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Introduction

IN SOME technical problems we are concerned with a current which

consists of a sinusoidal component plus a random noise component. A
number of statistical properties of such a current are given here. The present

paper may be regarded as an extension of Section 3.10 of an earlier paper,^

"Mathematical Analysis of Random Noise", where some of the simpler

properties of a sine wave plus random noise are discussed.

The current in which we are interested may be written as

. ,

, ^,

/ ^ ()cos gt+I,
^^^^

- i^cos (gt+ e)

where Q and q are constants, I is time, and 1^ is a random (in the sense of

Section 2.8 of Reference A) noise current. When the second expression in-

volving the envelope R and the phase angle 6 is used, the power spectrum of

/iv is assumed to be confined to a relatively narrow band in the neighborhood

of the sine wave frequency /« = g/(27r). This makes R and 9 relatively

slowly (usually) varying functions of time.

In Section 1, the probability density and cumulative distribution of / are

discussed. In Section 2, the upward "crossings" of / (i.e., the expected

number of times, per second, / increases through a given value /i), are

examined.

The probabiUty density and the cumulative distribution of R are given in

Section 3.10 of Reference A. The crossings of R are examined in Section 4

of the present paper.

The statistical properties of $', the time derivative of the phase angle 5,

are of interest because the instantaneous frequency of / may be defined to

hefy + O'/ilir). The probabihty density of 6' is investigated in Section 5

and the crossings of 6' in Section 6. 6' is a function of time which behaves

somewhat like a noise current and may accordingly be considered to consist

of an infinite number of sinusoidal components. The problem of determin-

ing the "power spectrum" W(J) of 6', i.e., the distribution of the mean

square value of the components as a function of frequency, is attacked in

^B.S.TJ. 23 (1944), 282-332 and 24 (1945), 46-156. This paper will be called

"Reference A",
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Sections 7 and 8. The correlation function of d' is expressed in terms of

exponential integrals in Section 7, the power spectrum of In being assumed

symmetrical and centered on /g. In Section 8, values of W{j) are obtained

for the special case in which the power spectrum of In is centered on/, and is

of the normal-law type.

It is believed that some of the material presented here may find a use in

the study of the effect of noise in frequency modulation systems. For

example, the curves in Section 8 yield information regarding the noise power

spectrum in the output of a primitive type of system. Also, the procedure

employed to obtain the expression (5.7) for 6' may be used to show that if

()cos[(A/wo) cos Wo/ + qt\ -\- In = Rcos {qt + 6)

the sinusoidal component of dd/dt is^

—A (1 — e~'') sinwo^

where p is the ratio Q^/(2 1%). This illustrates the "crowding effect" of the

noise. The statistical analysis associated with R and B^i equations (3.4)

(when the sine wave is absent) is similar to that used in the examination of

the current returned to the sending end of a transmission line by reflections

from many small irregularities, distributed along the line. This suggests

another application of the results.
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1. Probability Distribution of a Sine Wave Plus Random Noise

A current consisting of a sine wave plus random noise may be represented

as

I = Qcos qt + In (1.1)

where Q and q are constants, / is the time, and 7^ is a random noise current.

The frequency, in cycles per second, of the sine wave is/, = q/(2ir). In all

2 The first person to obtain this result was, I believe, W. R. Young who gave it in an

unpublished memorandum written early in 1945. He took the output of a frequency

modulation limiter and discriminator to be proportional to either the signal frequency or

to the instantaneous frequency (assumed to be distributed uniformly over the input band)

of In according to whether Q is greater or less than the envelope of In His memorandum

also contains results which agree well with several obtained in this paper.

J:
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our work we denote the power spectrum of la by w{f) and its correlation

function by V'(t). The mean square value of In is denoted by ^o-

The study of the probabiHty distribution of / is essentially a study of the

integraP

where

fix) = -j^e-''' (1-3)

and ^(7) is the probability density of I, i.e. p{l)dl is the probability that a

value of current selected at random will lie in the interval /, / + dl. An-

other expression for p{I) is given by equation (3.10-6) of Reference A,

namely

p{I) = ^ £" e-''-^""'" MQz) -dz (1.4)

where JaiQz) denotes the Bessel function of order zero.

The substitutions

enable us to write (1.2) as

piiy) = V^apU) = - / 'p(y -acos0)de, (1.6)

where Pi(y) denotes the probability density of y. This is the expression

actually studied. Curves showing ^i(y) and the cumulative distribution

function

( pUi)dh = ( Pi{yi)dyi

= -
/ tp-\{v — a cos 6) do,

IT Jo

(1.7)

where

^_,(k) = [ .p(x,)dxr = 1 + herf(x/y/~2) (1.8)
J— cc

^ W. R. Bennett, "Response of a Linear Rectifier to Signal and Noise," Jour. Aeons.

Soc. Amer. Vol. 15 (1944), 164-172, and B.S.TJ. Vol. 23 (1944), 97-1 13.

-j.*il-
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are shown in Figs. 1 and 2. The curves for a = 10 and a = s/lO were com-

puted by Simpson's rule from (1.6) and (1.7), and the curves for a = 1

were computed from the series (1.10) given below. Since both ip{x) and

I/(RMSI)

Fig. 1—Probability density of sine wave plus noise.

/ = Qcos qt_+ /a', a = Q/V^o, y - I/V^o, Vv-o = rms Iff

Piiy) dl/y/^pD = probability total current lies between I and I + dl

y(l + flV2)~^'^ = //(rms /). Curves are symmetrical about y = 0.

<P-i{x) are tabulated* functions the integrals in (1.6) and (1.7) are well

suited to nimierical evaluation.

* it>(x) is given directly and v-ii^) ™*y be readily obtained from W.P.A., "Tables of

Probability Functions," Vol. II, New York (1942). The functions v'^'Cy) are tabulated

in Table V of "Probability and its Engineering Uses" by T. C. Fry (D. Van Nostrand Co.,

J928).

'^y
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The form assumed by pi(y) as the parameter a becomes large is examined
in the latter portion (from equation (1.12) onwards) of the section.

Series which converge for all values of a but which are especially suited

for calculation when a < 1 may be obtained by inserting the Taylor's series

(in powers of x) for *f(y + x) and (p^i{y -{- x), x = —a cos B, in (1.6) and
(1.7) and integrating termwise. When we introduce the notation*

9 ^^= T~.^(y)-:^^„e^ (1.9)

y 99.95

^ 99.9

uj 99.a

ij 99.5

< 99

60

1

' /
/ /
/

/
a=oo h VTo/^

i

f y 1 ^-

/
/ .j^

^0

/./^
^-^

1^
^^P^^^

^^^^
^ '""^

0.3 0.4 0.6 0.8 1.0 1.2 1.4 r.6 I.S 2.0 2.2 2.4 2.6

l/(RMS TOTAL CURRENT)

Fig. 2—Cumulative distribution of sine wave plus noise.

Ordinate = 100 / Pi(yi) dyi . See Fig. 1 for notation.
J— to

we obtain

r
(1-10)

The second equation of (1.10) may be shown to be valid by breaking the

interval (— =»
, y) into (— x , 0) and (0, y). In the first part,

( piiyi) dyi = ;p.,{0)
J- 00



114 BELL SYSTEM TECHNICAL JOURNAL

since both sides have the value 1/2. In the second, term by term integra-

tion is valid since the series integrated are uniformly convergent as may be

seen from the inequality

in which we suppose that y remains finite as » —» =» . This may be obtained

by using the known behavior of Hermite polynomials of large order. ^

When Q » rms /„ so that a is very large the distribution approaches that

of a sine wave, namely

f
0>

I
)*

I
> ^

Pi(y)
I /_2 ?\—1/2 / I .. f ^ „

(1.12)
Xa-yY"'/T, \y\<a

L
V

1 1 -y

pi{yi)dyi ~ - + - arc sin i

,

\y\ < a

In order to study the manner m which the hmiting expressions (1.12) are

approached it is convenient to make the change of variable

x = y- acose, dd = [a^ - {y - ccfY^'^ dx '

z = X — y ^ a

in (1.6). We obtain ., .

''^\{x)\a' ^{y ~x)T"'dx
(1.13)

pfy) = ^-r^\{x)\a' -^{y~x)r"'dx
IT J J,—

a

1 f^"= -
I

<p{z + y - a)[z(2a - z)]

T Jo
._ -'"dz.

Jo

An asymptotic (as a becomes large) expression for pi{y) suitable for the

middle portion of the distribution where a -
| y j
» 1 may be obtained from

the first integral in (1.13). Since the principal contributions to the value of

the integral come from the region around x ^ we are led to expand the

radical in powers of x and integrate termwise. Legendre polynomials enter

naturally since they are sometimes defined as the coefficients in such an

expansion. Replacing the lunits of integration y -\- a and y — a by + oo

and — w
, respectively and integrating termwise gives

_ (^^ -yV^^ fi _L
3f + 1 ,

3(35J^ + 30f + 3) 1

^ L
"^ 2(a^ - f)

"^
8(fl^ - ff ^ J

^A suitable asymptotic formula is given in Orthogonal Polynomials, by G. Szego,

Avi. Math. Soc. Colloquium, Pub., Vol. 23, (1939), p. 195.
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where / ^ yV(o' — y^) and P2„{ ) denotes the Legendre polynomial of

order 2n. We have written this as an asymptotic expansion because it

obviously is one when y, and hence /, is zero in which case

^„ 1.3.5- •(2k - 1)
P2nm = (-)'

2.4.... 2m

(1.15)

When y is near a or is greater than a, a suitable asymptotic expansion may
be obtained from the second integral in (1.13) by expanding (2a — z)~^'^

in powers of z/(2a) and integrating termwise. The upper limit of integra-

tion, 2a, may be replaced by oo since tp(z + y — o) may be assumed to be

negligibly small when z exceeds 2a. We thus obtain

p.iy) -- -E % (l)"""'7"^<^ + y ~ ^^'"~'' ^'
jTn^o «! \2a/ Jo

^ y(y - a) y* (|)r. (}_X ' r e'^^v-"^-^'^'"^^ z"~^'^ dz
I TT n-o «! \2a/ h

where we have used the notation

(a)o = 1, {cl)„ = a(« + 1) ... (« + » - 1).

The integrals occurring in (1.15) are related to the parabolic cylinder

function" D„Xx). Their properties may be obtained from the known

properties of these functions or may be obtained by working directly with

the integrals.

Suppose now that a is very large so that only the leading term in the series

(1.15) forPi(y) need be retained.

