hence, if the a for the one is always negative, so
also is the a for the other. From this it may further be
concluded that a negative impedance which is unstable
on either open or short circuit cannot possibly be the
exact negative of any passive impedance whatever
over the whole frequency range. One can go even
further, however, and invoke some of the methods of
complex function theory to show that such a negative
impedance cannot even be the exact negative of any
passive impedance over any finite frequency band, no
matter how small.
The point of this discussion is to bring out the fact

that stability or lack of it in systems involving nega-
tive impedances is often determined by the departure
of the negative impedances from being the negatives of

passive impedances, and hence that any disregard of
this fundamental fact is likely to lead to trouble. These
departures may, and in fact often do, exist at frequen-
cies outside of the band that is of interest from the
standpoint of normal use. Their effect reflects back into
that band nonetheless.
How then should one proceed? Is the device of using

the concept of negative impedances of no practical
value? The answer to this is supplied in part by Crisson,
who, some years ago, introduced the concept of series
and shunt types of negative resistances. By definition,
the series type is unstable on short circuit, and the
shunt type is unstable on open circuit. Interpreted in
the light of the foregoing discussion, these definitions
may be rephrased somewhat as follows:
A negative resistance is one which behaves very nearly

like the negative of a positive resistance over a fairly
large frequency range. Outside of that range, however,
a series type negative resistance departs from that ap-
proximation in such a way that the circuit element is
unstable on short circuit, and a shunt type negative
resistance departs in such a way that the circuit element
is unstable on open circuit. Graphically, this would
imply that, if the imaginary part of the negative imped-
ance were plotted against the real part for all values of
frequency, that is for all values of p.=a+jcw where a = 0,
the graph of a series type would look something like
Fig. 3, and the graph of a shunt type would look some-
thing like Fig. 4. They both encircle the origin, but in

3(a) 4(a)

NOTE SIMILARITY OF 3(b)
AND 4(b) FOR A WIDE
RANGE OF FREQUENCIES.

4(b)3(b) x

R - R

Fig. 3 (a) and (b)-Examples of graphs of series type negative
impedance.

Fig. 4 (a) and (b)-Examples of graphs of shunt type negative
impedance.

different directions. It is obvious that this approxima-
tion, useful as it is, has certain limitations, and that

the safest way of dealing with new or untried circuits

is to be sure that the negative impedance is, in fact,
specified to a sufficient extent over the whole pertinent

R

1952 275

-R



26PROCEEDINGS OF THE I.R.E.

frequency range. Such a range would have to be suffi-
cient to insure that the combination of the negative ele-
ment with the remainder of the circuit did not have a
resistive component that became negative at any higher
or any lower frequency.
The practical effect of all of this is to point out that

certain combinations of series and shunt type negative re-
sistances may be quite stable, while others may not.
The general stability criterion, when all things are taken
into account, is the determination of the values of p
that cause A in (4) or (5) to become zero. The alterna-
tive condition that results in instability can usually be
detected by general inspection of the circuit, or may be
tested for each of the four possible contingencies
separately.
The investigation of A itself turns out to be rather

cumbersome, and an easier alternative arises when
it is noticed that the expression for gain F, given by
(17), contains A in the denominator. It follows that r
has an infinity whenever A has a zero. Also, P has no
infinities that are not contributed by zeros of A. This
may be verified by inserting (6) into (17) and noting
that infinities of Za and Zb contribute only zeros to F,
while infinities of Z12 and Z21 contribute neither zeros
nor infinities to r. Consequently, except for the case
mentioned before where Z21/Z12 has an infinity while
Z12Z21 does not the zeros of A are uniquely determined
by the infinities of r and, when A has no zeros with
positive real parts, r has no infinities with positive real
parts. For every zero of A that does have a positive
real part, r has an infinity with a positive real part.

