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Meteorological Radar Systems

Mario Montopoli and Frank S. Marzano

1 Introduction

During the beginning of 1941, while someone were trying to eliminate natural mete-
orological echoes from radar returned signals to better distinguish moving manmade
sensible targets, others were attempting to study them. It was the beginning of the
radar era within the meteorological context.

The first studies were addressed in identifying the rain formation, whereas
quantitative rain estimation were available only around 1960 (see Atlas, 1954).

Nowadays, radar systems are quite diffuse instrument with multiple applications
and products which are continuously improved both by hardware innovations and
by algorithms developments. Most diffuse radar systems are labeled with the term
“weather radars” which are mainly ground-based systems. They are able to detect
radar signal from precipitating droplets in different phases which are basically rain,
ice, and snow of variable sizes (of the order of 1–10 mm) and shapes. Weather
radars operates at wavelengths from about 15 cm to 3 cm (i.e., between 2 and
10 GHz respectively) and, as will be discussed later, they have, in their advanced
configuration, Doppler and polarization capability which means that they can mea-
sure radial wind speed and classify the shape and type of the sensed hydrometeors
(Vivekanandan et al. 1999; Baldini et al. 2004; Gorgucci et al. 2002; Marzano et al.
2006; Vivekanandan et al. 2004; Zrnic et al. 2001).

The perspective from the ground has several advantages but suffers from too lim-
ited spatial coverage (i.e., nearly 200 km with 1 km resolution) to observe large
rain formations. Radar from satellite tends to compensate the above-mentioned
problem but many additional challenging problems rise, including cost, size con-
straints, reliability issues, and temporal sampling. It is obviously impossible to
continuously sample every precipitating cloud from radar orbiting the Earth. An
example of space-borne precipitation radar (PR) is aboard of the Tropical Rainfall
Measuring Mission (TRMM) satellite launched in 1997 (Toshiaki et al., 2009).
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The precipitation radar was the first space-borne instrument designed to provide
three-dimensional maps of storm structure. It operates at 2-cm wavelength (i.e.,
15 GHz) and it has a swat width of 247 km with a resolution of 5 km. These measure-
ments yield needful information on the intensity and distribution of the rain, on the
rain type, on the storm depth, and on the height at which the snow melts into rain.
The estimates of the heat released into the atmosphere at different heights based
on these measurements can be used to improve models of the global atmospheric
circulation.

Radars to study precipitations are not the unique existing radar systems. Another
class of radars, called cloud radars, are designed to monitor cloud structure with
wavelengths about 10 times shorter than those used in conventional storm surveil-
lance radars, i.e., at 8.6 mm or 3.3 mm or in frequency domain, respectively, at 35
and 90 GHz. When installed on the ground, they monitor clouds which pass over
the radar site or in other words they are vertically pointed. When installed on space
platform they are nadir looking as in the case of cloud profiling radar (CPR) aboard
of CloudSat space platform (Graeme et al., 2002).

These types of radars are aimed to estimate the cloud boundaries (e.g., cloud
bottoms and tops) and due to the shorter wavelength used, they are able to detect
tiny water and ice droplets that conventional radars are unable to sense. The cloud
radar also helps to estimate microphysical properties of clouds, such as particle size
and mass content, which help to understand how clouds interact with radiant energy
passing though the atmosphere.

Radar are also those operating at wavelengths from 30 cm to 6 m, mainly used
to probe the clear air or regions without clouds where the airflow characteristics can
be determined up to 10 km above the Earth’s surface. For these applications radars
are known as profilers. The basic principle is that the gradient variations of index
of refraction of air, that is quantity observed by the profiler, are connected to small
fluctuations in air temperature and moisture content.

Eventually, belong to the class of radars are also those operating at optical
frequencies as LIDARs, used to accomplish studies on aerosol particles and air
molecules and allowing air motions to be determined, especially in thin, high tropo-
spheric clouds, and in the Earth’s boundary layer (approximately the lowest 1 km of
the Earth’s atmosphere)

This chapter attempts to give the reader the basic principles of radar systems,
first introducing concepts which are common to all radar categories and second
focusing the discussion on weather radar polarimetry of precipitation. Throughout
the chapter, the ground-based perspective will be followed in order to facilitate the
comprehension of the basic concepts without introducing the complication of the
geometry of observation.

2 Radar Systems

Precipitation radars are widely used to determinate the location, size, and intensity
of rain formation. Ground-based scanning precipitation radars are used in short-
term weather and flood forecasting, to estimate the distribution and the amount
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of cumulative rainfall over a region (typically of 200×200 km2) and thanks to
polarimetric radars to classify the types of hydrometeors. Weather radars of many
countries have networks of operational radars that monitor precipitation near pop-
ulation centers [see a Europe and American example in Holleman et al. (2008),
Saffle et al. (2002), and Alberoni et al. (2002)]. The output of these operational
radar networks can be combined to provide a picture of the distribution of precip-
itation over synoptic-scale regions. Precipitation radars, developed by the British
and Americans during the World War II, are also used to map the three-dimensional
structure of storms.

Radars transmit a pulse of electromagnetic energy, by means of an antenna, and
when the transmitted energy encounters a particle, such as, for example, a raindrop
for water radars, part of the transmitted energy is scattered back toward the antenna
where it is received and amplified. The time delay between the original pulse trans-
mission and the receipt of the backscattered energy is used to deduce the distance
to the reflector antenna. The frequency used by weather radars is divided into sev-
eral bands which are usually S band (2–4 GHz), C band (4–8 GHz), and X band
(8–12 GHz) for ground-based station, and Ku (12–18 GHz) and Ka (27–40 GHz)
bands for mobile and spaceborne radars (Chandrasekar et al., 2008). On the other
hand, for cloud radars, the frequencies of interest are 35 and 90 GHz.

