
representation and energy concepts,6 can also be associated
analogously with the optimal-control problem, and the
piecewise solution of the network problem can be related to
sequential least-squares estimation, t
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MAXIMUM GAIN OF YAGI-UDA ARRAYS
Indexing term: Antenna arrays

Numerical optimisation techniques have been used to find the
maximum gain of some specific parasitic arrays. The gain of
an array of infinitely thin, equispaced dipoles loaded with
arbitrary reactances has been optimised. The results show
that standard travelling-wave design methods are not optimum.
Yagi-Uda arrays with equal and unequal spacing have also
been optimised with experimental verification.

For antenna arrays with driven elements, the maximum
achievable gain is well known in many cases of practical
interest (see e.g. Lo, Lee and Lee1). However, with only one
driven element and the remaining elements parasitic, the
maximum gain is only known for arrays with very few
elements.2'3

Parasitic arrays with many elements are usually designed on
the basis of surface-wave antenna theory, notably in the work
of Ehrenspeck and Poehler,4 who found optimum phase
velocities as functions of antenna length. It is characteristic
of this approach that it considers only homogeneous
structures, since all the parasitic elements are equal, except
perhaps for a slight taper to reduce reflections from the end
of the structure. The current distribution along the travelling-
wave array usually has a maximum at the feeding element
and a relatively constant, somewhat smaller value over the
parasitic part. This is in contrast to the optimum distribution1

for driven arrays, where the magnitude of the current should
be largest at the centre of the array and taper off to a smaller
value at the ends of the array. This latter distribution is
closer to a standing-wave distribution than a travelling-
wave distribution, and suggests that maximum gain is
achieved by an inhomogeneous structure, tapered in such a
way that reflections from the end are enhanced. Further-
more, the driven element should be close to the centre of
the array rather than at one end. It is precisely such a
structure which has been found by computer optimisation
methods, the results of which are presented in this letter.

The approach is to use a strictly numerical technique,
available computer optimisation procedures5 being used to
find the maximum gain. Three particular cases of linear
parasitic arrays with one element excited are considered.
The first consists of infinitely thin equispaced halfwave
dipoles, loaded at their centres with arbitrary reactances
which are the independent variables. The second and third
consist of cylindrical dipoles, where the independent variables
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are the element lengths and the spacing between elements;
the elements are equispaced in the second case and have
variable spacing in-the third. In all cases, the current distribu-
tion along the elements has been assumed to be sinusoidal,
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Fig. 1 A Maximum relative endfire gain
as a power ratio for arrays of N relatively thin, loaded halfwave dipoles as

a function of element spacing d. Element Nx is driven and the remaining elements
are parasitic

maximum relative endfire gain of an ^-element array with all elements driven
(N, Nx) refer to the number N of elements and the position of the driven element

and only element lengths around half a wavelength have been
considered.

The method has been to excite one element and then find
the currents in all the elements by inversion of the impedance
matrix. The self and mutual impedances have been calculated
by means of the induced-e.m.f. method. After determination
of the currents, all other relevant antenna parameters such
as gain, impedance etc. are easily found.

Maximum relative power gain in the endfire direction is
shown in Fig. 1A for an N-element equally spaced array of
loaded halfwave dipoles with element number Nx excited.
The extreme element to the left is number one and the
direction of maximum radiation is to the right. The numbers
in parentheses attached to the curves are (N, Nx). The dotted
curves show the maximum gain when all the elements are
driven, clearly showing the supergain effect when d/X tends
to zero. These curves are taken from Reference 6, Pt. I,
p. 198. The main difference is that, for the parasitic case,
there is an optimum spacing which increases with N. The
curves shown are for optimum values of Nx, except for
N = 7, where it is shown how the maximum gain varies with
Nx. Clearly, for N large, the driven element is near the
centre of the array. It is worth noting that, at the optimum
value of spacing, there is only a small difference between the
maximum gain for the parasitic and the driven arrays.

Fig. 1B shows the optimum distribution of loading
reactances corresponding to the maximum gain values of
Fig. 1A. The reactances are normalised with respect to the
radiation resistance of a single element. We note the non-
uniform distribution with the largest absolute value of the
reactance near the centre of the array, quite contrary to the
usual practice. In terms of a local phase velocity, the local
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wave is fastest near the centre and slowest near the edges,
indicating the presence of a reflected wave, since the reflection
from the end is larger for a slower wave.

The maximum gains relative to a halfwave dipole are shown

- 20

which gives an additional gain increase. By translating the
results of Fig. 2 into a linear scale, the following formulas
for power gain above a halfwave dipole can be derived:

gain = 5-5 + 3 - 5 — —

gain = 4-1 + 5-4 —

gain = 3-0 + 7-0 —

(Ehrenspeck and Poehler)

(equispaced array)

(nonequispaced array)

where Lis the total antenna length. Thus it appears that this
reflection-type Yagi-Uda antenna has, asymptotically, twice

0-50

(6,2)

0-40 1-5
y/A

15

Fig. 3 Element lengths H and element positions Y for optimum
arrays of unequal spacing
Driven element positions a /A = 0-01, where a is radius of elements. (N, Nx) refer
10 the number N of elements and the position of the driven element

Fig. 1 B Optimum distribution of loading reactances Xt for
equispaced, infinitely thin, loaded halfwave dipoles as a function
of the element number i
The excited element is omitted since it is not loaded. (N, A^) refer to the number
N of elements and the position of the driven element ifcj

(10,5)

Fig. 2 Maximum gain of Yagi-Uda arrays as a function of
total array length L
a Experimental results obtained by Ehrenspeck and Poehler4

b Equispaced array of infinitely thin, loaded halfwave dipoles, and cylindrical
dipoles with variable element lengths

c Array with unequal spacing
(N, Nx) refer to the number N of elements and the position of the driven element

in Fig. 2. The numbers at the points are again (N,NX).
Curve a gives the experimental results of Ehrenspeck and
Poehler.4 Curve b shows the results of Fig. 1A, and also the
results of the second case with an array of cylindrical dipoUs
with variable lengths but constant spacing. For a given
length the gain increase is moderate, but it should be noted
that the results of curve b are for a minimum number of
elements. Curve c covers the case of nonuniform spacing,
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the gain of the conventional travelling-wave type, or, expressed
differently, for the same gain it only needs half the length.
This is somewhat similar to the backfire antenna which,
however, requires a much larger extent transverse to the
antenna axis.

Finally, Fig. 3 shows some examples of the dimensions of
optimum nonuniform arrays for all = 001, where a is the
radius of the elements. With some slight corrections of the
element lengths, the gain values have been confirmed
experimentally to within 0-2 dB. The method is being
extended to include constraints on Q factor and radiation
pattern. Additional information may be found in Reference 7.
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