It may be taken then that, leaving aside the excep-
tions mentioned, (17) can be used as a basis for de-
termining stability, and therefore that (24), which is
merely (17) written in another form, can likewise be
used. The infinities of (24) must be investigated to de-
termine whether the real parts of any of them are posi-
tive.
The possible infinities of r are all determined by the

equation
( 1-a 1-b\

I - ro it ) =0, (29)

as may be seen from (24) by trying all of the other
alternatives; namely 1/a=0, 1/b = O, rO = o (I +a) =O,
and (1+b) =0. None of these others yields infinities.
There is a striking similarity between the form of

(29) and the famous equation for the stability of feed-
back amplifiers, usually written

(1 - 03)= 0.

In fact, the similarity goes further than one of form
only, and the discussion leading to (26) shows that the
physical meaning of the factors involved is quite
analogous. This at once suggests the possibility of ap-
plying the Nyquist stability criterion and plotting

1-a 1-b
ro
1+a 1+-b

on the complex plane as a function of the frequency co,
and seeing whether the plot encircles the point (1, jO).
The trouble is that encirclement of the point (1, jO)
-would indicate instability only under certain special
conditions, and cannot be applied with complete gen-
erality. It happens that those conditions are fulfilled in
the standard type of feedback amplifier, but very
often are not in the more general cases which it is now
attempted to discuss.

This fact is so important, and the appreciation of it
seems so limited in extent, that a brief explanation of
the fundamentals involved appears to be in order. The
key to the situation is furnished by the realization that,
in the conventional feedback amplifier, both / and ,B
are of the nature of constants multiplied by the ratio
of output to input voltage across passive impedance
functions (either self or transfer) and hence that neither
of them has infinities whose real parts are positive. In
the generalized repeater case of (29), where negative
impedance elements may be involved, there is no assur-
ance that this is so. In fact, it is readily seen that the re
flection coefficient (1-a)/(1+a) may become infinite
when a negative resistance is connected facing a positive
one, for then a is negative. This seems at first to be
very discouraging to an attempt to draw simple con-
clusions and rules relating to the more general case. The
situation is helped only by limiting the problem and
being content, not with complete generality, but with an
amount sufficient to cover the particular class of prob-
lem that is encountered in considering the telephone
repeater. Here this analysis requires broadly, not only
that the system be stable with a given pair of termina-
tions, but that it be stable when its end terminations are
either open circuited or short circuited in any possible
combination of the terminations, and, moreover, that it
shall be stable for any values of passive terminations
in between these two extremes.

Further, it is evident in such a system that the ulti-
mate terminations at the final terminals must consist
of passive impedances. This at once implies that the
image impedances of the four-pole representing the en-
tire system must likewise have the properties of a pas-
sive impedance, as otherwise it may be shown, from (12)
for example, that there always exists a value of passive
termination that will result in instability. This is really a
very important conclusion for it says that, in the design
of systems involving negative impedances, care must
be taken that the image impedances must have these
passive properties at all frequencies if stability is to be
guaranteed. This means that their resistive components
must be positive at all frequencies from zero to infinity.

If the image impedances were entirely resistive at all
frequencies, while the terminations were restricted to
being passive, the greatest as well as the least magnitude
that could be attained by factors of the form
(1-a)/(l+a) would occur when the termination ap-
proached a pure reactance, either positive or negative.
The magnitude of the factor would then be unity for
any value of terminating reactance. Its phase, how-
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ever, could lie in any of the four quadrants of the com-
plex impedance plane, depending upon the value of
terminating reactance. Hence, when the magnitude of
the image gain passed through unity, and in the event
that the gain factor Po had even the smallest phase
angle, it always would be possible to find values of
terminating reactance that would cause the graph of

1-a 1-b
r0
1+a 1+b

to pass through the point (1, jO) on the complex im-
pedance plane. Minute changes in terminating re-
actance would then cause the graph to pass on one side
or the other of the point (1, jO) and consequently change
the system from a stable one to an unstable one, or vice
versa.