The choice of the frequency for precipitating radar is a trade off between the
practical constraints of size, weight, cost, and the relation between the wavelength
and the size of the target hydrometeors. Theoretical considerations favor the choice
of the longer wavelength at S and C bands for many precipitation applications.
However, the use of these longer wavelengths is not always practical. The beam
width for aperture antennas is proportional to λ/Da, where Da is the antenna diame-
ter. In comparison to shorter wavelengths, longer ones necessitate of a larger antenna
to obtain a focused beam of the same angular aperture (typically of the order of 1◦).
Larger antennas are heavier, require more powerful motors to move them, and are
more expensive than smaller ones.

In the next sections a typical block diagram of a weather radar system will be
discussed together with the derivation of the fundamental equations and the basic
observable definitions and their physical significance.

2.1 Radar Scheme

The precipitation radar principally consists of a transmitter, a receiver, a transmit-
ter/receiver switch (or circulator), and an antenna. Fig. I.2.1 shows a typical block
diagram of a weather radar. The transmission section (blocks on the left side of
the circulator) consists of a pulse modulator that switches the continuous sinusoidal
waveform, generated by the STAble Local Oscillator (STALO) and the COHerent
Oscillator (COHO), on and off to form discrete pulses. The radar sends out a pulse
of a prescribed time width (T0) and then switches to the receiver section (blocks
below the circulator) to listen for possible radar echoes. The range to the targets
is obtained by comparing the instants of transmission of pulses with the instants
where the backscattered signal is received. In precipitation radars, the pulses are
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Fig. I.2.1 Block diagram of a weather radar partially taken from Bringi and Chandrasekar (2001)

transmitted at a pulse repetition frequency (PRF) of about 300–2,500 Hz and each
pulse time duration is of the order of 10–6 s. The time interval between successive
transmitted pulses limits the maximum range (rmax) that the electromagnetic wave
can run before the next pulse is transmitted. In formulas rmax can be expressed as
follows:

rmax = c

2PRF
, (1.2.1)

where c (m/s) indicates the light velocity and the factor 2 is due to the two-way trip
(from the antenna to the target and from the target to the antenna) of the transmitted
pulses.

While the PRF limits the maximum detectable range rmax, the time duration
of the pulses T0 limits the radial horizontal spatial resolution �r (see Fig. I.2.1),
i.e., targets separated in space by at least �r will be completely resolved in range.
Consider two targets located at ranges r1 and r2, with r1<r2. The signals corre-
sponding to these targets, after sending a pulse, will be received, respectively, at
the instants t1 and t2. Then, the distance between the targets �rt = (r2 − r1) can
be computed as �rt = c(t2 − t1). If the two targets are at least of cT0/2 apart, the
trailing edge of the received pulse from the first target is well separated (i.e., it is
not overlapped) to the leading edge of the received pulse from the second target.
Therefore, the radial horizontal spatial resolution of radar is given by

�r = cT0

2
. (1.2.2)
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In the latter, �r is expressed in meters when T0 in seconds and c in meter·per
second.

The receiver detects the radar signal, amplifies it, converts from analog to digital,
and averages the returned pulses over defined time periods. If the observed target
is moving, the received signal shows a Doppler frequency shift f0 which can be
detected by the coherent receiver (see blocks after the IF amplifier on Fig. I.2.1).
The in-phase (I) and the in-quadrature (Q) components at the output signal of the
coherent receiver are then used to retrieve the Doppler velocity of the observed
target. Typical peak transmitted power is 105–106 W, whereas typical received
power is 10–10 W. The circulator protects the sensitive receiver from the powerful
transmitter.

Eventually, radar antennas focus the transmitted energy and direct it along a nar-
row angular beam. For scanning radars (i.e., radars that are able to roundly move
its antenna for several elevation angles), this direction is often described in terms of
an elevation angle relative to the ground and an azimuth angle relative to the north.
The radar energy is higher along the center of the beam and decreases outward with
increasing angular width. The beam width is defined as the angular width where the
power is exactly half the maximum power (or –3 in dB scale). Along the vertical and
horizontal directions these angles are, respectively, labeled as �3dB, �3dB. Then the
resolution volume �V (m3), illuminated by a transmitted pulse along the beam, is
approximated by a cylinder as shown in Fig. I.2.1. Therefore, the volume of this
cylinder can be expressed as follows:

�V = �r · �S ∼=
(

cT0

2

)(
r�3dB

2

)(
r�3db

2

)
π = cT0�3dB�3db

8
πr2. (1.2.3)

As can be observed from the latter expression, the resolution volume becomes
more and more large as the distance from the radar increases.

Last consideration concerns the polarimetric radar schemes where both the trans-
mission and receiver sections are, in some way, replicated to, respectively, transmit
and receive the horizontal and vertical polarized waves. Indeed, either alternate dual-
polarization schemes (with a suitable switch) or a hybrid slant linear polarization
transmitting scheme can be used, the latter being nowadays the most applied.

2.2 Radar Equation for Single Target

The radar equation expresses the relationship between the transmitted power (Wt)
and the backscattered received power (Wr) from precipitation targets in terms of the
radar’s hardware characteristics and the distance between the transmitter and the
target.

Let us consider a single target, shown in Fig. I.2.2, at distance r from the radar.
The incident power density (Pi) on the target, expressed in W/m2, is given by the
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Fig. I.2.2 Transmission and
reception of radar pulses from
a single target. Wr, received
power; Wt, transmitted
power; Pr, received power
density; Pi, incident power
density on the target; Wb,
radar backscattered power
from the target; GM,
maximum antenna gain; fn,
normalized antenna radiation
pattern; σ b, radar
backscattering cross section

power, distributed over a sphere or ray r, weighted by the antenna gain G which
reassumes the antenna radiation efficiency and its directive properties:

Pi(r, θ , ϕ) = Wt

4πr2
G(θ , ϕ)L(r). (1.2.4)

In Eq. (1.2.4) L(r) is the loss factor of the medium which separates the target
from the antenna, θ and ϕ are, respectively, the antenna elevation and the azimuth
angle. G(θ , ϕ) can be split up, for convenience, into two terms as follows:

G(θ , ϕ) = GM · |fn(θ , ϕ)|2 , (1.2.5)

where GM represents the maximum antenna gain, whereas fn accounts only for the
directional properties of the antenna. After interacting with the target, the incident
wave is partially scattered back to the radar. More in detail, when an electromagnetic
wave hits on a dielectric particle, both scattering and absorption contribute to the
loss of energy of the incident wave. The absorption causes the loss of power from
the incident wave since the power is absorbed by the target and dissipated as heat.
On the other hand, the scattering diffuses the incident power in many directions and
the loss of energy manifests when these directions are those undesired with respect
to the location of the transmitter and the receiver. The combination of the absorption
and scattering is called extinction of the electromagnetic wave. The extinction can
be described by the radar cross section or also called extinction cross section (σe)
usually expressed in square meter. It can be defined as the ratio between the resulting
power after the extinction of the wave (We) and the incident power density (Pi).
Obviously σe is a function of the direction through the angles θ and ϕ. If the line of
sight between the radar and the target is considered, only the backscattered power
(Wb) has to be accounted for the computation of the received power Wr. Therefore
the backscattering radar cross section (σb = Wb/Pi), instead of σe, will be used in
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the next formulas. With the definition of σb in mind, the received power density (Pr)
at the radar antenna aperture is given by

Pr(r, θ , ϕ) = Pi(r, θ , ϕ) · σb

4πr2
· L(r). (1.2.6)

The received power (Wr) can be obtained exploiting the characteristic of a receiv-
ing antenna to transform the intercepted power density at its aperture into a power
at its output. This characteristic is the antenna equivalent area (Ae). For whatever
antenna (Balanis, 1997) the following holds:

Ae(θ , ϕ) = λ2

4π
· G(θ , ϕ). (1.2.7)

The received power can be then expressed as follows:

Wr = Pr(r, θ , ϕ) · Ae(θ , ϕ). (1.2.8)

Substituting Eq. (1.2.4) in Eq. (1.2.6) and using both Eqs. (1.2.7) and (1.2.8)
for the expressions of Ae and G, the received power can be explicated as indicated
below:

Wr =
(

WtG2
M |fn(θ , ϕ)|4 λ2

(4π )3

)

︸ ︷︷ ︸
c1

·L2 · σb

r4
= C1 · L2 · σb

r4
. (1.2.9)

In the latter expression the radar constant C1 has been introduced. This is made
possible since the single target is supposed to be perfectly enclosed in the main lobe
of the antenna along the direction of maximum radiation where fn =1.

2.3 Radar Equation for Distributed Target

Precipitation particles, such as raindrops, snowflakes, hail, and graupel, act as dis-
tributed scatters in the volume of the atmosphere illuminated by the precipitation
radar. The backscattered signal from a volume of randomly distributed targets is the
sum of the signals scattered by each of the single target within that volume. It is
suitably defined as a quantity called radar reflectivity for unit volume, that is,

η =
∑

i
〈σbi〉

�V
, (1.2.10)

where the summation is extended to all the radar backscatter cross sections σ bi

of the particles within the radar resolution volume ΔV (m3), which is specified in
Eq. (1.2.3), and “<·>” is the time average operator that considers all the received
samples in a given time interval. Considering all the terms which depend on the
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position within the resolution volume in Eq. (1.2.9) and weighting them with the
antenna gain function G(θ , ϕ), the average received power assumes the following
form:

〈Wr〉 = Wtλ
2

(4π )3
L2

∫

�V

G2(θ , ϕ)

r4
ηdV (1.2.11)

Exploiting again Eq. (1.2.9) for expressing the antenna gain function G(θ , ϕ)
and expressing the infinitesimal element of volume dV equals to r2·dr·d� and dr as
cT0/2 as in Eq. (1.2.2), Eq. (1.2.11) becomes

〈Wr〉 ∼= Wtλ
2G2

M

(4π )3

( c

2
T0

) η

r2
L2

∫

�

|fn(θ , ϕ)|4d� (1.2.12)

Assuming a Gaussian function for describing the radiation pattern fn of the radar
antenna, the integral in Eq. (1.2.12) can be approximated (Probert-Jones, 1962) as
written below:

∫

�

|fn(θ , ϕ)|4d� ∼= π�3dB�3dB

8 ln 2
(1.2.13)

Substituting Eq. (1.2.13) in Eq. (1.2.12), the average received power, in its final
form, assumes the following expression:

〈Wr〉 ∼=
(

WtG2
Mλ2cT0�3dB�3dB

1024 · ln 2 · (π )2

)

︸ ︷︷ ︸
C2

· L2 · η

r2
= C2L2 η

r2
(1.2.14)

As in the case of the single target, the radar calibration constant (C2) includes all
the dependencies from the hardware specifications. We observe that the dependence
of Wr is now on r−2 instead of r−4 as for single target equation but this is simply the
consequence of the integration of all the distributed targets. The knowledge of the
constant C2 and the measure of Wr allows the retrieving of the reflectivity for unit
volume η. The constant C2 is calculated through a calibration process, for example,
measuring the power received by a target of known radar reflectivity. Typical lower
bounds for C2 are 0.5–1 dB. In the next section, the average power <Wr> will be
expressed as a function of the widely used radar reflectivity factor instead of the
radar reflectivity for unit volume as done in Eq. (1.2.14) (Fig. I.2.3).

2.3.1 Microwave Backscattering Models

To be valuable in precipitation studies, the average returned power, measured by
weather radars, expressed by Eq. (1.2.14), must be related to the physical charac-
teristics of the precipitation particles within the radar resolution volume. To pursue
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Fig. I.2.3 Transmission and
reception of radar pulses from
a distributed target. Wr,
received power; Wt,
transmitted power; Pi,
incident power density on the
target; η, volumetric
reflectivity; ΔV, radar
resolution volume; GM,
maximum antenna gain; fn,
normalized antenna radiation
pattern

this aim and to maintain the treatment also valid for polarimetric radars, in the next
sections, the polarimetric radar principles will be introduced and expressions of the
reflectivity will be derived for the spherical particles in the Rayleigh and the Mie
approximations, i.e., respectively, the case where the wavelength of the transmitted
signal is much larger than the geometrical cross section of the target and the opposite
situation. The case of non-spherical particles will be discussed as well.