Then

p,{y)^ar^''-F{y- a) (1.16)

where

Fis) = ir''2'"' [ ^{z + s)z-'"dz (1.17)
Jo

By writing out ip(z + s), expanding exp (—zs) in a power series, and inte-

grating termwise we see that

,,,^^J^'±'Jtli-sV2y (,18)

where K denotes a modilied Bessel function. The relation (1.18) may also

« VVhittaker and Watson, "Modern Analysis," 4th ed. (1927), 347-351.
"> A table of A'jCv) is given bv H. Carsten and N. McKerrow, Phil. Mag. S7, Vol. 35

(1944). 812-818.
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be obtained from pair 923.1 of "Fourier Integrals for Practical Applica-

tions," by G. A. Campbell and R. M. Foster.^

A curve showing F{y — a) plotted as a function of y — a is given in Fig. 3.

It was obtained from the relation

where

XW =
IJa

_(2-u,!)I
dw

0.24

y-^

(

/ \
/

N

\

/ \
/ \

(D y
\

vlL

S"^

\
O.OB

\
,

v
\

\
V ^^^

4 - 3 -2 -
1 D 2 3

Fig. 3—Probability density of sine wave plus noise.

When rms /,v < < and / is near Q, p^iy) ~ a-^!^F(y - a),y- a= {I - 0/{rms In) .

See Fig. 1 for notation.

This function has been tabulated by Hartree and Johnston."

The probability that I exceeds Q, or that y exceeds a, is, integrating the

second of expressions (1.13),

r°° 1 z"^" dz r*

i. ^'(^' 'y^.i V<2a - z) I. •'''^
'"

An asymptotic expansion may be obtained by expanding (2o — z)~^'^ as in

the derivation of (1.15) but we shall be content with the leading term.

^Bell Telephone System Monograph B-584.
9 Manchester Lit. and Phil. Soc. Memoirs, v. 83, 183-188, Aug., 1939.
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Using

r z-'" dz f <p(x) dz = f <p{x) dx r z-'" dz = 2"\-"' r(|)

we obtain

""
Piiy) dy - 2-''V-'^-r(f)a-"- = 0.185- -aT"^ (1.19)/

For use in computations we list the following values

T{\) = 3.62561, r(|) = 1.22542, r(f) = 0.90640

2. Expected Number of Crossings of I per Second

In this section, we shall study two questions. First, what is the proba-

bility P(/i, ii)di of 7 increasing through the value /i (i.e. of 7 passing

through the value /i with positive slope) during the infinitesimal interval

/i, ti + di} Second, what is the expected number 7V(7i) of times per second

I increases through the value 7i. When 7i is zero, 2N(0) is the expected

number of zeros per second, and when 7i is large A''(7i) is approximately

equal to the expected number of maxima lying above the value 7 1 in an

interval one second long.

We start on the first question by considering the random function

z = F(ai, Oi, • Cff-, t)

where the fl's are random variables. The probability that the random curve

obtained by plotting s as a function of t increases through the value z = zi

in the interval /i, (i + dt is

dt ( r,p{zu n\ h) dr, (2.1)
Jo

where />(^, tj; /i) denotes the probability density of the random variables

^ = F(ai, a2, , an] h)

V = [-1

In our case z becomes the current 7 defined by equation (1.1). The

method used to obtain equation (3.3-9) of Reference A may also be used to

show that the quantity p{fi, 17, /i) (which now appears in (2.1)) is given by

P(h, V, h) = ^-J> <p(y - a cos qh)^{x + 6 sin qt^ (2.2)

"This result is a straightforward generalization of expression (3.3-5) in Section 3.3 of

Reference A where references to related results by M- Kac are given. A formula equiva-

lent to (2.1) has also been given by Mr. H. Bondi in an unpublislied paper written in 1944.

He applies his formula to the problem studied in Section 4.
'

.1.. A.
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where ip{ ) denotes the normal law function defined by equation (1.3) and

1
. /^^ ',^Jl

** ~ v^o '
'' " V-^S'

'

V-i^'o' iVo

Equation (3.3-11) of Reference A shows that Xo is the expected number of

zeros per second which In would have if it were to fiow alone.

LetP(/i,/i)(i^be the probability that /will increase through the value /i

during the intervaUi,fi+(f/. Then (2.1) and (2.2) give

r
^'-'^

= rNdipiy — a cos o/i) / av(* + b sin 9/1) dx,
Jo

The integral in (2.4) is of the form

/ xip(x + v) dx ^ <f:{v) — V I (fix) dx
. ;

= -1 + ^(^) + ^ / <?W f^X
2 Jo

(2.5)= —V -\- tp{v) + Vip-i{v)

where v replaces b sin qli and iFi denotes a confluent hypergeometric func-

tion.

The distribution of the crossings at various portions of the cycle (of the

sine wave) may be obtained by giving special values to 9/1 in (2.4).

The expected number of times / increases through the value /i i.i one

second is

(2.6)

dd

1 r
N{h) =Lhnit- / P{h,h)dk

ip{y — a cos 6) <p{b sin 9) + 6 sin 5 / ip{x) dx

where we have used (2.4) and the second equation of (2.5). The integrand

in (2.6) is composed of tabulated functions and is of a form suited to nu-

merical integration. Expanding ip{y — a cos 0) in (2.6) as in the derivation

-I I .
'I- M..
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of (1.10), replacing the quantity within the brackets by the series' shown in

the last equation of (2.5) ,and integrating termwise leads to

Na.)^N,W/2r-±:^'{ij-\F.{-tn + V.-';) (2.7)

The series (2.7) converges for all values of o, y, and b. This follows from the

inequality (1.11) which may be applied to tp
^"

(y), and from the fact that

the iFi is less than exp {b'/2) as may be seen by comparing corresponding

terms in their expansions.

The expected number of zeros, per second, of / is 2iV(0) where we have set

7i, and hence y, equal to zero. In this case the integral in (2.6) may be

simplified somewhat and we obtain

2N{Q) = N„ ^e-^lM + ^ ^^
(^ . «)] (2.8)

where Io{0) is the Eessel function of order zero and imaginary argument and

a' -\- b' ^ a — h'
a =

, ^ = —
.

Ie{k,x) = I e "laiku) du.
Jo

The integral Te{k, x) is tabulated in Appendix I.

I have been unable to obtain a simple derivation of (2.8). It was orig-

inally obtained from the following integral

N{I{) =?^ f dd >p{y - a cos B) [ x^(x + b sin 9) dx (2.9)
2 J-T

' h

which may be derived from the second equation of (2.4) and the first of

(2.6). Setting /i and y equal to zero and writing out the ^s's gives

2/V(0) =^ [ dd [ dx
2ir J- IT Jo

X exp [—
jC"*-' + 26.r sin 6 + a cos d -\~ b sin" 6)].

Equation (2.8) was obtained by applying the method of Appendix III to

this expression.

3. Definitions and Simple Properties of R and G

The remaining portion of this paper is concerned with the envelope R and

the corresponding phase angle 6. These quantities are introduced and some

of their simpler properties discussed in this section.

Suppose that the frequency band associated with /^r is relatively narrow

nw*.M*to-j.niHBTi-' -tL T'^tc
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and contains the sine wave frequency /g. The noise current may be re-

solved into two components, one "in phase" and the other "in quadrature"

with Q cos qt. Using the representation (2.8-6) of reference A and proceed-

ing as in Section 3.7 of that paper;

Af

In ~ 12 C„ cos {oint — ipn) (3-1)

. . : i : n-i

.
. M
= ^Cn cos [(un - g)t - V„ + $/]

= Ic COS qt — /a sin qt , (3.2)

where

Ic = 11 c„ cos [(ojn — q)t — tpn]

71= 1

I, = 12(^n sin [(oJn — q)t — tpn]

(3.3)

OJn = 27r/„, /„ = nAf, c\ = 2w(/„)A/

w(f) denotes the power spectrum of In and the <PnS are random variables

distributed uniformly over the interval (0, 27r).

The total current / may be written as

I = Qcosqt-\- In '"'.

= {Q-\- i^ cos qt — I, sm qt

(3.4)

= R cos 6 cos qt — Rsm 6 sin qt

= R cos {qt + &)

where we have introduced the envelope function R and the phase angle d

by means of

Rcosd = Q-\- Ic
(3.5)

i? sin e = /,

Since /« and /« are functions of / whose variations are relatively slow in

comparison with those of cos qt, the same is true of R and (usually) 6.

A graphical illustration of equations (3.4) and (3.5) which is often used is

shown in Fig. 4.

In accordance with the usual convention used in alternating current

theory, the vector OQ is supposed to be rotating about the origin with

angular velocity q. If In happened to have the frequency q/2T, its vector

representation QT would be fixed relative to OQ. In general, however, the
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length and inclination of QT will change due to the random fluctuations of

In. Thus the point T will wander around on the plane of the figure. If

rms In is much less than Q, T will be close to the point Q most of the time.

In this case

R^ [{Q + i;}'-+ i]r'^Q-\- Ic

^ -
'^^~' Ofj^-

4

(3.6)

dt^ dlQ Q

and a number of statistical properties of R and d may be obtained from thf

corresponding properties of noise alone when we note that /<-, I „ and /,

behave like noise currents whose power spectra are concentrated in the

lower portion of the frequency spectrum.

os = Q + ic =R COS e _J
QT = In ^

Q 5

Fig. 4—Graphical representation of / = Qcos qi -{- In

By squaring both sides of equations (3.1) and (3.3) and then averaging

with respect to t and the ip„'s we may show that I c, U, and In all have the

same rms value, namely ^o .

It may be seen from (3.3) that the power spectra of /. and I, are both

given by

where it is assumed that < / «/5. Likewise the power spectrum of the

time derivative I,oi I ^ is

47ryX/.+/) + ^(/«-/)] (3-8)

This follows from the representation of l[ obtained by differentiating the

expression {J>.i) for I, with respect to t, the procedure being the same as in

the derivation of equation (7.2) in Section 7. The power spectra shownin

Table 1 were computed from equations (3.7) and (3.8).

The correlation function for I,, and hence also for /., is, from equations

(A2-1) and (A2-3) of Appendix II,

h{t)Ic{t + t) = g = / w(/) cos 27r(/ - A)t df

~ t
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where the bar denotes an average with respect to / and g is a function of t.

From (A2-3) the correlation function for /« is — g" where the double prime

on g denotes the second derivative with respect to t.

Attention is sometimes fixed upon the variation in distance between suc-

cessive zerosof /. The time between two successive zeros of / at, say, ^o and ti

is the time taken for qi -\- 8, as appearing in R cos {qt -\- 8), to increase by tt.

This assumes that the envelope R does not vanish in the interval. For the

moment we write 6 as d{t) in order to indicate its dependence on the time /.