For this case, where the image impedances are pure
resistances at all frequencies, it is clear that the system
will be stable for any values of passive terminating
impedances if and only if the magnitude of the image
gain is less than unity. This is the situation that can be
approached by the 22-type repeater of Fig. 1 when its
image impedances are pure resistances, though even
here departures of the hybrid coils from the ideal can
introduce phase into the image impedances and create
the more general situation which must now be discussed.

In this more general case, the restriction that the re-
sistive components of the image impedances must be
positive at all frequencies is still retained, as otherwise
passive terminations which will cause singing can always
be found. However, no restriction is now placed on the
reactive component of the image impedanc . Under
these conditions, it can be shown from a theorem in
functions of complex variables2 that factors of the form
(1-a)/(l +a) attain their greatest and their least
magnitudes as well as their greatest and smallest real
and imaginary components when the terminations are
pure reactances. For this condition, we can write:

1 - a ZI - Za RI + j(XI - Xa)
1+ a Zi +Za RI + j(XI + Xa)

I/ + y2 - 2y sin 4I e '(2yo011(1_2)
V 1 + y2 + 2y sin 4ei

where

XT
y-Xa/ ZI and 41 =tan'-1RI

This attains its greatest magnitude when Xa z I.
and the algebraic sign of Xa is opposite to that of XI,
In that event, the magnitude becomes

1-a 1 + sin4)1 (31)

1+a max 'V sin q5i

and the phase is ± 7r/2 depending upon the phase of ZI.

2 H. W. Bode, "Network Analysis and Feedback Amplifier De-
sign," D. Van Nostrand, 1945; p. 169.

The minimum magnitude is the reciprocal of (31), or

1-a t1- sin I/
1 + a min + sin XI

(32)

and occurs at an angle of ir with respect to that for the
maximum. The real component of (30) attains its
maximum value when

1 F Cos XI

sin X1,
(33)

A graph of (30) for the four cases where the phase of
Z, is 0, 30°, 45° and 600, respectively, is shown on
Fig. 5 which illustrates the locus of the function as Xa
takes on all values from - oo to + oo. Further study of
this figure, and the equations above relating to it,
shows that the curves are true circles and that the
distance from the origin to the center of a given circle
is equal to tan X, where 4 is the phase of the correspond-
ing image impedance.

210 220 230 250 270 290 310 320
ANGLE IN DEGREES

330

Fig. 5 Locus of (1 -a)/(1 +a) for increasing values
of Xa, where a =jXa/ZI.

At the same frequency as that for which the graph of
(1-a)/(±+a) has been drawn in Fig. 5, the graph of
(1 - b)/(1 + b) may be constructed from the properties
of Zn,i the image impedance at the output terminals of
the network. Where the two image impedances Z, and
ZII are the same, the graph of (1 -b)/(1+b) is a dupli-
cate of that of (1-a)/(I+a). For any combination of
terminating reactance values Xa and Xb, the product of
the two graphs always falls within the envelope ob-
tained by letting Xa = Xb. For this condition, Fig. 6
shows the product curve for several values of the phase
of the image impedance, and it will be noted that the
external envelope of the complete surface is always
equal to or greater than unity.
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LOCUS OF LOSS VECTOR FOR
VERGE OF SINGING

li+a _

(PHASE OF IMAGE
IMPEDANCE)

UNIT I
Cl RCLEt

Fig. 6-Locus of stability for the loss vector for different frequencies.