2.4 Radar Polarimetry

It is well established (Jones, 1959; Pruppacher and Beard, 1970; Pruppacher and
Pitter, 1971; Bringi et al., 1998) that small raindrops (i.e., with diameter less than
1 mm) are spherical, whereas larger raindrops are deformed by aerodynamic forces
into horizontally oriented oblate spheroids. An oblate spheroid is the body of rev-
olution formed when an ellipse with minor axis dimension (a) and major axis
dimension (b) is rotated about its minor axis. Raindrops usually fall with their
maximum dimension oriented horizontally. This orientation may be temporarily
disturbed by turbulence, drop collision, or aerodynamic instability. The differences
in the ratio between the horizontal and vertical dimensions of larger drops result
in different electromagnetic properties of the scattered energy when the incident
energy is horizontally versus vertically polarized. A special type of precipitation
radar, called polarimetric radar, is designed to measure these properties by transmit-
ting and receiving radiation in more than one orientation. Ongoing research (e.g.,
Gorgucci et al., 2000; Vivekanandan et al., 2004; Marzano et al., 2008) has shown
that polarization radar variables involving the differential amplitude and phase of the
received power at orthogonal polarizations can be related to the physical character-
istics of the precipitation. Among others, two commonly used polarimetric variables
in precipitation applications are the differential reflectivity (Zdr), related to the axis
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ratio of the precipitation particles and specific differential propagation phase shift
(Kdp), related to liquid water content. These radar observables and the polarimetric
radar principles will be introduced in the next sections.

2.4.1 The Polarization State

The polarization of the radiated wave, which is coincident by definition with
the antenna polarization, is defined as “that property of an electromagnetic wave
describing the time varying direction and relative magnitude of the electric field
vector (E); specifically the figure traced as a function of time by the extremity of the
vector E at a fixed location in space and the sense in which it is traced, as observed
by the along the direction of propagation” (Balanis, 1997).

Polarization then is the curve traced by the end point of the arrow representing
the instantaneous electric field. The field must be observed along the direction of
propagation. A typical trace as a function of time is shown in Fig. I.2.4. The polar-
ization of a field is generally elliptic that is the arrow representing the instantaneous
electric field describes an ellipse as indicated in panel (b) of Fig. I.2.4. Special cases
of the elliptical polarization are the circular polarization, which occurs when the
major (OA) and minor (OB) axes of the ellipse coincide and the linear polarization
which is the degeneration of the ellipse in a line.

2.4.2 The Scattering Matrix

Before describing the scattering of a plane electromagnetic wave by a drop and more
in general by a non-spherical particle in an arbitrary orientation, it is necessary to

v

v
h

h

Fig. I.2.4 Rotation of a plane electromagnetic wave (panel a) and its polarization ellipse, at ωt=0
(panel b), as a function of time (Balanis, 1997)



I.2 Meteorological Radar Systems 43

i

i

0 0

i

i

i

s

s

s

s

s

Fig. I.2.5 FSA convection
for representing incident and
scattered waves

specify the directions of the incident and the scattered waves and the orientation of
the particle with respect to a reference frame.

In this section the concepts of polarization and the scattering from a single par-
ticle will be introduced. Following the notation used in Zly and Ulaby reported in
Bringi and Chandrasekar (2001), consider a particle positioned at the origin of a
Cartesian reference system as shown in Fig. I.2.5. The direction of incidence (i) of
the plane wave is specified by the angles θ i and ϕi or alternatively by the triplet
k̂i, ĥi, v̂i shown in the same figure, where h and v define the plane where the inci-
dent electric field (Ei) varies. With this notation in mind the electric field vector can
be formulated as follows:

Ei(O) = Eh
i ĥi + Ev

Ev̂i ⇒ Ei(O) =
[

Eh
i

Ev
i

]
(1.2.15)

In Eq. (1.2.15) Ei has been expressed as a function of the two components,
respectively, along the horizontal (E h

i ) and vertical (E v
i ) directions. The directions

h and v assume a useful descriptive significance when θ i≈90◦ and the plane XY
becomes the Earth’s surface and ki is parallel on it. In order to express the scattered
electric field (Es), a reference system analogous to that just introduced for the inci-
dent wave can be used. Then, the vector Es can be described by the triplet k̂s, ĥs, v̂s
as shown in Fig. I.2.5.

The geometrical convention just introduced is called forward scattering align-
ment (FSA) as opposed to the backward scattering alignment (BSA), where the
scattered field is seen from an observer positioned at the location of the receiver
antenna (and not inside the particle as in the FSA convention). However, BSA
is simply formulated from FSA just considering kr = –ks, vr = vs, and hr = –hs,
where the subscript “r” indicates the received wave from the radar.

When a plane wave hits a particle, in it, an electrical field (Eint) is generated.
Eint can be considered as the source of the scattered field (Es) from the particle.
The exact formulation of the scattered field can be obtained solving the Helmholtz
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equation which is directly derived from the Maxwell ones. At great distance from
the spherical particle of dielectric constant εr the following expression holds:

Es(ks) = k2
0

4π
(εr − 1)

e−jk0r

r

∫

V

[
ET

int(k) − k̂s

(
k̂s · ET

int

)]
ejk0·k·ksdτ

= e−jk0r

r
· f

(
k̂i, k̂s

)
,

(1.2.16)

where r is the distance between the particle and an observation point in the free
space, V the volume of the particle, k0 the propagation constant in the free space,
and f, in the third term of Eq. (1.2.16), the complex scattering amplitude function
which describes the scattering properties of the considered particle.