Then to and /i must satisfy the relation

gti + eih) - qk - eito) = TT

Since d(t) is a relatively slowly varying function we write

e(h) - eito) = (h - to)8'it,) + (k - hYe"{h)/2 +

(3.9)

Table 1

Power Spectra as If/,Ie,Ia, and /,

ly Ic and /, li

w{j) =w^ = ^o//3 for/, - (3/2 < /
<A + )3/2

w{{) = elsewhere

/g = mid-band frequency

2wo for < / < p/2

elsewhere

87r=/%>oforO</<j3/2

elsewhere

w{J) = Wo = ^o/0 for/g -^<j<U
w(j) = elsewhere

/, = top frequency

ifoforO </</9
elsewhere

4Try^oforO </<&
elsewhere

-(/) = ;^«-'^-^«'^^^=^^'

where the primes denote differentiation with respect to /. When this is

placed in (3.9) and terms of order (ii — toY neglected, we obtain

2(/i — io) 2t 27r
(3.10)

which relates the interval between successive zeros to 8'.

The expression on the right hand side of (3.10) may be defined as the in-

stantaneous frequency:

Instantaneous frequency = fq -\- r
2ir at

(3.11)

This definition is suggested when cos Iw/t is compared with cos (qt -)- 8)

and also by (3.10) when we note that the period of the instantaneous fre-
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quency is approximately equal to twice the distance between two successive

zeros which is 2(/i — tn).

The probability density of R is'^

^ exp r - -^^^'l h(RQ/h) (3.12)

where h (RQ/^o) denotes the Bessel function of order zero with imaginary

argument. In Section ,^.in of Reference A, it is shown that the average

value of R" is*

^ = (2^^.)"'^^ ^» + l) ,F, (-^S 1; -p) ,
(3.13)

where p = Q-/{2ipo), of which special cases are

R = e-'''^(7nAo/2)"'' 1(1 + p)lM2) + p/,(p/2)l

:r^ = ^ + 2^0

Curves showing the distribution of R are also given there.

(3.14)

4. Expected Number of Crossings of R per Second

Here we shall obtain expressions for the expected number A' « of times,

per second, the envelope passes through the value R with positive slope.

When R is large, Nr is approximately equal to the expected number of

maxima of the envelope per second exceeding R and when R is small Nr is

approximately equal to the expected number of minima less than J?. For

the special case in which the noise band is symmetrical and is centered on

the sine wave frequency/,, Xh is given by the relatively simple expression

(4.8).

The probability that the envelope passes through the value R during the

interval t,t-\- dl with positive slope is, from (2.1),

rR'p{R,R',t)dR' (4.1)
Jo

where p{R, R', l) denotes the probability density of R and its time derivative

R', i being regarded as a parameter.

An expression for p{R, R', t) may be obtained from the probability density

of Ic, Is, I'c, I's- From our representation of a noise current and the central

limit theorem it may be shown (as is done for similar cases in Part III of

Reference A) that the probability distribution of these four variables is

" In equation (60-A) of an unpublished appendix to his paper appearing in the B.S.T.J.

Vol. 12 (1933), 35-75, Ray S. Hoyt gives an integral, obtained by integrating (3.12) with

respect to K, for the cumulative distribution of R.

*The correlation function for the envelope of a signal plus noise, together with associated

probability densities of the envelope and phase, is given by D. Middleton in a paper

appearing soon in the Quart. Jl. of Appl. Math.

dl

.-'^•Ltii-j.issKtv.-.- --.U-. .-- '—41- iHilalVUlACi
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normal in four dimensions. If the variables be taken in the order given

above the moment matrix is, from equations (A2-2) of Appendix II,

U =
bo 6x

bo -fri (4.2)

-6i 62

bi 62

where the b's are defined by the integrals in equations (A2-1). The inverse

matrix is

, B = bobi — bi (4.3)

62 -bi

bi bi

bi bo

-&i V
which may be readily verified by matrix multiplication, and the determinant

I

Af
I

is B^. The normal distribution may be written down at once when

use is made of the formulas given in Section 2.9 of Reference A. The sub-

stitutions

I^ = Rcos 6 - Q, l[ = R'cos 6 - Rsin d 6'

I, = Rsin e, l', = R'sin + Acqs B 6'

dlcdl 41'cdl's = RHRdR'dedd'

enable us to write

b,{l\ + I\) + bo{l? + I?)

-2bi{Jj', - I.I',) - b2{R^ - 2QRC0S 6 + Q')

+bD(R'^ + R^d'^)

'"^^'
'
''

' -IbiR'e' + 2biQ{R'sm 8 + R8' cos 6).

Consequently the probability density of R, R', 6, 6' is

(4.4)

(4.5)

p{R, R', 6, 6') =^ e'^pj-^ t^^f-^' - 20^cos d + Q-)

+ bo{R'^ + R^"") - IbiRY + 26iQ(i2'sin d + Rd'cos 6)V>

In this expression R ranges from to » , from — tt to jt, and R' and 6'

from — CO to + w
. The probabiUty density for R and R' is obtained by
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integrating (4.5) with respect to d and 6' over their respective ranges. The

integration with respect to 6' may be performed at once giving J'

exp|--i-[B(fi' -2RQcose + Q') + (hR' + hQsmem ..

\ 2Boo )

From (4.1) and (4.6) it follows that the expected number Na of times per

second the envelope passes through R with positive slope is

exp I- -1- [B{R' - 2RQC0S. ^ + Q') + (fcoi?' + ^-iQsin ef\\
y 2Bbo )

When the power spectrum w(J) of the noise current In is symmetrical about

the sine wave frequency/g, 6i is zero and B is equal to bobi. In this case the

integrations in (4.7) may be performed. We obtain

- (^^\'' V fProbability density ofl
~

\2x/ j_envelope at the yalue i?J

where the second line is obtained from expression (3.12). As will be seen

from its definition (A2-1), bo is equal to the mean square value ^o of In

(and also of Ic and 1^).

Introducing the notation

V = Rbo^^' = R/rms In

a ^ Ab'^^''^ ^ 2/rms In,

which is the same as that of equations (3.10-15) of Reference A except that

there P denotes the amplitude of the sine wave and plays the same role as

Q does here, enables us to write (4.8) as

The function p{v) is plotted as a function of v for various values of a in Fig.

6, Section 3.10, of Reference A.

It is interesting to note that

(bi/boy^/TT = Expected number of zeros per second of /„ (or of /,) (4.11)

.L.„..,.

.
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This relation, which is true even if the noise band is not symmetrical about

fg, follows from equation (3.3-11) of Reference A.

When Q ^ rms In and/g is not at the center of the noise band it is easier

to obtain the asymptotic form of Nn from the approximation (3.6),

instead of the double integral (4.7). When Q> > rms la and R is in the

neighborhood of Q (as it is most of the time in this case), Nr is approximately

equal to the expected number of times Ic increases through the value Id =
R — Q in one second. Thus, regarding Ic as a random noise current we
have from expression (3.3-14) of Reference A

Nr -^ e"'"^
^'"^ X [1/2 the expected number of zeros per second of /d

and when we use equation (4.11) we obtain

A'fl ~ -- (Voo) e " = -— {bt/bo) e (4.12)

Table 2

w{j) = MiQ = hi/0 ovEE A Band oe Width

b2 Nr

1. Band extends from/, — 0/2 to

U + 0/1
7r2026o/3 {T/6y!^-0p(T}) =O.7240p{v)

2. Same as 1 and in addition Q = " {T/dyf^^ve-"^'^

3. Same as 1 and in addition

Q >> rms la

u
(„_a)2/2

~2V3

4. Band extends from/, to fg +
andQ >> rms 1^

471^/3^^0/3 _(i,_a)2/2

Table 2 lists the forms assumed by (4.10) and (4.12) when the power spec-

trum w{j) of the noise current la is constant over a frequency band of width /S.

The quantity 6o in the expressions for bi represents the mean square value

oila.

In the general case where the band of noise is not centered on /, and

where R is not large enough to make (4.12) valid we are obliged to return to

the double integral (4.7). Some simplification is possible, but not as much

as could be desired. Introducing the notation

« = RQ/h, y = b,Q(Bbo)-"^-

X = {boR' + biQsin e){Bbo)-^'"-
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enables us to write (4.7) as

C r" , (4-13)

dx

Part of the integrand may be integrated with respect to x and the remaining

portion integrated by parts with respect to 6. The double integral in the

second line of (4.13) then becomes

J—r J-r |_J 7 sin B

= / (1 + y'cT^ cos 6)e

d[ya-V"^'\

dd

(4.14)

!
= ya-'e-'-^'^"'-''"'" r {y cos 6 + a/y)e'-""^''^'"

'''''' dd

ITTo m! \ a/

The series is obtained by expanding exp [—(7 sin Oy/I] in the second

equation in powers of sin 6 and integrating termwise.

5. Probability Density of —
at

As was pointed out in Section 3 the time derivative 9' of the phase angle

d associated with the envelope is closely related to the instantaneous fre-

quency. The probability density pi6') of 8' may be expressed in terms of

modified Bessel functions as shown by equation (5.4). Curves for p{9') are

given when the sine wave frequency /^ lies at the middle of a symmetrical

band of noise. Although the expressions for p{6') are rather complicated,

those for the averages 6' and
|

6'
\

given by equations (5.7) and (5.16) are

relatively simple.

The probability density pid') may be obtained by integrating the expres-

sion (4.5) for p{R, R', 6, B') with respect to R, R\ 6. The integration with

respect to R', the limits being — <:« and + «=
,
gives the probability density

iQxR,e,d'\

p(R^ e, 6') = ^(^ exp [-aR' + 2bR cos 6 + c sin'
4jr \OoZ>/

-b^VilB)]

nr> ifc"- ^-^ i--.^ . . J- - _ . - .,-^ -_ --
. .1 ' i.'-.i. ^ I - - .. '.''(.ti:*.
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where

B = hohi - Oi

a = {h- 2b id' + 6on/(25)

P = QWh)

b = Q(b2 - bid')/{2B)

c = Q'by(2Bbo) = b\p/B (5.2)

7 = bya

and Js, bi, bz are given in Appendix II.

Integrating with respect to R gives the probability density for 8, 6'.

Expanding exp (2bR cos 6) in powers of R and integrating termwise,

j,/fl ol\ _ ^ { ^ \ e BiaH^bzboplB

When we integrate 6 from — tt to tt to obtain p(6') the terms for which n

is odd disappear and we have to deal with the series, writing7 for fi'/a,

E ^-^-^ (t cos= er = (27 cos' + 1) exp (7 cos' 6)
m=0 to!