Suppose, at the frequency for which the largest curve
in Fig. 6 is drawn, that the gain Fo has, for example, a
phase of 1500. The image loss, which is the reciprocal
of ro, then has a phase of - 1500. If it had a magnitude
equal to that of the vector shown on the figure, the
product

1-a 1-a
ri
l+a l+a

would be exactly equal to unity, and hence, according
to (29), the system would be on the verge of singing.
A smaller gain at the same phase would be needed for
stability or else, for this case, the same gain at a lesser
phase. Fig. 6 therefore sets the relation between the
allowable phase and magnitude of the gain at the par-
ticular frequency it represents, and for the symmetrical
case where the image impedances at both ends of the
system are the same. A curve analogous to the one con-
sidered above must be constructed for every frequency,
and the three-dimensional envelope of all of them de-
termines the allowable relationship between the maxi-
mum magnitude and phase of the gain over the fre-
quency range. Several such curves are shown on Fig. 6
for different values of the frequency and the phase of
the image impedance. The only cases in which the

magnitude of the gain can approach unity are first,
those for which the image impedances are both puie
resistances and, second, those for which the phase of the
gain is exactly zero. In all other ses, the magnitude
of the gain must be less than unity to avoid singing.
When the phase of the gain is 1800, its magnitude must
be less than

1 - sin 4"

1 + sin 4|

When the image impedances are pure resistances, the
gain can approach unity regardless of its phase. The
three-dimensional surface shown in Fig. 6 can then be
regarded as setting the lower limit on the loss. The end
of the loss vector must always fall outside of this sur-
face at every frequency.

In many practical cases, the phase of the gain is not
under control. For example, the phase changes very
rapidly with frequency in a circuit several hundred
miles long, and it would not be feasible to attempt to
keep it within narrow limits over the speech band.
For these usual cases, the curve on Fig. 7, which is
plotted from the above expression for the magnitude of
the gain, gives the allowable operating condition. For
example, when the phase angle of the image impedance
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is 600, the loss must exceed 11.3 db. The required loss is,
of course, in addition to the allowance of a margin to
take care of such things as changes in amplifier gains
and in line losses.

10 20 30 40 50 60 70
PHASE ANGLE OF IMAGE IMPEDANCE IN DEGREES

Fig. 7-Relation of minimum loss to phase angle of image impedance.

Of course, a magnitude of gain approaching unity is
greatly to be desired in repeatered systems. In those
which are composed of similar sections in tandem, and
where, in addition, it is desired that the individual sec-
tions be stable when isolated and terminated with any
combination of passive impedances, the above condi-
tions become very important for they apply to the in-
dividual sections and severely restrict the freedom of
design. Where, however, the sections need not be
stable individually when subjected to all combinations
of passive termination, but the system as a whole must
nonetheless be stable, a good deal more freedom in
design is permissible. The individual sections can actu-
ally have gains greater than unity, providing that it is
removed before the final terminals are encountered.

For example, Fig. 8 shows a possible system in
which repeaters or negative-resistance loading may be

used quite freely in a transmission line, with the result
that the system would sing if terminated at ZI, with
certain combinations of passive impedances. In general,
also, the image impedances of the line will have a reac-
tive component. At each end of the line there is placed
an impedance-equalizing four-pole which matches the
line on the one side, but presents a purely resistive im-
pedance on the other. Such a network unavoidably in-
troduces a certain loss if composed of passive elements
only. An active network, however, such as the 22-type
repeater circuit, can accomplish the impedance trans-
formation without loss, or even with gain. In any event,
the overall system, now having purely resistive image
impedances, can be adjusted to have an overall gain
that, with ideal impedance matches, approaches unity
as closely as desired, and still will be completely stable
for all combinations of passive termination. Any gain
greater than unity, however, will result in singing, and
the margin needed in practical design is a matter of
how constant with time the values of the components
of the system can be made, and how accurately the im-
pedances may be matched.