The solution of the scattering problem reduces to the computation of the func-
tion f from the knowledge of the induced internal field Eint. If Es is expressed in the
same form of the incident field in Eq. (1.2.15) in terms of their horizontal and ver-
tical components, Eq. (1.2.16) can be expressed by means of the scattering matrix
(S). The scattering matrix accounts for the scattering properties of a single particle.
Using the FSA convection the scattered field is linked to the incident one, through
S, as follows:

Es = e−jk0r

r
· SFSA · Ei ⇒

[
Es

h

Es
v

]
= e−jk0r

r
·
[

Shh Shv
Svh Svv

]
FSA

·
[

Ei
h

Ei
v

]
(1.2.17)

where h and v represent the horizontal and vertical polarizations for the transmitted
(given by the second subscript) and received (given by the first subscript) signals.
The FSA convection is oriented to give more importance to the direction of propaga-
tion of the scattered wave. For radar applications the BSA convection is used instead
of the FSA one. According to BSA, the received electrical field can be expressed as
follows:

Er = e−jk0r

r
·SBSA·Ei ⇒

[
Er

h

Er
v

]
= e−jk0r

r
·
[−1 0

0 1

]
·
[

Shh Shv
Svh Svv

]
FSA

·
[

Ei
h

Ei
v

]
(1.2.18)

It is worth mentioning that the scattering matrix elements depend on the direc-
tions of incidence and scattering of the electromagnetic wave as well as on the size,
morphology, and composition of the particle. In general, it seems reasonable to find
a connection between the scattering matrix elements and the radar cross section of
the particle seen from the radar from different polarizations. Indeed, this relationship
exists and is reported here (see Bringi and Chandrasekar, 2001 for details):

σij = 4π
∣∣Sij

∣∣2 (1.2.19)

where the indexes “i” and “j” indicate all the possible combinations of the polar-
izations h and v and Sij are the elements of the scattering matrix S. For monostatic
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radars (i.e., radars where one single antenna transmits and receives signals), the
reciprocity theorem is valid and the cross-polarization elements of the scattering
matrix are identical:

(Shv = Svh)BSA (1.2.20)

For spherical particles the radar sees the same section whatever polarization h of
v is used, then the following two relations hold:

Shh = Svv = Ssphere (1.2.21)

and

Shv = Svh = 0 (1.2.22)

The analytical expression for Ssphere will be shown in the next section.
For non-spherical drops Shh and Svv will not be equal and, furthermore Shv and

Svh will not be 0. However, if we assume that every single raindrop is uniformly
oriented with zero canting angle (i.e., with their axes of symmetry vertically aligned
with respect to the direction of incidence of the transmitted radar signal), Shv and
Svh continue to be 0.

2.5 Scattering from Spherical Particles

In this section the expression of the received average power ,Wr> formalized in
Eq. (1.2.14) will be further developed by better specifying the expression of the
volume radar reflectivity η. If the radar volume is filled by some particles with a
distribution N(D) and equivalent diameter D, Eq. (1.2.10) that represents the sum
of the radar backscattering cross section σbi of individual particles over unit volume
can be extended as follows:

η =
∑

i
σbi

�V
=

∞∫

0

σb(D)N(D)dD, (1.2.23)

where N(D) is expressed in mm−1·m−3, the radar backscattering cross section σ b
in square meter, and D in millimeter. The radar reflectivity characterizes the target
properties and its definition is independent from the nature of the scattering medium.
If D/2<<λ (it is often assumed in equivalent manner D less than ∼λ/16), the expres-
sion of the backscattering cross section, for a spherical particle, assumes a simple
form as follows:

σb = k4
0

4π
·
∣∣∣∣3 · (εr − 1)

εr + 2

∣∣∣∣
2

· V2
Sphere = π5

λ4
· |Kl|2 · D6 (1.2.24)
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where Vsphere = (π/6) · D3 is the volume of the equivalent sphere, k0 = 2π/λ

is the propagation constant in the free space, and |Kl|2 = |(εr − 1)/(εr + 2)|2 is
a quantity called dielectric factor of the microphysical species “l” (e.g., l = w for
water and l = i for ice) which depends on wavelength (λ), temperature, and dielectric
constant (εr). |Kl|2 can assume different values such as |Kw|2 = 0.93 for water and
for temperatures in the range 0–20◦C and |Ki|2 = 0.208 for ice with density of
about 1 g/m3.

Equation (1.2.24) is referred to as the Rayleigh approximation of the backscat-
tering cross section. Under the Rayleigh regime, the normalized radar cross section,
with respect to the geometrical cross section (also called backscattering efficiency
ξb), increases as the fourth power of the ratio D/λ (see Fig. I.2.6 in logarithm coordi-
nates). When the equivalent diameter is greater than ∼λ/16 Mie or optical scattering
occurs. In contrast to Rayleigh scattering, under conditions of Mie scattering, the
backscattered returned power fluctuates as the size of the scatter increases. This
phenomenon is shown in Fig. I.2.6.

Following the Rayleigh theory and substituting Eq. (1.2.24) in Eq. (1.2.23), an
expression of the volumetric reflectivity as a function of size distribution of diame-
ters, dielectric properties, particle sizes, and the radar frequency is obtained and is
made explicit here in the following equation:

η = π5

λ4
|Kl|2 ·

∞∫

0

D6 · N(D)dD

︸ ︷︷ ︸
z

= π5

λ4
|Kl|2 · Z, (1.2.30)

b

Fig. I.2.6 Backscattering efficiency ξb = σb · [π (D/2)2
]−1

as a function of k0·D/2 for different
backscattering regimes
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where Z is the radar reflectivity factor (it should not be confused with the radar
reflectivity for unit of volume η) expressed in mm6/m3 and as can be observed from
Eq. (1.2.30), under Rayleigh approximation, it coincides with the statistical moment
of order six of the size distribution of rainy drops.

Similarly to η, the reflectivity factor Z can be also interpreted as an average
characteristic of the population of scatters distributed in a given radar volume. Z
is independent from the wavelength and this property makes easier the comparison
of reflectivity factors derived from different radar systems.

If the Rayleigh condition is not satisfied and Mie scattering holds, an equivalent
reflectivity factor, Ze, is conveniently introduced and the third term of Eq. (1.2.30) is
still valid when Ze instead of Z is considered and l=w, indicating a dielectric factor
K referred to water. Ze can be interpreted as the reflectivity factor of a population of
liquid and spherical particles satisfying the Rayleigh approximation and producing
a signal of the same power produced by a generic set of targets within the radar
volume. Thus, in the Mie scattering Ze is given by

Ze = λ4

π4 · |Kw|2 · η (1.2.31)

With Eqs. (1.2.30) and (1.2.31) in mind, the average power received by a radar
in Eq. (1.2.14) can be updated and, in general, it depends, among other parameters,
on the equivalent radar reflectivity and then on the physical characteristics of the
observed particles. It is important to note that Z describes the characteristics of the
target in a way independent of the wavelength. In addition, in the case of spherical
particles, as discussed before the scattering matrix is completely defined through the
expression of the radar cross section.