Thus, the probability density of 9' is ,

10Ta\abaD/ j-t

i(i)"[<-"'-(=^')-"(=^')] '"'

..,[l±J-'!jf]
,

From (5.2)

bi - 2&ifl'

c + 7 bibop pbi ~ 2bid' + 260^'^

(5.5)

2 5 2 62 - 26ie' + bod'^

It will be noted that for large values of
|

0'
[
the probability density of d'

varies as
|

6* \-^. Although this makes the mean square value of d' infinite,

the average values d' and
|

fl'
|
of 6' and

|

6'
|
still exist. In order to obtain

0' it is convenient to return to (4.5) and write

W = \ del dR^ dR' I de'e'p{R,R',e,e') (5.6)
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The integration with respect to 6' may be performed by setting Rd' equal to

X and using

£
The integral in R' reduces to a similar integral except that the factor x in

the integrand is absent. Performing these two integrations and using the

definition of B leads to

1 61 r f
0' = ±-:, de \ dR{R -Q cos d)

exp -2^(i2' - 2QR cos e -\- Q')j

We may integrate at once with respect to R. When this is done cos 6 dis-

appears and the integration with respect to 8 becomes easy. Thus

6' = (bi/bo) exp [-QV(26o)] - (61/60)6-" (5.7)

When the noise power spectrum is equal to Wo in the band extending from

/o — /3/2 to/o + ^/2 and is zero outside the band, bi ^ 27r(/o — fq)bo.

Hence, from (3,11), _
ave. instantaneous frequency ^ fq -\- 6'/{2ir)

= /o+(/«-/o)(l-e-'')
^^-^^

In the remainder of this section we assume the power spectrum of the

noise current to be symmetrical about the sine wave frequency /g. In this

case bi and c are zero, B is equal to bobi and (5.4) becomes

[{y + l)/o(y/2) + y/i(y/2)] (5.9)

= M6o/62)^'^(l + s')-''V
.2\-3/2„-P:f:(|;i;y)

where i^i denotes a confluent hypergeometric function^ and

s2 = boQ'yb-,, y - (7)6,=o = p/(l + ^) (5.10)

When the noise power spectrum is constant in the band extending from

/, - 0/2 to/g + /3/2 (see Table 2, Section 4)

{b^/boY" = 3-1/-/3T. s = 3i/=0'/(,3x) (5.11)

^ The relation used above follows from eriuation (66) (with misprint corrected) of W. R.

Bennett's paper cited in connection v.-ith equation (1-2).

afi4B.AL/±Wtl'ja3, -i -J-T^l: ' ' - ._. .1 _...,-.- i :_. ^'_—> ..-.-.. ;:- -Jl. .t„-1 . '.- .riif.
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VALUE Ate =0

0.2 0.3 0-4 0.5 0.6 0.8 1 3 4 5 6 8 10

Fig. 5—Probability density of time derivative of phase angle.

p{e') dd' = probability that the value oi dO/dt at an instant selected at random lies be-

tween 6' and d' + dd' . The power spectrum of I^ is constant in band of width

^ centered on/g and is zero outside this band.
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Fig. 6—Cumulative distribution of time derivative of phase angle.

Notation explained in Fig, 5.
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The probability density p{8') of 6' and its cumulative distribution, ob-

tained by numbericai integration, are shown in Figs. 5 and 6.

The probability that 6' exceeds a given 9i is equal to the probability that

s exceeds 3i, where si denotes (bu/ ^2)""^!, and both probabilities are equal to

'^}\i+zY'\F,^^;i;p(\ + .y^'jdz (5.12)

The probability that 9' > di becomes c~''/(-i:Zl) as 9i
—* ^ .

When Q » rms /,v the leading term in the asymptotic expansion of the

iFi in (5.9) gives

P(e') ^re-'""''"-\ a' ^ b.,/Q' (5.13)

when it is assumed that z" « 1. This expression holds only for the central

portion of the cur\'e for p{9'). Far out on the cun^e, p{6') still varies as

6'~^. Equation (5.13) may be obtained directly by using the approximation

(3.6) that 6' is nearly equal to la/Q and noticing that b> is the mean square

value of Ig.

If the sine wave is absent, p is zero and

P(e') = M6o/6.)^'^(l + z^)-''"' (5.14)

which is consistent with the results given between equations (3.4-10) and

(3.4-11) of Reference A. In this case (5.12) becomes

^
- "^^ (1 + sl)-"^ (5.15)

Although the standard deviation of 6' is inhnite an idea of the spread of

the distribution may be obtained from the average value of
\

6'
\. Setting

bi equal to zero in (4.5) in order to obtain the case in which the noise band is

symmetrical about the sine-wave frequency leads to

1^ = -4x ! dR ( del dR' ( dd'B'R:
iir-Oobi Jii J-ff J- 00 JO

exp ^ [-(i?' - 2QR cos 9 + Q-)/bo - (R'' + R'9'-)/bn-^

The integrals in R', 9' cause no dilliculty and tlie integral in 9 is proportional

to the Bessel function I(,{()R/bo). When the resulting integral in R is

evaluated^^ we obtain

1"^ = {b,/b,y^e-'""'lo{p/2) (5.16)

where p ^ Q-/{2bo).

"Sec, for example, G. N. Watson, "Theory of Bessel Functions," Cambridge (1944),

p. 394, equation (5).

-^'^:^,U.1A^^J:.^
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When p is zero equation (5.16) agrees with a result given in Section 3.4 of

reference A, namely, for an ideal band pass filter

ave T — Ti A-/-
Tl V3(/6+/a)

where r is the interval between two successive zeros and n is its average

value. T is equal to ti — to of our equation (3.10) from which it follows that

(r-Ti)Ai= -6'/q (5.17)

de
6. Expected Number or Crossings of 9 and -- per bECOND

at

After a brief study of the expected number of times per second the phase

angle 9 increases through and through x (where it is assumed that — x <
9 < w) expressions are obtained for the expected number Xo- of times per

second the time derivative of 9 increases through the value 9'.

The point T shown in Fig. 4 of Section 3 wanders around, as time goes by,

in the plane of the figure. How many times may we expect it to cross some

preassigned section of the line OQ in one second? To answer this problem

we note that, from expression (2.1), the probability that 9 increases through

zero during the interval i, I -\' di with the envelope lymg between R and

R-{- dR is

dt dR \ d'p(R, 0, $') dd' (6.1)
Jo

where the probability density in the integrand is obtained by setting 9 equal

to zero in equation (5.1). The expected number of such crossings per second

is
,

M-"''{b,B)-"'R'dRe'^''^"'^'''"''''

(6-2)

[ d9'9'exp [-hR^e'VilB) + b.RiR - Q)e'/B\

which may be evaluated in terms of error functions or the function ^_i(x)

defined by equation (1.8). For the special case in which the power spec-

trum of the noise current In is symmetrical about the sine wave frequency,

&i is zero and (6.2) yields

{l^r'Vbr-e-"'^'''''''"'' dR (6.3)

From equation (6.1) onwards we have tacitly assumed that the range of 9

is given by — t < fl < tt because setting 9 equal to any multiple of 2t in our

equations leads to the same result as setting 9 equal to zero. This is due to

occurring only in cos 9 and sm 9. When 9 increases through the value tt,
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as it does when the point T crosses, in the downward direction, the extension

of the line OQ lying to the left of the point O in Fig. 4, we imagine the value

of 6 to change discontinuously to the value — ir.

The expected number of times per second d increases through x may be

obtained from (6.2) and, in the symmetrical case, from (6.3) by changing the

sign of Q since this produces the same effect as changing 9 from to t in

p{R, e, B').
-

The expected number of crossings per second when R lies between two

assigned values may be obtained by integrating the above equations. For

example, the number of times per second 6 increases through zero with R
between Q and R\ is, from (6.3) for the symmetrical case,

{^)-Kh/hyi^ erf [(260)-^'='
I

i?i - Q 1 ] (6.4)

where we have used the absolute value sign to indicate that R\, may be either

less than or greater than Q and

erf X = 2r-"' r e-'" dt (6.5)

Expressions for 60 and ia are given by equations (A2-1) of Appendix II.

The mean square value of In is 60, and when the power spectrum of In is

constant over a band of width /3, 62 = ir^/3^6o/3.

In much the same way it may be shown that the expected number of times

per second 6 increases through ir with R between and R i is

(47r)-'(62/^'o)'/= Serf [(26o)-'«(i?i + Q)] - erf [{2h)-'i'Q\\ (6.6)

A checic on these equations may be obtained by noting that the expected

number of zeros per second of /,, given by equation (4.11), is equal to twice

the number of times 6 increases through zero plus twice the number of times

6 increases through t. Setting Ri equal to zero in (6.4), to infinity in both

(6.4) and (6.6), and adding the three quantities obtained gives half of (4.11),

as it should.

Now we shall consider the crossings of 6'
. The equations in the first part

of the analysis are quite similar to those encountered in Section 3.8 of

Reference A where the maxima of R, for noise alone, are discussed. We
start by introducing the variables xi, X2, xt where

xi = Ic = Rcos e - Q, x^^ I, = Rsm B (6,7)

and the remaining .t's are defined in terms of the derivatives of le and /, and

are given by the equations just below (3.8-4) of Reference A.

Here we shall consider the noise band to be symmetrical about the sine
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wave frequency /^ so that 61 and 63 are zero. Then from equations (3.8-3)

and (3.^-4) of Reference A the probability density oixi, X2, • xe is

^ „, ^ exp (
-—- [;>4(.ri + xl) + IbzixiXs + xtXt)

S^b.D \ 2D
^^g^

+ (D/b,)ixl + xl) + bo(xl + xl)]\

where Z> = 60^4 — ^2 and the &„'s are given by equations (A2-1). Replac-

ing the x's by their expressions in terms of R and 6, similar to those just

above equation (3.8-5) of Reference A, shows that the probability density

for R, R', R", d, e', d" is

p{R, R', R", 0, e', B") = g-^ exp {^-^ %{R: - IRQ cos 6 + (f)

+ (D/biXR'^ + R'O'^) + 2bi{RR" - R-9'-') (6.9)

+ bo(R"- - 2RR"d'^ + AR'-e'^ + ^RR'O'B" + R^6'* + R^e""^)

)
- 2b2Q{R" cos e - Rd''^ cos d - 2R'd' sin d - Re" sin B)]

It must be remembered that (6.9) apphes only to the symmetrical case in

which bi and 63 are zero.

Integrating R' and R" in (6.9) from — cc to =0 gives the probability

density of i?, B, 6', 6". The integration with respect to R" is simplified by

changing to the variable R" — RB'^. The result is

p{R, B, B', B") = R'{2T)-'-{b,b,D)-'''{l + u)-'i^

exp (^-±.^R' - IRQcos 5 + (?- + b,R'B''/b,
^^^^^

(Q&2sin9 + boRe") -~\\

(1 + u)D J/
+

where « = AbiboB'^/D. The expected number of times per second the time

derivative of 6 increases through the value B' is

d-B dR de"d"p{R,d,B',B")
1T Jo •'0

= r~'(b,S/boy" f dB f rdr f xdx
^^^^^

J- r Jo Jo

exp [—yr- + 2ra!COs 6 — a- — S(x + asin Oy]
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where we have set

r = R(2bo)-"- X = rbod"/b2

« = G(2M~'" = p'" 7 = 1 + kO'^/b^ = 1+2= (6.12)

bl
5 =

(1 + u)D

r being regarded as a constant when the variable of integration is changed
from e" to .V.