In the event that the phase equalizers or converters of
Fig. 8 are to be composed of passive circuit elements,
the minimum loss required to consummate the im-
pedance transformation can be found from Fig. 5. It
is necessary to note that,

1-a 1-b
rO-0
1+a 1+b

can never pass through the point (1, jO). For a reactive
image impedance on the input side of the network, Fig. 5
would show the graph of the factor (1- a)/(1 +a) as one
of the off-center circles. The graph of (1-b)/(1+b)
would be a unit circle, however, because of the resistive
image impedance on the output side of the network,
and the factor could have its phase anywhere in the four
quadrants. The envelope of the product of the two fac-
tors would therefore be a circle whose radius vector
was equal in magnitude to the maximum value of
(1-a)/(1+a), and whose phase could lie anywhere in
the four quadrants. The minimum loss possible in a
passive phase converter network would therefore be the

I-i-rol'------

. _

Fig. 8-Correction of phase of image impedance to increase over-all allowable gain.
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reciprocal of this value, or

/1+ sin q5II|
,/1 - sin o,I|

For systems in general, when the phase of the image
impedances differ on the two ends, the stability condi-
tions are in a sense more severe than for the symmetrical
case. Here the criterion may be visualized by referring
to the two curves on Fig. 5 corresponding to phases of
the image impedances 300 and 600. The first may be
thought of as the reflection factor for the image imped-
ance ZI, and the second as the reflection factor for the
image impedance ZII. What is desired is an envelope
analogous to Fig. 6, giving at each phase the maximum
possible value of the product of the two factors. When a
point on the envelope has a certain phase, 4, the sum
of the phases of the individual factors must be equal to 4'.
Thus if Pa represents the magnitude of (1-a)/(l+a)
and cka represents its phase, and if Pb represents the
magnitude of (1 -b)/(I + b) and 4)b represents its phase,
the envelope at the angle 4' has the magnitude PaPb
for which q)a+5)b =4'. The problem is to determine the
maximum magnitude of this product for each value
of 4'.
The easiest approach seems to be to deal, not with

Pa and Pb directly, but with their logarithms, so that we
have

log PaPb = log Pa + log pb,

and the problem is shifted from that of finding the

5 66F

2;

0-

maximum value of a product to the somewhat easier
one of finding the maximum value of a sum, subject,
however, to the same condition concerning phase,
namely,

'Oa + qkb = 4'.

Fig. 9 is constructed from Fig. 5, and shows log Pa
or log Pb plotted against Oka or 0b, as the case may be, for
different values of the phase 4I or XII of the respective
image impedance. The curves resemble sine waves some-
what, but are not true sinusoids although, for a rough
approximation, the assumption that they are would not
give large errors for moderately small value of 4i.

1-a
p=_

1 + a

a = iXa/Zi
Z= image impedance

=i Z1 e'i4.

To illustrate the use of Fig. 9, assume for example
that we are dealing with a system which has a phase of
Oi=300 for the image impedance seen from the left-
hand end, and of Oi =60' seen from the right-hand
end. We deal then with the corresponding curves on
Fig. 9, and the lower one on the left corresponds to
log Pa and Oa, and the higher to log Pb and 4b. The en-
velope curve which takes the place of Fig. 6 for this case
of image impedances of different phases is then con-
structed by finding the two ordinates log Pa and log Pb,
which correspond to the two angles 4a and cb, such

PHASE ANGLE OF REFLECTION FACTOR

Fig. 9-Graph of logarithm of reflection factor
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that the sum of the two ordinates is a maximum when
aka+ckb equals the envelope angle 4.

Algebraically this is equivalent to requiring:

Ya + Yb = maximnum when xa + Xb =constant.

Hence, for the maximum

dya dyb db0
dxa + dxb .