2.6 Scattering from Spheroidal Particles

The solution of the scattering and absorption problems of the electromagnetic waves
from dielectric spheres with arbitrary size has been obtained by Mie in 1908 (Ulaby
et al., 1986). The Mie solution is well known and it has been used for studying a
lot of physical systems. However, various problems, such as the interaction of the
electromagnetic waves with the hydrometeors, are related to the scattering from non-
spherical bodies at wavelength comparable with the size of the observed particles.
The extended boundary condition method (EBCM) also called T-matrix method
(where “T” stands for transition) provides the solution of this class of problems and
allows the computation of the scattering matrix through a numerical implementa-
tion. This technique was initially introduced by Waterman (1971) as a technique for
computing electromagnetic scattering by single, homogeneous, arbitrarily shaped
particles based on the Huygens principle. An important feature of the T-matrix
approach is that it reduces exactly to the Mie theory when the scattering particle
is a homogeneous or layered sphere composed of isotropic materials. Even though
the T-matrix is potentially applicable to arbitrarily shaped particles, most of the
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implementation refers to the computation of the scattered field for revolution solids
such as cones, cylinders, and spheroids (Mishchenko and Travis, 1998).

More in detail, the aim of this method is to compute the scattered field from
an arbitrarily shaped particle when it is illuminated by an incident plane wave.
The field in every point of the space is given from the sum of the incident wave
and the scattered one, where the incident wave is considered without the presence
of the particle. The scattered field can be thought to be generated from superficial
currents which have been induced on the particle by the incident wave. Then the
T-matrix determinates the scattered field as a function of the incident field and
the physical characteristics of the particle. This can be obtained by applying the
equivalence theorem (of Love) in which the scattered field is assumed generated by
some induced superficial currents which are supposed to be localized on the extreme
surface of the particle. The core of the procedure consists of the following steps:

1. Relate the field internal to the particle to the external one
2. Determinate the superficial currents as a function of the internal field found at

the previous step
3. Compute the scattered field generated by the superficial currents

Without considering all the mathematical passages, in formulas, the T-matrix
approach expresses both the incident and the scattered fields as a linear combina-
tion of vectorial functions of the spheric waves which are solutions of the vectorial
Helmholtz equation. These functions, indicated as Mnm and Nmn are called mul-
tipole. Therefore, an incident electric field polarized along the x-direction and
propagating along the z-direction is expressed as follows:

Ei = x̂E0e−jk0z =
∞∑

n=1

[ao1n · Mo1n(k0r, θ , ϕ) + be1n · Ne1n(k0r, θ , ϕ)], (1.2.32)

where a01n and b01n are known coefficients. The same expansion can be done for
the scattered field in terms of the unknown coefficients f01n and g01n:

Es =
∞∑

n=1

[
fo1n · Mo1n(k0r, θ , ϕ) + ge1n · Ne1n(k0r, θ , ϕ)

]
(1.2.33)

Due to the linearity of the Maxwell’s equations and boundary conditions, the
relation between the scattered field coefficients (f01n and g01n) and the incident field
coefficients (a01n and b01n) must be linear and is given by the transition matrix T (or
T-matrix) (Waterman, 1971; Mishchenko, 2000):

[
fo1n

ge1n

]
=

[
T11 T12

T21 T22

]

︸ ︷︷ ︸
T

×
[

ao1n

be1n

]
(1.2.34)
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Once the T-matrix for a given particle is known, Eq. (1.2.33) can be used to
determine the scattered field and then to derive the scattering matrix introduced
before. The T-matrix, which is completely independent of the propagation direc-
tions and polarization states of the incident and scattered fields, depends only on
the scattering particle characteristics (size relative to the wavelength, shape, relative
refractive index, and orientation with respect to the laboratory reference frame). This
means that for any particular particle, the T-matrix only needs to be calculated once
and can then be used for repeated calculations. This is a significant advantage over
many other methods of calculating scattering where the entire calculation needs to
be repeated.

2.7 Radar Observables

In this section a review of the main radar observables is exposed. For major details
about these observables refer to Bringi and Chandrasekar (2001). References about
algorithms that use polarimetric radar observables for rain estimation can be found
in Chandrasekar and Bringi (1987), Testud et al. (2000) and Ryzhkov et al. (2005).
For the attenuation correction problem see for example Bringi et al. (2001), Vulpiani
et al. (2005).

2.7.1 Reflectivity Factor

As mentioned before the reflectivity factor depends, in general, on the size distribu-
tion of hydrometeors, the backscattering cross section, and its physical characteris-
tics. Since the radar signals can be received in the vertical or horizontal polarization
it is opportune to refer to the co-polar reflectivity factor, expressed in Eq. (1.2.31),
as follows:

Ze hh,vv = Zhh,vv = λ4

π5|K|2 ηhh,vv = λ4

π5|K|2
Dmax∫

Dmin

σb,hh,vv(D) · N(D) · dD

= 4λ4

π4|K|2
〈
|Shh,vv|2

〉
(1.2.35)

where Dmin and Dmax are the minimum and maximum particle diameters, Shh,vv
are the backscattering co-polar components of the scattering matrix S at horizontal
and vertical polarizations, respectively, |K|2 = |(εr − 1)/(εr + 2)|2 is the complex
dielectric constant of scattering particle which is a function of wavelength and tem-
perature, and the operator “<·>” indicates the ensemble average over the drop size
distribution. In the fourth term of Eq. (1.2.35), Eq. (1.2.24) has been used. The
reflectivity factor has the unit of mm6·m−3 but it is often expressed in decibels of
Z (dBZ) defined as 10 log10(Zehh,vv). Henceforth, for simplifying the notation, the
equivalent reflectivity factor Ze will be indicated as Z.
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2.7.2 Differential Reflectivity