The double integral in 9 and x occurring in (6.11) is of the same form as

(A3-1) of Appendix III and hence may be transformed into (A3-3). Here
a ^ r a,c ^ — 8a', c -\- b- = 0. The diameter of the path of integration C
may be chosen so large that the order of integration may be interchanged

and the integration with respect to r performed. The result is again an
integral of the form (A3-3) in which a- = 0. When this is reduced to (A3-6)

it becomes

A',, = e--''i2iry)-^br-(bo5)-^'-[e-"'!Ho(8p/2)

(6.13)

+ (1 + 75)(1 + y5/2rVle (75(2 + y6)-\ p/y -\-Sp/2]]

where we have used Te{—k, x) = Ie(k, x) which follows from the definition

(Al-1) given in Appendix I.

When there is no sine wave present, p is zero and (6.13) becomes

. / bi 62 , ..,2

AV = ,-, r-J = ^-
'̂, "'.

. (6.14)

;"")

This gives a partial check on some of the above analysis since (6.14) may be

obtained immediately by setting a equal to zero in (6.11). Another check

may be obtained by letting p —> cc and using leik, 00) = (1 — k-)^^'"^.

(6.13) becomes

^'r - {2-K)-'{b,/h^y^-e-'"^ (6.15)

which agrees with the result obtained from 8' '^ IJQ.
For the case in which the power spectrum w(/) of the noise is equal to the

constant value ivi^ over the frequency band extending from /g ~ j3/2 to

A + m,

bo = 0ico, &2 = ir-^^Wi = 7r^^6o/3, 64 = r'^^Uo/S = T*^^bo/5 (6.16)

'ij*. r . -r^f.fti. < rilr-»^^" /lA .

"- - ,.
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These lead to

s = (bo/b2y"e' = 3^l^'/{ir&) D/bl = bibo/bl -1 = 9/5-1 = 4/5

u=^blzVD = 5z' ^ = 4(1^ ^^-^^^

7=1 + 2==

and the coefficient in (6.13) may be simplified by means of

2x7 \bo8l 1 + 2' V 15 /
(6.18)

From (6.14) we see that (6.18) is equal to Nb- when noise alone is present

(and is of constant strength in the band of width ^). The curves of Ne-/0

versus 2 shown in Fig. 7 were obtained by setting (6.17) and (6.18) in (6.13).

Ns'/^ approaches e~''/(s Vi) as 2 ^ « .

When the wandering point T of Fig. 4 passes close to the point O, 6

changes rapidly by approximately t and produces a pulse in 6'. In dis-

cussions of frequency modulation 9' is sometimes regarded as a noise voltage

which is applied to a low pass filter. Although the closer T comes to

the higher the pulse, the area under the pulse will be of the order of tt and

the response of the low pass filter may be calculated approxunately.

That the pulses in 6' arise in the manner assumed above may be checked

as follows. We choose a point relatively far out on the curve for p = 5 in

Fig. 7, say 2 = V36'/(Pir) = 1.6 or 0' = 2.9/3. The number of pulses per

second having peaks higher than 2.9/3 is roughly Ne' = .009/3, and half of

these have peaks greater than 8' = 3.8/3 which is obtained from Fig. 7 for

Nb' ^ .0045,3. From Fig. 6 we see that 9' exceeds 2.9/3 about .0018 of the

time. Thus the average width at the height 2.9/3 of the class of pulses

whose peaks exceed this value is .0018/(.009/3) = .2/,8 seconds. Thisfigure

is to be checked by the width obtained from the assumption that the typical

pulse arises when T moves along a straight line with speed v and passes

within a distance b of 0. We take tan $ = vt/b = at so that

0' = a/(l + aH'^). From this expression for 6' it follows that a pulse of

peak height 3.8,3 (the median height) has a width of .3//3 seconds at 9' ^

2.9/3. This agreement seems to be fairly good in view of the roughness of

our work. A similar comparison may be made for p = by using the

limiting forms of (5.15) and (6.18). Here it is possible to compute the

average width instead of estimating it from the median peak value. Exact

agreement is obtained, both methods leading to an average width of jr/{49')

seconds at height 9'.
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Fig. 7—Crossings of time derivative of phase angle.

Ne' = expected number of times per second dd/di increases through the value 9'

and the power spectrum of Iff are the same as in Fig. 5,

P. (3)

'iiLiii.-'_-._!±/iJ



138 BELL SYSTEM TECHNICAL JOURNAL

7. Correlation Function for —
at

In this section we shall compute the correlation function ^{t) of d'{t).

We are primarily interested in ^{t) because it is, according to a fundamental

result due to Wiener, the Fourier transform^^ of the power spectrum W{j)

of B'{t).

We shall first consider the case in which the sine wave power is very large

compared with the noise power so that, from (3.6), is approximately

IJQ and B' approxunately I'jQ. Then using (A2-3) and (A2-1)

S2(t) = e'{t)d'{t + r) = Q'U[{t)l[{t + t)

= -g"Q~' = 4/Q~' r^C/)(/-A)^os2T(/-/,)rrf/

When 2v(f) is effectively zero outside a relatively narrow band in the neigh-

borhood of /g, as it is in the cases with which we shall deal, (7.1) leads to the

relation (divide the interval (0, co) into (0, /g) and (fq,
<x>), introduce new

variables of integration /i ^ /g — /,/2 = / — /<; in the respective intervals,

replace the upper limit/g of the first integral by '^
, combine the integrals,

and compare with (2,1-6) of Reference A)

Power spectrum of d'{t) = W(f)

= ^r'fQ-'iwif, + /) + w(f, - /)] (7.2)

This form is closely related to results customarily used in frequency modula-

tion studies. It should be remembered that in (7.2) it is assumed that

< /«/5 and rms In« Q-

Additional terms in the approximation for ^(t) may be obtained by

expanding

r

B = arc tan
Q + lc

in descending powers of Q, multiplying two such series (one for time t and

the other for time / + t) together, and averaging over I. If Id, I si and

Ic2, I St denote the values of I^, Is at times t and t -\- t respectively, the

average values of the products of the /'s may be obtained by expanding the

characteristic function (obtainable from equation (7,5) given below by

setting S5 = 26 = 27 ^ Ss = 0) of the four random variables 7ci, /si, Ic2, 1 s".-

This method is explained in Section 4.10 of Reference A. When w{j) is

symmetrical about /^ it is found that

1^ The form which we shall use is given by equation (2.1-5) of Reference A.

.';'' 'J^SI
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;
6A - ^> + ^4 + 3Q« + •

•

s2(t) = e{ei = -^,m (7.3)
(IT-

= - ^' -
|, iiS" + g'') -

|e
(g^g" + 2g'^g) + -

From the exact expression for L>(r) obtained below it is seen that the last

equation in (7.3) is really asymptotic in character and the series does not

converge. We infer that this is also true for the first equation of (7.3).

We shall now obtain the exact expression for the correlation function £2(t)

of d'(t) when/g is at the center of a symmetrical band of noise. At first sight

it would appear that the easiest procedure is to calculate the correlation

function for 6(1) and then obtain U{t) by differentiating twice. However,

difficulties present themselves in getting d outside the range —ir,ir since d

enters the expressions onl}' as the argument of trigonometrical functions.

Because I could not see any way to overcome this difficulty I was forced to

deal with 6' directly. Unfortunately this increases the complexity since

now the distribution of the time derivatives of /^ and /^ also must be con-

sidered.

We have

tan 6 = ^ '
, sec'9 ^ 1 +

(? + /c
' \Q+Ic

sec"- d(Q + r.y (Q + IS- + n

and the value of 8'{t)d'{t + t) is the eight-fold integral

q{t) ^
I din f dK^pihx, •,7:2)

{Q + IcdiU - IsJU -^(Q-^ I'^^I'^2 - h2lc2
(7.4)

(Q + IrS + n, {Q + LS + Ih

where p{Ici, • *
, hz) is an eight-dimensional normal probability density.

As before, the subscripts 1 and 2 refer to times t and i + t, respectively.

The most direct way of evaluating the integral (7.4) is to insert the expres-

sion for p{Ici, , 1^2) find tlien proceed with the integration. Indeed,

this method was used the first time the integral (7.4) was evaluated. Later

it was found that the algebra could be simplified by representing P(I cu ' "

»

Isi) as the Fourier transform of its characteristic function. The second

procedure will be followed here.

-L,... ..a%^.2- -U,
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The characteristic function for Id., Id, lai, I si. Id, Id, /«!, Ia2 is, from

(A2-2) and (A2-3) of Appendix II and Section 2.9 of Reference A,

ave. exp i{zilci + 22/ c2 + zs^si + zj bz -\r z^Ici + ^a/ca + st^bi + 28^*2]

= exp (- h) {b<,{z\ + 22 + 23 + z\) + b^{zl + sa + 2? + z\)

+ 26i(si27 + S2S8 — S325 — 2*25) (7.5)

-\-2g{ziZ2 + S3S4) + 2g'(SiS6 - S23B + 2338 - 2*27)

-2g"{25SB + 2723) + 2h{ziZi - Z2 23)

+ 2/('(2iZ8 + S2Z7 - S32B - 2425) - 2h"(z^s - Z6Z7)].

Since we have included bi, h, h', h" this holds when/, is not necessarily at

the center of the noise band. However, henceforth we return to our assump-

tion that fq is placed at the center of a symmetrical noise band and take

61, h, li', h" to be zero.

The probability density of I ci, • • lU which is to be placed in (7.4) is

the eight-fold integral

pClci, lU) = (27r)-^ l^ dz,--- jf_ dz,

^^^^

exp [-i2i7ci - ... - iza/.'a] X [ch.f.]

where "ch.f." denotes the characteristic function obtamed by setting 61,

h, h', h" equal to zero on the right hand side of (7.5).

The integral (7.4) for ^(t) may be written as

S2(t) - Ji - /a - /3 + /4 (7.7)

where 3\ is the 16-fold integral

(//.1-" rf/:2(2T)-' dz,---dz,
00 J— CO J— CO J— 00

exp [
— izilci — - . — izg/.a] (7.8)

[{Q + ic.y + imQ + ic.r + lu "" '-'

and J2, Js, Ji are obtained from 7i by replacmg the product (Q + /ci)

(^ + Ic2)l'.ll'.2 by ((3 + I,l)l'>lL2l'c2, I.JUQ + /c!)/i2, I .ll'cJ >2lc2

respectively.