dxa dx b

But,
dXb = dxa,

so that
dya dyb

dXa dxb

This gives the clue to the graphic solution. Suppose
that 4' = -450. Starting then with c/a and Ob. both
equal to -22.50, we note that the slope of the curve for
cPi=600 is much greater than that for cI=300. Conse-
quently, we take a value for ¢a greater in magnitude
than -22.5°, and for /.b an equal amount less in mag-

nitude than -22.5° so that their sum again equals
45°. We note whether the slope of the k1=600 curve

corresponding to f,,, still remains greater than that of
the ki = 300 curve corresponding to d/b. If so, the depar-
tures of 4a and ckb from the mean of -22.5° should be
increased further until the two slopes are equal. When
such a pair of values has been found, the envelope of
the product curve for = 450 has the value

log Pa + log Pb

for its logarithm.
The process is tedious and would have to be repeated-

for each value of the envelope phase, and besides, the
whole graphical construction would have to be repeated
for each frequency in order to find the entire three-
dimensional contour outside of which the loss must re-

main if stability is to be insured. Straightforward an-

alytical solution does not offer much hope, either, for
the difficulties appear to become even greater. It may
happen, of course, that some change of variable or other
algorithm will be found, but the probability is not at
present very favorable.

In some cases, and particularly when attention is di-
rected toward a general philosophical approach rather
than to operating criteria, an extension of the stability
conditions along the line proposed by Gewertz3 has
proved useful. In this extension of the work of Gewertz,
the coefficients of (1) are written in the matrix form

R1l + jX11 R12 + jX12

R21 + jX21 R22 + jX22

It may then be shown by the argument given above,
that the system is stable for any passive termination,

3 C. M. Gewertz, "Network Synthesis," The Waverly Press, 1933;
pp. 45-63.

providing that the following conditions are satisfied at
all frequencies:

RI, > 0

R22 > 0

4(R11R22 + X12X21)(R11R22- R12R21)
- (R12X21- R21X12)2 > 0.

In the event that Z12 = Z21, it will readily be recog-
nized that the last of these three relations reduces to the
form

(R11R22-.Rl22) > 0,

which has come to be known as the Gewertz condition.
On the other hand, in the event thatZ21 =-2 we have.
the alternative

(RjjR22 - X122) > 0.

In the symmetrical case, where Zl = Z22, and where
Z12= Z21, it may be shown that the Gewertz condition
becomes

Rl- R12 > 0,

whence it follows that the real part of

1 - Vro.
1-

must be greater than zero. This means that the resistive
component of the short-circuit impedance of a hypo-
thetical network of half the electrical length of the actual
network, should always be positive. From this it is easy
to deduce the relationship

(1-| Po ) cos - 2V/1 roI sin0 sin,B > 0,

where

ZI= ZI
rO= rO e

From this equation it follows that, in case sin ,B=1,
we have

Iro < -1 sIn01I1+.Isino
which agrees with the results previously attained, and
shows the connection between the two methods of ap-
proach, namely the consideration of the matrix com-
ponents on the one hand, and of the image parameters
on the other.

It is important to point out that, in the present ex-
tended form of the Gewertz relations, all that is assured
is that the network shall remain passive regardless of
what passive terminations are attached. It does not fol-
low that the network has all of the properties of a pas-
sive system, in the sense that it may be imbedded in a
general network system involving passive feedback from
the output to the input and still remain completely
stable. A system composed entirely of passive ele-
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ments would, of course, be stable under these conditions.
Notwithstanding the difficulties of the general case

where the image impedances at the two ends of the
system are different from each other, some of the con-
clusions which have been pointed out are of broad
validity, and in the more restricted case where the two
image impedances are the same, quantitative results
may be computed with moderate ease for any phase
angle of the image impedances. Expressed in terms of the
image gain and the image impedances, the relations are
so important and general that a few examples may
make their meaning clearer.

For the first one, the unilateral amplifier will be con-
sidered in order to show that, even in this case, the
general principles and method of analysis apply. The
schematic circuit diagram is shown in Fig. 10, and the
four-pole equations are given on the figure. It is impor-
tant to note that a feedback admittance Y,f is included
for purposes of analysis, but that this is ultimately
allowed to become so small that feedback disappears.

Yx
(VERY SMALL)

It I2

Yi I Yi2 V1

Y2, Y22 V2

gmv,
I,t Yx t I2

*1+ I + 1

V, ygYp V2+1 .
__ I -_I-

Fig. 10-Development of unilateral amplifier.