Among the main important observables of polarimetric radars, the differen-
tial reflectivity Zdr plays a relevant role. To obtain radar reflectivity, energy is
transmitted and received at the same polarization, usually horizontal. Differential
reflectivity is the difference between the horizontally transmitted and horizon-
tally received reflectivity factor (Zhh) and the vertically transmitted and vertically
received reflectivity factor (Zvv). This is expressed, in logarithmic scale, in the
following equation:

Zdr = 10 · log10
Zhh

Zvv
= 10 · log10

〈|Shh|2
〉

〈|Svv|2
〉 (1.2.36)

Differential reflectivity is a measure of the reflectivity-weighted mean axis ratio
(a/b) of precipitation particles in a resolution volume. Zdr depends on the shape
and on the common orientation degree but it is independent from the number of
particles in the radar volume. The measurement process of Zdr can be obtained
alternatively transmitting and receiving h and v in linear polarization. These mea-
surements should be made very fast with respect to the time variation of the target
geometry or in other words within the correlation time of the received time series.

Differential reflectivity has many potential applications, such as rainfall esti-
mation, discrimination between liquid and frozen precipitation, and detection of
biological scatterers (Zrnic, and Ryzhkov, 1998). For rain, as raindrops increase
in volume, the drop diameter D increases, the shape of the drop becomes more
oblate, the axis ratio decreases, and the associated Zdr value increases. For spherical
drops or spherical ice particles, the axis ratio a/b approximates the unity and Zdr≈0.
Table I.2.1 summarizes typical ranges of differential reflectivity values for several
types of precipitations.

For ideal radar systems, differential reflectivity, being the ratio of reflectivity
at horizontal and vertical polarizations, would not be affected by radar calibra-
tion errors. Nevertheless, because of unequal paths or gains in the horizontal- and
vertical-polarized channels of the radar receiver, Zdr can be biased. When viewed
vertically, raindrops of all sizes appear circular and have an associated Zdr value
equal to 0. Thus, a Zdr bias, accounting for the relative difference in calibration

Table I.2.1 Typical ranges of observed differential reflectivity values for several types of
precipitations between S and X bands

Zdr (dB) Associated precipitation types

<–0.5 Marginally detectable precipitation
–0.5 to 0.5 Drizzle, very light rain, light snow
>1 Moderate rain and heavier snow
0.5 to 4 Moderate to heavy rain
–2 to 0.5 Hail and graupel
0.5 to 4 Melting snow particles

Values adapted from Straka et. al. (2000).
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between the horizontal and vertical polarizations, can be estimated by pointing the
radar beam directly upward in rain.

2.7.3 Linear Depolarization Ratio

Radiowave depolarization is characterized by the presence of an anisotropic prop-
agation medium which produces different effects (i.e., different attenuations and
phase shifts) on radio waves with different polarizations. The wave will have its
polarization state altered such that power is transferred (or coupled) from the desired
polarization state to the undesired orthogonal polarization state, resulting in interfer-
ence or crosstalk between the two orthogonally polarized channels. Hydrometeors
whose principal axes are not aligned with the electrical field of the transmitted wave
(see Fig. I.2.7 panel b) will cause a small amount of energy to be depolarized and
to appear at the orthogonal polarization (see Fig. I.2.7 panel a). The effect is mea-
sured by the linear depolarization ratio (the term linear is used to indicate linear
polarization) defined as the ratio of the cross-polar to the co-polar signals.

Fig. I.2.7 Vector relationships for a depolarizing medium: (a) co- and cross-polarized waves for
linear transmission and (b) classical model for a canted oblate spherical rain drop
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LDRhv = 10 · log10
Zhv

Zvv
= 10 · log10

〈|Shv|2
〉

〈∣∣S2
vv

∣∣〉

LDRvh = 10 · log10
Zvh

Zhh
= 10 · log10

〈|Svh|2
〉

〈|Shh|2
〉
, (1.2.37)

where the operator “<·>” indicates the ensemble average over the drop size dis-
tribution. LDRhv and LDRvh have similar properties because they differ only by
the differential reflectivity. The depolarized signal derives from non-spheroidal par-
ticles which oscillate while falling, creating a distribution of canting angles, and
from irregularly shaped particles. LDR depends on the orientation of the polariza-
tion plane of the transmitted wave, on the hydrometeors orientation, on their shape,
and on their degree of common orientation.

Since LDR is a ratio between reflectivities, it is insensitive to the absolute radar
calibration and to the RSD multiplicative intercept parameter. Because the cross-
polar power is usually two to three orders of magnitude smaller than the co-polar
signal, the linear depolarization ratio is affected by noise contamination, propaga-
tion effects, and antenna misalignments. For radars which change polarization for
consecutive transmitted pulses, LDR can be contaminated by second-trip echoes.
Thus, it can also be used to detect range-folded echoes. Typical values of LDR for
different types of hydrometeors are listed in Table I.2.2.

2.7.4 Correlation Coefficients

The co-polar correlation coefficient is defined as

ρhv =

Dmax∫
Dmin

Svv(D) · S∗
hh(D) · N(D) · dD

√
Dmax∫
Dmin

|Shh(D)|2 · N(D) · dD·
√

Dmax∫
Dmin

|Svv(D)|2 · N(D) · dD·
= |ρhv| · ejδhv ,

(1.2.38)

where δhv (deg) is the raindrop volume backscattering differential phase shift. The
magnitude is sensitive to the dispersion in particle eccentricities, canting angles,

Table I.2.2 Typical ranges of observed linear depolarization ratio values for several types of
precipitations between S and X bands

LDR (dB) Associated precipitation types

–30 Drizzle, very light rain, light snow
–25 to –30 Moderate rain and heavier snow
−15 Moderate to heavy rain
−10 Melting snow particles

Values taken from Sauvageot (1992).
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irregular shapes, and the presence of mixed phase precipitation. The correlation
coefficient is independent from the intercept parameter of the drop size distribution
and it is insensitive to hardware calibration. Besides, it is sensitive to signal-to-
noise ratio and can be contaminated by side lobes and ground clutter. Thus, it can
be used to discriminate precipitation and ground clutter echoes. Radar measure-
ments revealed that ρhv is weakly related to differential reflectivity (Balakrishnan
and Zrnic, 1990; Aydin and Giridhar, 1992). As Zdr increases ρhv slightly decreases.