The integration with respect to /^ and /,i in (7.8) may be performed at

once. We replace Q + /,i and /^i by x and y, respectively, and use

r ,^ r ,y ^^^.-''-'^' = z^^. (7.9)
J-„ J-ao X^ -\- 'f Z^ + f2

, V'^- /,
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The integration with respect to 1^2 and 1^2 may be performed in a similar

manner. In this way we obtain a 12-fold integral.

The integrations with respect to the /"s may be performed by using

2ir J- a, J-oo

a:-i:^-/(...^-.[^L.
(7.10)

The result is the four-fold integral

exp [-(io/2)(2l + 22 + S3 + =!) - g(siS2 + 2334) + i^(zi + 32)].

In the same way J2, Jz, Ja may be reduced to the integrals obtained from

(7.11) by replacing ZiZiig" — g''^zsz^ by —gWzi, —g'ztzl and ZsZ^ig"
—

— g'^ZiZi), respectively. When the J's are combined in accordance with

(7.7) we obtain an integral which may be obtained from (7.11) by replacing

zMg" - g'-ZsZi) by

g"(z,S2 + 3324) + g'KziZi ~ Z2Zsr (7.12)

Tlie terms zl + zl and zl + zl in the denominator may be represented as

infinite integrals. Interchangmg the order of integration and expressing

(7.12) in terms of partial derivatives of an exponential function leads to the

six-fold integral

«(.) = (4x)-f^»f^{-.''3u.%4,Lj_7''.^ •7_r'^^^

exp [-{be + u){z\ -\- im - (bo + ^){zl + zl)/2
^^"^^^

— gizizz + 2334) — a(zi24 - 2233) + iQ(zi + Zl)]

where the subscript a = indicates that a is to be set equal to zero after

the differentiations are performed.

When the four-fold integral in the s's is evaluated (7.13) becomes

^ exp \-Q\2bo - 2g + u + v)/(2D)] (7.14)

= f du f dv[{f- - gg")(2 - 2P + Q'/g) - g''eVg]«"7(4/>o)

tjj J.i'a''.-*1J', ^?_-".^jfHfl'» ^' Y ' •



142 BELL SYSTEM TECHNICAL JOURNAL -

where

D= {h, + u){bo -^v)- g'- a\ F= Q\2bo -2g+u+ v)/{2D,)

and Do denotes the value of D obtained by setting a = 0. When differen-

tiating with respect to a it is helpful to note that

da^ \oa/ da-

and that on\yf'{D) ^ df/dD need be obtained since dD/da vanishes when

a = 0.

In order to reduce the double integral to a single integral -we make the

change of variables

r = Q\bo + « - g)/(2Z)o) ^
2[(bo + u)(bo + v) - ^=]

, ^ Q\bo + T. - g)/(2Z)o), F ^ r + s
^^-^^^

d(r, j)/a(«, v) = -rs/Do, 4:srDo - Q\Q' - 2g{r + 5)]

The limits of integration for r and s are obtained by noting that the points

(0, 0), (ao, 0), (cc, a=), (0, 00) in the (u, v) plane go into (Qy{2bo + 2g),

(2V(26o + 2g)), {Qy{2bo), 0), (0, 0) {0,Q^/{2bo)), respectively, in the (r, s)

plane. It may be verified that the region of integration in the (r, s) plane

is the interior of the quadrilateral obtained by joining the above points by

straight lines. Equation (7.14) may now be written as

'2 "\/ri r, r, I .o2 / \ '2 ^2

«(.)=//
(g" - gg"){2 -2r-2s + Q^g) - g" QVg\ „-r-.

^^ ^^QW - 2g{r + s)]

'2
(7.16)

y^ - ^•> y2
2g' "' 2g^

where yi and y2 are the dimensionless quantities

2g'(2 - 2r - 2^ + Q^g)
yi ^//

-//oSf
Q2[Q2 _ 2g(r + S)]

r^-' dr ds

Q2 _ 2g(r + s)

It is seen that

yi = 2gQ--U + // e-^"' drdsV
. (7.17)

Since the integrands are functions oi r -\- s alone we are led to apply the

transformation

jj fir + s) dr ds = jf " «/(») du + 1^
^—^^ /(«) ^« (7.18)

ii':[':f"j, '. yi .w;i','-i.'
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where A is the area enclosed by Ihe quadrilateral whose vertices are at the

points (r, s) given by (0, 0), (0, a), (/3, /3), (a, 0) and it is assumed that and

a are positive, u is a new variable and is not the one introduced in (7.13).

Setting a = Q'/(2bo) and = 0'/{2bo + 2g), using (7.18), and introduc-

ing the notation

p = (3V(26o), k = g/bo

Oo + g 1 -\- k

permits us to write

f [ e—' dr ds = r no-" du + T ''J^JUi^ ,-
J J Jo Jn X O

/I r X — in
du

X—p —X

= i - + P^

(7.20)

X — p X — p

and (7.17) yields

where we have expressed X in terms of p and A.

The double integral defining y^ may be treated in the same way as (7.20):

p(X — -ii)e~~" du
y^ J J ^ - r - s~ I ^ - u

"^
J, ("X^ p)(f - «)

Writing it = ^ — (^ — u) and X — ?( = X — ^ + (^ — «) in the two numera-

tors leads to

72 = ^ T e du
Jo t — « Jo

Jo t — U X~dJd

(7.22)

where we have used p(X — ^)/(X — p) ^ — ^ to simplify the coefficient of

the third integral. When the second and fourth integrals are evaluated,

their contribution to y^ is found to be equal to the terms independent of yi
on the right of (7.21). Hence, comparison of equations (7.21) and (7.22)

shows that

yi = / z - T (7.23)
Jo ^ — Jt Jp ^ — u '

,,L.„ .,-.(_
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The integrals in (7.23) may be evaluated in terms of the exponential inte-

gral Ei{x) defined by, for x real,

/I 00 n

e' dt/t = C -\- ^ loge x' -\-T,^

n-O

where C = .577 is Euler's constant and Cauchy's principal value of the

integral is to be taken when x > 0. We set ^ = $ - m and obtain

J,
^ e-^'" \Ei\p/k] - 2EM1 - k)/k\ + £i[^(L=_|]|

where we have again expressed ^ and X in terms of p and k.

A power series for yi which converges when — 1/3 < fe < 1 may be ob-

tained by expanding the denominators of the integrands in (7.23) in powers

of m/£ and integrating termwise:

yi = r^[l - 26"" + e-']

+ lir'll - 2(1 + p/lOe"" + (1 + VlOe^'] (7-24)

+ 2 lt^[l - 2(1 + p/1 ! + pV2 0^-" + (1 + X/1 ! + XV2 De''^]

+ •
The following special values may be obtained from the equation given

above. When p =

This result may also be obtained by evaluating the integral obtained when

we set 2 = 0, zi = f 1 cos ^i, 23 = ri sin di, 22 = rt cos 6%, Zt =- rt sin Si

in (7.11) and (7.12).

Nearfe = 1,

yx = e\Ei{p) -C- log. p(l - k^)]

^^2^^

y2 = pyi - 1 + (1 + p)e~''

Near yfe = 0,

yi = kO. - e-OVp, ^2 = yi (7-27)

except when p = in which case yi is approximately fe'.

When p is large

k ,
Ilk' , 2\k' ,

3!^*
yi^ - + —^ + -"T "T r i- •

'^ ^
^ '

(7.28)

, ,P l!fe,2!A'

k p p''

except near -fe
^ 1 where both yi and ya have logarithmic infinities. The

asymptotic expansion (7.3) for S2(t), which was obtained by the first method
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of this section, may be checked by inserting (7.28) in the expression (7.16)

for S](t) in terms of yi and ya.

Values of yi and yz tabulated as functions of k for various values of p are

given in Table 3. Negative values of k have not been considered since they

- Table 3

I

Values of yi and ja Used in Computation or Corbelation Function of dS/dt

U(r) = 8'{t)8'{t^ + t) = [g'^iyi - ja) - gg"yi]/(2i;*)

g^Sir)= ( w(f) cos 2ir{f - f,)r df, k = g{T)/g(0)

k

Values of j^i Values of ji;

.5

p

1 2 ,1 .5 1 2 5

; .1
' .2

: .3

.01005

.04082

.09431

.03526

.08043

. 1379

.04224

.09003

.1452

.03854

.07979

.1246

.02000

.04105

.06292

.03171

.06550

.1022

.04147

.08654

.1363

.03936

.08275

.1315

.02051

.04283

.06702

.4

.5

1 .6

.7

.1744

.2877

.4463

.6733

.2110

.3056

.4278

.5953

.2102

.2886

.3860

.5129

.1740

.2296

.2942

,3721

.08586

.1101

.1358

.1636

.1432

.1914

.2481

.3220

.1926

.2579

.3368

.4379

.1870

.2515

.3289

.4269

.09384

.1238

.1576

.1975

.8

.84

.88

.90

1.0216
1.2228
1.4890
1.6607

.8416

.9798

1 . 1590
1.2742

.6914

.7888

.9127

.9898

.4729

.5242

.5866

.6241

.1941

.2075

.2219

.2296

.4275

.4866

.5641

.6138

.5803

.6593

.7619

.8260

.5602

.6318

.7226

.7752

.2461

.2693

.2964

.3114

.92

.94

.96

.97

1.8734
2.1507
2.5459
2.8285

1.4144
1.5948
1.8486
2.0251

1.0834
1.2024
1.3668
1.4815

.6686

.7217

.7939

.8414

.2378

.2466

.2566

.2623

.6753

.7550

.8711

.9474

.9058
1.0093
1.1558
1.2605

.8486

.9333

1.0546
1 . 1366

.3294

.3498

.3752

.3849

.98

.99

.995

.997

3.2289
3.9170
4.6072
5.1175

2.2762
2.7080
3.1341
3.4445

1.6405
1.9066
2.1721
2.3622

.9073

1.0127
1.1125
1 . 1866

.2690

.2778

.2846

.2889

1.0704
1.2773
1.4838
1.6367

1.4081
1.6610
1.9175
2.1048

1.2548
1.4505
1.6416
1 . 7859

.4119

.4429

.4705

.4893

are not required for the case in which I^ has a normal law power spectrum,

the case discussed in the next section.