It happens that admittances are more convenient
than impedances to deal with here, but the form of the
various relations is not changed thereby. Application of
(14), (15), and (22), gives the image parameters YI, YII,
and P0 as follows:

YI = (Yg + Yx) | Y (g PY Y)
(Yg + YX)Y22 + YI)

YII = (YP + Y) I| (- Y+ Y -)(Yp + Yx

j Ys(gm - Y ;)

ro,= (y(+ Yx)(YP + YXrO ±-Y )(YM
-

(Yg + YX)(YV + YX)
As the feedback admittance Y. is allowed to become very

small, (impedance very high), the image admittances
easily and gracefully approach the values Yg and Yp,
respectively. At the lower frequencies before transit-
time effects enter, these are ordinary passive admit-
tances. The image gain approaches zero, but the way

it does this can best be seen by using the binomial
theorem to expand the radical in the numerator. This
gives

1 Ys(gm - yx) 1 gmY.
ro --+ -~~~~~~ - - ~(34)

4 (Yg + Y-)(Yp + Yz) 4 YgYp
In this form, it can be seen from (24) that the operating
gain from left to right with matched terminations be-
comes

gm -Yx 1 gmYx 1 gin2
r2l y -4Y 4 YgY

Y, 4 YgYp 4 -ygyp
(35)

which is recognizable as the conventional expression for
this gain. On the other hand, ro itself approaches zero,
and the matched gain r12' from right to left likewise
approaches zero, and in such a way that the image gain
ro is the geometric mean between r12' and r2l'. When-
ever the feedback admittance Y. is not quite zero, the
circuit may yet be stable for all passive impedance
terminations, but only providing that the image gain
ro, multiplied by the reflection coefficients, does not
encircle the point (1, jO).

This rather extreme illustration was chosen first to
demonstrate the generality of the analysis, and to show
how it applies in the unilateral case.
As an example of the bilateral case, the properties of

the 22-type repeater will be considered. Fig. 1 shows
the general schematic and, when the impedances seen
by the hybrid coils on the network side, the transmit-
ting side, and the receiving side are&completely balanced,
the image impedances are equal to the impedance of
the passive balancing networks and are independent
of the repeater gain. When the over-all image impedance
of a system containing 22-type repeaters is a pure re-
sistance, the repeaters may be adjusted until the gain
of the system approaches unity before singing can
take place. In the more usual case, the image imped-
ances of the individual repeaters are adjusted to match
that of the connecting line, which has an appreciable
phase angle. Consequently the gain of the system must
be held to a flat value of

1 - I sin (I|
1 + sin k'

or else must be tailored to fit the conditions discussed in
connection with Fig. 6. However, the expedient of pro-
viding initial and terminating repeaters, whose input
and output hybrids are matched to a pure resistance,
will allow the system gain to be brought up to unity
even in this case. With ideal impedance matches, the
margin which must be allowed in practical design then
depends upon the variations in repeater gains and line
losses under operating conditions, and not upon the
number of sections in the system or upon the over-all line
loss. Extra margins are required for unavoidable imped-
ance mismatches resulting from line irregularities.
With other types of repeaters, such as the 21-type

illustrated in Fig. 11, the image gain and the image im-
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pedances are not so easy to adjust independently. How-
ever, there seems to be nothing fundamental to prevent
supplying the terminals of the system with networks to
provide a purely resistive image impedance. Practically,
there are many cases where the construction of such
networks offer excessive complexity, though in others
their use may be quite feasible. The gain of the system
can then be made unity before singing will occur, with
any possible combination of passive impedances at-
tached to the terminals.

I+gmZmri 2Z,
Zs
-zlmZm+ .2Z1

ZA=Zb ggmZm +-gmZm ZB +ZgmZm + + mZm

// i-*-------- -I \

Fig. 11-Schematic of 21-type repeater.