2.7.5 Differential and Specific Differential Phase Shift

As an electromagnetic wave passes through a precipitation volume, incident energy
is scattered back toward the radar and forward along the beam. The forward scat-
tered (propagated) component of the wave becomes shifted (or in other words
delayed) compared to the free space component of the wave transmitted from the
radar. Within horizontally oblate raindrops, the propagating horizontal-polarized
wave undergoes a larger phase shift per unit of length and travels more slowly
than the vertically polarized wave. After passing through a volume filled with
horizontally oblate raindrops, the horizontally polarized wave will have a larger
propagation phase shift than the vertical-polarized wave. Figure I.2.8 shows a
schematic interpretation of the phenomenon just exposed.

The one-way differential propagation phase (�dp) is defined as the difference
between the propagation phase shift of the horizontally transmitted and horizontally

hh vv

Fig. I.2.8 Schematic view of the propagation phase shift of horizontally and vertically polarized
electromagnetic waves passing through a precipitation-filled volume. For simplicity the horizon-
tally and vertically polarized waves are assumed to be in phase prior entering the volume. Panel
(a): when the waves encounter horizontally oblate raindrops, the phase of the horizontally polar-
ized wave is delayed more than the vertically polarized wave. Panel (b): when the waves encounter
spherical particles such as small raindrops or hail the horizontally polarized wave and the vertically
polarized wave are shifted to the same amount and �dp=0
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received energy (�hh) and the propagation phase of the vertically transmitted and
vertically received energy (Φvv), that is:

�dp = �hh − �vv, (1.2.39)

where �hh,vv are the two-way phase angles, expressed in degrees, of the radar signal
at horizontal and vertical polarizations at a particular range distance. As the radar
wave passes through a region of precipitation filled with oblate drops, �dp accu-
mulates with increasing range. To remove range effects, �dp is differentiated with
respect to the distance from the radar “r” in order to yield the specific differential
propagation phase shift (Kdp) which assumes the following form:

Kdp = d�dp

dr
, (1.2.40)

where Kdp is usually expressed in degree per kilometer.
Being Kdp related to the difference of phases of a plane wave propagating through

a non-homogeneous medium composed of a mixture of water and air, it seems natu-
ral to relate Kdp to the real part of the effective propagation constant keff = kRe

eff −jkIm
eff

(derived from the effective dielectric constant εeff).

Kdp = 10−3 180

π
· (keff

Re
h − keff

Re
v

)
. (1.2.41)

To highlight this aspect it is sufficient to remember that the exponential term of
a plane wave which propagates, for example, along the r-direction in a medium of
dielectric constant εeff is −j · keff · r and then keff

Re represents a phase term, whereas
keff

Im represents an attenuation term. Omitting all the mathematical passages [refer
to Bringi and Chandrasekar (2001) for the rigorous treatment] keff assumes the fol-
lowing expression in the case of a slab of air with n spherical particles per unit
volume:

keff = k0 + 2πn

k0
êi · f (k̂i, k̂i) (1.2.42)

where f is the vectorial scattering function introduced in Eq. (1.2.16) and êi is
the unit vector which describes the polarization of the electric field. In this case,
f(k̂i, k̂i)) describes the scattering behavior along the direction k̂i in response to an
incident plane wave which propagates along the same incident direction k̂i (forward
scattering). Substituting Eq. (1.2.42) in Eq. (1.2.41), the expression of Kdp for a
portion of air with n particles per unit volume becomes

Kdp = 10−3 180

π
· 2πn

k0
Re

[
ĥ · f (k̂i, k̂i) − v̂ · f (k̂i , k̂i)

]
(1.2.43)
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Table I.2.3 Typical ranges of observed specific differential phase in several precipitation types

Kdp (deg/km) Associated precipitation types

<–0.5 Marginally detectable precipitation
–0.5 to 0.5 Drizzle, very light rain, light snow
0.5 to 1 Moderate rain and heavier snow
0.5 to 5 Moderate to heavy rain
–0.5 to 1 Hail
–0.5 to 1 Melting snow particles

Values adapted from Straka et. al. (2000) and Bringi and
Chandrasekar (2001).

In the general case, where a size distribution of particles N(D) exists, Eq. (1.2.40)
can be reformulated as follows:

Kdp = 103 180

π
λRe

⎧⎨
⎩

∞∫

0

N(D)
[
fhh(r, D) − fhh(r, D)

]
dD

⎫⎬
⎭ , (1.2.44)

where the components fhh,vv are the projection of the vectorial scattering func-
tion in the forward direction of the wave propagation f(k̂i, k̂i), along the vertical(

f(k̂i, k̂i) · v̂
)

and horizontal
(

f(k̂i, k̂i) · ĥ
)

directions.

The observable Kdp is not affected by electromagnetic wave attenuation since it
is based on the measurement of the phase shift of the wave rather than the ampli-
tude of the returned power. Being based on the phase shift concept, Kdp can be
obtained when the radar beam is partially blocked as well. Beam blocking can be
caused by mountainous or terrain roughness for example. In addition, Kdp is a very
important parameter being insensitive to radar calibration, propagation effects, and
system noise. Potential uses of Kdp include estimation of moderate and heavy rain
rates, correction for attenuation losses, and verification of radar hardware calibra-
tion. Nevertheless, it is more readily contaminated by side lobe signals than the
power measurements (Sachidananda, and Zrnic, 1987). A disadvantage of Kdp is its
insensitivity to precipitation composed of small spherical raindrops, where D<1 mm
and the axis ratio a/b≈1, associated with low liquid water contents and low rain
rates. Typical values for Kdp are listed in Table I.2.3.
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