8 Power Spectrum of — When ly has Normal Law Power Spectrum
dt

The problem of computing the power spectrum W(J) of e'(t) appears to

be a difficult one.* In order to obtain an answer without an excessive amount

of work we have had to do two things which are rather restrictive. First,

we confine our attention to the case in which the power spectrum w(J) of

*Since the above was written the general f . m. problem has been studied by D. Middle-

ton. He generalizes our (7.11) and (7.12), introduces polar coordinates, expands the

integrand in powers of g, and integrates termwise. Wif) then follows somewhat as in

a.m. theory.

.-^-fe.
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'

= A .

',';

In is of the normal law type (our method could be applied to other types

but g' and g" would be more comphcated functions of t and Table 3 would

have to be extended to negative values of k, if they should occur). Second,

we resort to numerical integration to obtain a portion of W(f). Because

of the second item our results are either tabulated or are given as curves,

shown in Figs. 8 and 9, except when Q = (noise only) in which case the

power spectrum of 8' is given by the series (8.7).

The power spectrum of In is assumed to be

»(/) = ;:^ r"-'.'"*" (8.1)

The mean square value of J,v is equal to that of a noise current whose power

spectrum has the constant value of i/'o/(f'\/27r) over a band of width /& — fa

= (T-y/lir ^ 0-2.507. The value of w(J) is one quarter of its mid-band value

at the points/ ~ fq = ±o-\/2 logc 4 ^ d=iTl.665 (the 6 db points) and the

distance between these points is 3.330a. Integration of (8.1) shows that the

mean square value of I^ is i/'o in accordance with our customary notation.

The mid-band value of w(/) is i^o/(o"\/27r).

Assuming fq'^ a and evaluating the integrals (A2-1) of Appendix II

defining bo and g gives

^ V'o, g — ^oe = \poe

g'/g = -uu' = -2^au, g"lg ^ -(2x<7)^(l - l^)
^g_2)

" '2

1
^ - (2x0-) , k = g/6o = e

where we hcive set

7i = 2x0-7, u' = 2x0- (8.3)

and the primes on g and u denote differentiation with respect to r. The cor-

relation function is accordingly, from (7.16),

fi(r) = 27rV(yi - u^y^ (8.4)

If Q'{() be regarded as a noise current its power spectrum is

W{j) = 4 /"
S2(t) cos 27r/T ir (8.5)

When noise alone is present, p is zero and (7.25) yields

fi(T) = -2tV log, (1 - W) = -27rV log, (1 - e""') (8.6)
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\
In this case the power spectrum is, from (8.3), (8.5), and (8.6),

WM) = -47ro- [ cos(«//o) log (1 - e~"')du

(8-7)

the series being obtained by expanding the logarithm and integrating term-

wise. When this equation was used for computation it was found conven-

ient to apply the Euler summation formula to sum the terms in the series

beyond the (N — l)st. Writing b for/-/(4a^), the series in (8.7) becomes

+ (t/6)''" erf Kb/NY"] + N-'"^"'''
2 12A^ V 2 NJ (8.8)

1 / 105 , 105 6 21 &-
, ^ .

720A^^ V 8 4 iV 2 N^ N'

When b is zero the sum'^ of the series is 2.61237 • . The values for p =
in Table 4 were computed by taking X = 12 in (8.8). As 6 —> oo the domi-

nant term in (8.8) is seen to be the one containing erf (choose N so that

h = A'^'-). Hence as/—> =«

n\(/) ^ 47rV//. (8.9)

When both noise and the sine wave are present it is convenient to split the

power spectrum into three parts. The first part, lt"i(/), is proportional to

Il''jv(/), the power spectrum with noise alone. The second part Wzif) is

proportional to the form \V{f) assumes when rms 7.v « Q and the third

part U'u(f) is of the nature of a correction term. This procedure is suggested

when we subtract the leading terms in the expressions (7.26) and (7.27)

(corresponding to i = 1 and ^ — 0, respectively) from yi. Likewise we

subtract the leading term in y-i, (7.27), at i =^ but do not bother to do so

at the end ^ = 1 because ii-y-i approaches zero there. We therefore write

yi - Ji-y2 ^ bi + t^ "log (1 ~ ^') - k{l - e ")"/'p - u-y^

+ n-^kil - OVp] -e-' log {1 - ¥) -f (1 - u'^)k{\ - e^y-/p

= Z(») - .-" log (1 - e) - (^^^ (1 - .-)^
bop

" "Theory and Application of Infinite Series,'- Knopp, (1928), page 561.

(8.10)

I l.rJ=-.J->ar*^g'.-- .a.-.
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where Z(m) denotes the function enclosed by the brackets in the first equa-

tion and the expressions for g"/g and k in (8.2) have been used in the replace-

ment of (1 — u^)k.

Table 4

Values of Wz(J)/i^^'')

p = 0.5 1.0 2.0 s.o

1

2

- .03517
- .03003
^.01717

^.03891
-.03196
-.01486

-.02444
-.01830
-.003304

-.001948
-.001814

.004052

3

4
6

-.002436
.008757
.01478 .

.004014

.01730

.02157

.01252

.02244

.02167

.008225

.01027

.007665

8

10

12

.01018

.005768

.004027

.01366

.007378

.004463

.01237

.006201

.003552

.003505

.001437

.0006439

Values of n^(/)/(47rV)

1

2

.7369

.7098

.6439

.4118

.4294

.4516

.2322

.2672

.3231

.07529

.1134

.1784

.003017

.02342

.05828

3

4

6

.5542

.4623

.3195

.4225

.3496

.2178

.3225

.2654

.1508

.1947

. 1580

.07554

.06852

.01590

.01540

8

10
12

.2390

.1908

.1595

.1553

.1215

.1003

.1019

.07768

.06306

.04506

.03206

.02511

.005325

.002726

.001719

Inserting (8.10) in the expression (8.4) for S2(t) and taking the Fourier

transform (8.5) leads to

W{j) = W^{f) + W^if) + w^u)

^^ ^
'*"

f g" COS lirfr dT
Jo

-P\2 ^-PlUah

2bop

W.

P itV2t

i(/) = 4to / Z(u) cos («//ff) du
Ja

(8.11)
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In these equations WniJ) is obtained from (8.7), and Wzif) by two-fold

integration by parts to reduce g" to g then evaluating the integral obtained

Fig. 8—Power spectrum of d6/dl.

Power spectrum of I\ is assumed to be

M''V2^)-' exp [ -{/ - A)V(2cr^)].

In this expression /is a frequency near/^. The/ in ir(/) and in the abscissa is a much
lower frequency. H'C/) = power spectrum of 0' = dO/dt, 6' being regarded as a random
noise current. Dimensions of ]V{f)dJ same as {dB/'dtY or (radians)V5ec.^.

by substituting the expression (8.2) for g. That TF(/) approaches Wiif)

as p —* '-C follows when expression (8.11) for W-iij) is compared with the

limiting form (8.13) given below.

.^.•^.r.*J..i».-
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Instead of dealing with W{f) it is more convenient to deal with (47rV) ^

n'(/) which is the sum of the three components

(47rV)"'Tr3(/) - - [ Z{u) COS («//ff) rf«
TT Ji)

(8-12)

Fig, 9—Approach of W{f) to limiting form.

As p -» 00 , I^(/) ^ 47r^ff (p\/2^)-i
C//'^)' exp [

- /V(2'T=)].

The integral involving Z(m) has been computed by Simpson's rule, yi and

y-i being obtained from Table 3, with the results shown in the first section

of Table 4. The value of TT^(/) may be computed directly, and Il''i(/) may
be obtained from Wn(J). The values of these two functions together with

those of IT'a (/) enable us to compute the values of (4xV)~'n''(/) given in

Table 4 and plotted in Fig. 8.

Since, as is shown by (8.9), Wfi(f) varies as 1// for large values of/, the

areas under the curves of Fig. 8 become infmite. This agrees with the fact

that the mean square value of 9' is infinite.

The values of (4t^(t)-W(Q) for p equal to 0, .5, 1, 2, and 5 are .7369, 41 18,

2322, .07529, and .003017 respectively. When these values are plotted on
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semi-log paper they tend to lie on a straight line whose slope suggests that

II'(O) decreases as e^^ when p becomes large.

The limiting form assumed by ll'(/) as p —* ^ is given by equation (7.2).

When the normal law expression (8.1) assumed in this section for the power

spectrum of In is put in (7.2) we find that

'^''\ //Y -fVi2<,^
- tr(/)-p7fz(-^l ^"'" '

(8.13)

Fig. 9 shows that for p = 5 the limiting form (8.13) agrees quite well with

the exact form computed above.

Both (7.2) and (8.13) show that, for small values of/, the power spectrum

of 6' varies as/- when p > > 1. This is in accord with Crosby's* result

that the voltage spectrum of the random noise in the output of a frequency

modulation receiver is triangular when the carrier to noise ratio is large.

When this ratio becomes small he finds that the spectrum becomes rec-

tangular. Fig. 8 shows this effect in that the areas under the curves between

the ordinates at/ ^ and/ = Xa (where X is some number, generally less

than unity, depending on the ratio of the widths of the i.f. and audio bands)

become rectangles, approximately, as p decreases.

APPENDIX I

The Integral le {k, x)

Tlie integral'^

Ie{k,x) = I c~''h{ku)dti, (Al-1)
Jo

where /o(*fe«) denotes the Bessel function of imaginary argument and order

zero, occurs in Sections 2 and 6. The following special cases are of interest.

Ic{{), x) - 1 ~ fi-^

Ie{\, x) = xc-^[U{x) + /i(.v)J (Al-2)

The second of these relations is due to Bennett."

* M. G. Crosl)y, "Frequency Modulation Noise Characteristics," Proc, I. R. E. Vol. 25

(1937), 472-514. See also J. R. Carson and T. C, Fry, "Variable Electric Circuit Theory
with Ap[)iication to the Theorv of Fret|ucncv Modulation," B.ST.J. Vol. 16 (1937),

51.5-540.
'^ The notation was chosen lo agree with lliat used by Bateman and Archibald (Guide

to Tables of Bessel Functions apjjearing in "Math. Tables and Aids to Conip.", Vol. 1

(1944) pp. 205-308) to discuss integrals nsed l>y Schwarz (page 248).
'T It is given in ef|iiation (62) of the reference cited in connection with our equation

(1.2) in Section 1.

I:.
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The values in the table given below were computed by Simpson's rule for

numerical integration. The work was checked at several points by using

n=o nlnl

where

^n = 1
- l+. + ^---+^.

2nV.r

When X is so large that Ie(k, x) is nearly equal to Ie{k, ^ ) we have

leik, a;) - (1 - k'r" - [2^1 - k)]-''\2/V-^) f ^"'^
dt

where ti = VxCl — k). However, this was not found to be especially useful

in checking the values given in the table.