This brings out the point that it is perfectly possible
to have a system that is quite stable when terminated at

mid-section points, but may be quite unstable when
terminated at half-load points, and vice versa. This
can happen, for example, when the image impedance is

a pure resistance in the one case, but not in the other.
It can happen more generally, however, whenever the
phase of the image impedance is different in the two
cases, and consequently the allowable gain is different.
The analysis also shows that the attempt to improve

the singing margin of a system by the addition of pads
of various kinds is quite futile in some cases but not in

others. If a system has an image impedance that is a

pure resistance, its gain may be made unity before
singing can occur. The addition of a resistive pad will
allow the repeater gains to be increased until the over-all
gain is gain unity, but no more, and the system is back
again where it started. A reactive pad added to such a

system will do harm because it will produce image im-

pedances with reactive components, and the over-all
gain must remain correspondingly less than unity.
However, as shown before, a phase-correcting network,
or pad, applied to a system having an appreciable
phase angle for its image impedance, will be helpful.
We are thus led to the conclusion that an advantageous
terminating four-pole is one that transforms the image
impedance into a pure resistance in those cases where it
initially has a reactive component.

This observation also gives the key to the best design
objective for repeatered systems in general. That objec-
tive is to cause the image impedance of the system to be
purely resistive to as close a degree as possible, while
bringing the gain as nearly to unity as is consistent
with safe singing margins.

These examples also illustrate a general conclusion
that may be stated as follows:

The external stability of all systems depends only
upon the phase of the image impedances and mag-
nitude of the image gain, and not at all upon the
details of the internal arrangenments of the system
by which these quantities are attained.
It does not follow, however, that all systems are

alike in terms of the percentage change of voltage on the
vacuum tubes which provide the repeater gain or the
negative impedance loading, or in terms of the com-
plexity of the equalizing and phase-correcting networks
required to give the desired image-impedance termina-
tions. The image gain of a 22-type repeater without
feedback is proportional almost directly to the effec-
tive voltage of the dc supply source, while the image
impedances are almost independent of this voltage.
The image gain of a line with negative impedance load-
ing may, under some conditions, vary much less rapidly
with supply voltage to the tubes that furnish the nega-
tive impedance. Also, systems vary greatly in the
amount of trouble resulting from line impedance irregu-
larities.

Consequently, rather than regarding the theory here
presented as saying that all systems having the same
image parameters will behave alike, it may be more
useful to turn the statement around and regard the
theory as saying what has to be done to a given system
in order that it shall be capable of operating as well as
some other system. Conversely, the theory also tells
how much more loss the given system perforce must
have than a reference system in order to remain uncon-
ditionally stable, and it sets up specific and definite
standards for the reference system. The present paper
has stressed the applicability of the image parameter
concept to the determination of singing conditions in
telephone systems. However, the methods developed are
also capable of dealing with such other properties as
talker and listener echo, which are equally important in
some applications. These have not been discussed in
detail because the paper already is fairly long and be-
cause, with the fundamental background as presented,
the reader is in a position to carry out a number of ex-
tensions for himself.
As a closing word, a few remarks concerning bibliog-

raphy references are in order. It will be noticed that
very few occur in the text. This is because the writer is
aware of very few that have a specific and direct bearing
on the mode of development of the subject which was
employed. He wishes however to express appreciation of
the helpful and stimulating conversations he has had
with many of his colleagues on the technical staff of the
Bell Telephone Laboratories. As general background to
the use of image parameters in active circuit analysis,
the following may be mentioned in addition to the
standard modern text books:

1. H. A. Wheeler, "Wide-band amplifiers for television,' PROC.
I.R.E., vol. 27, pp. 429-438; July, 1939.

2. A. J. Ferguson, "Termination effects in feedback amplifier chains,"
Canad. Jour. Phys., Section A, vol. 24, pp. 56-278; July, 1946.
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