Table of Ie{k, x)

Jo

e "loiku) du

X

k

.2 .4 .6 .8 .9 1.0

.2 .1813 .1813 .1814 .1815 .1816 .1818

.4 .3297 .3298 .3303 .3311 .3322 .3337

.6 .4512 .4517 .4530 .4554 .4586 .4629

.8 .5507 .5516 .5545 .5593 .5661 .5749

1.0 .6321 .6337 .6386 .6468 .6584 .6736

.2 .6988 .7012 .7086 .7209 .7386 .7620

.4 .7534 .7567 .7669 .7841 .8089 .8422

.6 .7981 .8025 .8157 .8383 .8712 .9157

.8 .8347 .8401 .8566 .8850 .9267 .9839

2.0 .8647 .8712 .8910 .9255 .9766 1.0476

.2 .8892 .8968 .9201 .9607 1.0217 1.1075

.4 .9093 .9179 .9446 .9916 1.0627 1.1642

.6 .9257 .9354 .0655 1.0186 1.1001 1.2183

.8 .9392 .9499 .9831 1.0424 1 . 1345 1.2699

3.0 .9502 .9618 .9982 1.0635 1.1661 1.3195

.2 .9592 .9718 1.0110 1.0822 1.1953 1.3672

.4 .9666 .9800 1 .0220 1.0988 1.2223 1.4132

.6 .9727 .9868 1.0314 1.1136 1 . 2475 1.4578

.8 .9776 .9925 1.0394 1.1268 1.2708 1.5010

4.0 .9817 .9971 1.0463 1 . 1386 1.2926 1.5430

.2 .9830 1.0010 1.0522 1 . 1492 1.3130 1.5839

.4 .9877 1.0043 1.0574 1.1587 1.3320 1.6237

.6 .9899 1.0070 1.0619 1.1672 1.3499 1.6625

.8 .9918 1.0092 1.0657 1.1749 1.3666 1.7005

5.0 .9933 1.0111 1.0690 1.1818 1.3823 1.7376

5.4 .9955 1.0140 1.0743 1 . 1937 1.4110 1.8095
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Table—Continued

X

.2 .4 .6 .8 .9 1.0

5.8 .9970 1.0160 1.0783 1.2034 1.4364 1.8786
6.2 .9980 1.0174 1.0814 1.2114 1.4590 1.9452
6.6 .9986 1.0183 1,0837 1.2180 1.4792 2.0097
7.0 .9991 1 .0190 1.0854 1.2234 1.4972 2.0722
7.4 .9994 1.0195 1.0867 1.2278 1.5134 2.1328
7.8 .9996 1.0198 1.0876 1.2375 1.5279 2.1917
8.2 .9997 1.0201 1,0885 1.2.346 1.5409 2.2491
8.6 .9998 1.0202 1.0891 1.2371 1 . 5526 2.3050
9.0 .9999 1.0203 1 .0896 1.2393 1,5631 2,3597
10.0 1.0000 1.0205 1.0902 1.2431 1,5852 1.9207 2,4910
11.0 1.0000 1.0206 1.0907 1.2456 1.6024 1.9668 2.6157
12.0 1.0000 1.0206 1.0909 1.2471 1.6158 2.0066 2.7347
13.0 1.0000 1.0206 1.0910 1.2482 1.6263 2.0411 2,8487
14.0 1.0000 1.0206 1.0910 1.2488 1.6346 2.0711 2,9584
15.0 1.0000 1.0206 1.0911 1.2492 1.6412 2.0973 3.0641

00 1.0000 1 .0206 1.0911 1.2500 1.6667 2.2942 00

X
k

.86 .90 .96 1.0

15.0 1.8773 2.0973 2.5810 3.0641
1 16.0 1.8899 2.1201 2.6371 3.1663
; 17.0 1.9006 2 . 1403 2.6894 3.2653
i

18.0 1.9095 2.1579 2,7381 3.3614
1 19.0 1.9171 2.1737 2,7837 3.4548

20.0 1.9235 2.1870 2.8263 3.5457
00 1.9597 2.2942 3.5714 00

APPENDIX n
Second Moments Associated with I^ and la

The in-phase and quadrature components of the noise current /^

h(t) ^ ^c„ cos [(a)„ - q)l - <p„]
n=l

hit) = 2 c„ sin [(a)„ - g)t — ip„]

(S.3)

are closely related to the envelope R and phase angle 9 of the total current,

this relationship being being shown by the equations (3.4) and (3.5). 1^(1)

and Is{t) and their time derivatives may be regarded as random variables.

In much of our work we have to deal with the probability distribution of

these random variables. By virtue of the representation (3.i) and the

central limit theorem this distribution is normal in the several variables.

The coefficients in the quadratic form occurring in the exponent are deter-

" Section 2.10 of Reference A.

"I
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mined by the second moments of the variables/^ Here we state these

moments. Some of the moments have already been given in Sections 3.7

and 3.8 of Reference A. For the sake of completeness we shall also give

them here. The new results given below are derived in much the same way

as those given in Reference A.

Let

b^ = {2^r f w{f)(f - f,r df

h= [ Wif) df = ^0
Jo

g = ( w{f) COS 2ir{f - Qrdf

h= [ w{f)sin2Tr{f~ Qrdf
Jq

(A2-1)

and let g', g" , h', h" denote the first and second derivatives of g and h with

respect to t. For example,
, ^ _

-

'

.

- g' = ~2^ [ w{f)if - f,) sin 2t(/ - A)r df ;;,;:v'.- .
.

'

',

Jo
; .;. ^y^- -.

:",.

Incidentally, in many of our cases w(J) is assumed to be symmetrical about

/g. This introduces considerable simplification because bi, bz, bt, •
,

h, h', h", reduce to zero.

The followmg table gives values of b„'s and g for two cases of frequent

occurrence

Ideal band pass filter Normal law filter

centered on fg centered on /,, fq'^cr

.
,-' Wi for fa <f<fb ^o_ ^-(/-/,)'/g>'

and zero elsewhere ffV2x

bo Mfb - fa) ^0

bi ir-^Wo(f6-faf/3 47r'(TVo

. bi x%o(/6-/a)V5 487rVVo ;-' -

, \ , • It J- \ I „—St"'')' .i

g (7rT)~'Wo Sm 7r(/6 — ]a)T Wvfi

If we write /„ 7^, /" for /„(/), /'„(0, ^"W. where the primes denote differ-

» Section 2.9 of Reference A.
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entiation with respect to /, and do the same for /,(/) and its derivatives we
have, from Section 3.8 of Reference A,

!

' /! = 7! =p Z-o, /Z =

TJ'^ = -75; = 6i, 7^ = 77; =

I> = I> = -IJc = -IJ'.' = h, IX = IJ'I = Ij'c =
,/ .1/IX = ^rj: = b„ a: = a: = o

l';2 = r;2 = ^^^ j';j'; = q (A2-2)

When we deal with moments in which the arguments of the two variables

are separated by an interval t as in (see the last of equations (3.7-11) of

Reference A)

Ic{t)I.{t + t) = A,

it is convenient to denote the argument / by the subscript 1 and the argu-

ment ^ + T by 2. Then our example becomes

We shall need the following moments of this type.

-'cl-'c2 — *»l*»2 — g. I cli s2 ~ i cil »\ — h

Ie\Ie2 — I»J*2 — — Iell e-i — —IiiIm2 — g' /.„ ,^

leiJci — Itliti — —g ,
lell^i — —Iczlal — ~h

It should be remembered that in these equations the primes on the Ps
denote differentiation with respect to / while the primes on g and h denote

differentiation with respect to t.

APPENDIX III

Evaluation of a Multiple Integral

Several multiple integrals encountered during the preparation of this

paper were initially evaluated by the following procedure. The integral

was first converted into a multiple series by expanding a portion of the inte-

grand and integrating termwise. It was found possible to sum these series

when one of the factorials in the denominator was represented as a contour

integral. This reduced the multiple integral to a contour integral and some-

times the latter could be evaluated.

--iJ.- J-iU;,
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We shall illustrate this procedure by examining the integral

/ = [ de
f

dx X exp -X- + 2a cos 8 + 2bx sin 6 -^ c sin" 8 (A3-1)

Expanding that part of the exponential which contains the trigonometrical

terras and integrating tennwise gives .. -^ .'

„„
" « ~ a^"6^"'gg7rr(^+ w + i)

" "

"^'^
~ .

"'
"

:

'''": '

,h h U «!^!(^ + m + «)!r(m +,|)

where we have used
"

'

' j.;.'7-(;; :

.
2'"r(M + k)n\ = V^(2«)l -'•" :. ;!-">%, /

We next make the substitution ' ~"_[\'- '

"

_^_^^^ ^ :L \ 1±- '-'''-
(A32)

(^ _j_ ;„ 4- „.)! 27rt Jc /^+'"+"+^ ."

,. _ .

where the path of integration C is a circle chosen large enough to ensure the

convergence of the series obtained when the order of summation and integra-

tion is changed. The summations may now be performed:

2ih
dte'^""^' i;6'""r'"-'(l - ct-')-^-'"

''- "..•, ^^:-' (A3-3)

1 r i-'"{t- cY^' ,+„./<.. :

' "-/;.:
,, . -= — /

^ — e at -..>:,.,'
2iJct-c-b^ "":

C encloses the pole at c + 6^ and the branch point at c as well as the origin.

When a- is zero the integral may be reduced still further. Let c be com-

plex and b such that the point c -{- b^ does not lie on the line joining to c.

Deform C until it consists of an isolated loop about c -\- b^ and a loop about

and c, the latter consisting of small circles about and c joined by two

straight portions runnmg along the line joining to c. The contributions

of the small circles about and c vanish in the limit. Along the portion

starting at and running to c, arg (/ - c) = -tt + arg c, and along the por-

tion starting at c and running to 0, arg {t — c) = ir -\- arg c. On both

portions arg / = arg c. Bearing this in mind and setting t = c sin^ 6 on the

two portions gives '-
V"'

'"'"'
:":-' '•<(^ly "'"".;.;.'' ,^y;-;^:;•^^::,'v:','j^^

The integral may be expressed in terms of the function -

:

Ie(k,x) = r e-'' h(ku) du

.(:>•",'':
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by noting that

-Tf —a—Bcoav /•"" r 1 r' ~I

, f
-^ dv = <k\

, I
' f ,-(-^-^) ^t

I
Jo a + /3 COS It Jo L« + cos B Jo J

JO

= 7r(a= - &^)-^>^ - iir/a)Ie(fi/a, a)

Thus

where

/.„o - -^e'^hic/l) + i^b'Me''^' le (j-, a\ (A3-6)

a = ft-^ + c/2 - (A3-7)

j=i.- -i&~^-^rsj^'i» :».,v^^^?^; 4ii^ j-v.-.;'iij»*ifiMlAJl*'^i'iii**i:iti^


