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Optimum Element Lengths for Yagi—Uda Arrays

C. A. CHEN axp DAVID K. CHENG, FELLOW, IEEE

Abstract—An analytical method is developed for the maximization
of the directivity of a Yagi-Uda array by adjusting the lengths of the
dipole elements. The effects of a finite dipole radius and the mutual
coupling between the elements are taken into comsideration. Cur-
rents in the array elements are approximated by three-term expan-
sions with complex coefficients that convert the governing integral
equations into matrix equations., Array directivity is maximized by
a perturbation procedure that adjusts the lengths of all array ele-
ments simultaneously and that converges very rapidly. This method
can be combined with the previously developed spacing-perturba-
tion method to form a double-perturbation procedure and obtain a
Yagi=Uda array of nonuniformly spaced elements of unequal lengths,
which yields 2 maximum directivity.

I. INTRODUCTION

N A PREVIOUS paper [1] a method was presented
for the maximization of the directivity of a Yagi-Uda
array by adjusting the interelement spacings in a sys-
tematic manner. The effects of a finite dipole radius and
the mutual coupling between the array elements were
taken into consideration. A three-term expansion with
complex coefficients was used to approximate the current
distribution in the elements and to convert the governing
integral equations into simultaneous algebraic equations.
This approach has the advantage of rapid convergence
in the numerieal solution. For an array with N elements
the largest matrices encountered are of a dimension
2N X 2N.

The method employed a spacing perturbation technique
and was based upon a theorem [2], [3], which assured
that the directivity of an array would be increased by a
proper set of spacing adjustments. It was found [1] that,
in a typical case, the directivity of a space-optimized
6-element Yagi-Uda array could be increased by more
than 57 percent over that of an array with equally spaced
directors. The radiation pattern for the optimized array
was also found to have lower sidelobes and a slightly
narrower main beam, in addition to having an increased
field intensity in the direction of maximum radiation, as
compared with that for the array with equally spaced
directors.

Besides the interelement spacings, the lengths of the
array elements present themselves as another set of param-
eters that could be adjusted for directivity increases. The
problem first appeared to be a rather difficult one since
the various element lengths come into play not only in
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distance expressions (as do the element spacings), but
also in the limits of definite integrals. Ehrenspeck and
Poehler [4] obtained some experimental results showing
the dependence of the gain of Yagi-Uda arrays on director
height for given director spacings and array lengths. Using
the classical dipole theory of sinusoidal current distribu-
tions, Green [5] compiled an extensive collection of data
listing maximum obtainable directivities for Yagi-Uda
arrays of equally spaced elements. The lengths of the
reflector, the driver, and the director elements (all director
elements were of equal length) that combined to yield a
maximum directivity were tabulated. As far as the authors
can determine, no work has been reported in the literature
that enables the systematic determination of the (un-
equal) element lengths of a Yagi-Uda array for directivity
optimization

This paper employs a perturbation technique for deter-
mining the element lengths needed for directivity maximi-
zation, similar to that used for obtaining optimum element
spacings [1]. The three-term theory developed by King
and his associates [6] is used for finding the currents in
the dipoles. The technique can be applied to an array
with arbitrary spacings. Typical numerieal results for a
uniformly spaced array with optimum element lengths
are presented, and radiation patterns and current dis-
tributions on the elements are plotted.

By combining the method developed in this paper with
that in the previous paper [1], a double perturbation
procedure is obtained that will yield optimum element
spacings as well as optimum dipole lengths. The result
is a Yagi-Uda array of nonuniformly spaced elements of
different lengths with a maximum directivity for a given
number of dipoles of a specified radius. Typieal results
of this double perturbation procedure are also presented.
In order to bring out the essential steps of this develop-
ment without being overly burdened by complicated
mathematical expressions, much detailed work will be
omitted and the reader will be referred to related earlier
work.

II. CURRENT DISTRIBUTIONS IN
YAGI-UDA ARRAY

Fig. 1 shows the sketch of a typical Yagi-Uda array
of dipole elements, of which only the second one is driven
by a source and all others are parasitic. Element 1 is a
reflector and elements 3 to N are directors. The integral-
equation formulation for the currents in the N elements
using a three-term approximation for the driven element
and two terms for the parasitic elements has been dis-
cussed before [17, [6]; only the more essential results
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Fig. 1. Typical Yagi-Uda array.

will be included here. The N simultaneous integral equa~
tions to be solved are
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where 8, is the phase constant, Vo = 0, for & 5= 2, Vi
is the excitation voltage of a s-function generator in
element 2
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In solving the simultaneous integral equations (1),
the current distributions 7:(2) are assumed to have the
following rorm:

3
I;‘(Z) = Z AJ”Z?S#’")(Z)

(7)
-t
with
S:0(2) = sin Bo(h; — | 2]) (8)
S:®(2) = cos Boz — cos Boh: (9)
8:®(2) = cos 3Bz — cos Bohs (10)

and 4,2 = 0, for 7 = 2. Substitution of (7) in (1) and
use of certain approximate relations for the integrals
involved yield
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and two simultaneous matrix equations for the column
matrices of complex coefficients {A®} and {A®}:

[80](A®} + [3O][AD] = — (&0} 4,0
[T (AP} + [T O A®) = — [Wp D] A4,

(12)
(13)

9

The expressions for WuD and for the elements of the
N X N square matrices [®®7], [®®7], [T®7] and [¥,®]
as well as those for the elements of the ¥ X 1 column
matrices {®®} and {0} are rather involved. They
can be found in [6] and [7]. Suffice it to say that when
the geometrical dimensions are given, the complex coeffi-
cients A4,®, {A®}, and {A®} can be determined from
(11)-(13). With these coefficients known, the current
distributions in all the dipole elements of a Yagi-Uda
array can be obtained from (7). We note that the mutual
coupling effects among the array elements are taken into
consideration inherently in the formulation and that the
currents in the elements can deviate much from a sinusoid
61 [7].

When the driven element (element 2) is a half-wave
dipole, some of the quantities in the preceding formulation
will become indeterminate and an alternative formulation
is available [17], [7] in order to avoid computational
difficulties. However, computational and experimental
evidence [4], [5] indicates that none of the array elements
will be very close to a half-wavelength in length in a
maximum-directivity arrangement. Hence there will be
no need to consider this special case. This conelusion is
supported by the results of the numerical examples in
Section VI.

ITII. LENGTH PERTURBATION

To adjust the element lengths in a Yagi~Uda array for
maximum directivity it is assumed that the length of the
ith element be changed by a small amount Ah;(BeAh; < 1)
The perturbed currents I.7(z) will be obtained from a
modified version of (7):

3

Li#(z) = EIAI-(”"”S,-("’“’(Z) (14)
with
S;0?(2) = sin By(h: + Ah; — | 2])
= 80 (2) 4+ (BoAh)AS:V(2) (15)
S;®2(z) = cos Boz — cos Bo(h: + Ahy)
= 8:2(2) + (BoAh:i) AS;®(2) (16)
S:97(z) = cos 3Bz — €08 3By (h: + AhRY)
= 88 (2) + (Bodh:) AS®(2)  (17)
where
AS®(2) = cos By(hs — | 2]) (18)
AS;® (2) = sin Boh; (19)
AS;®(2) = % sin 360k (20)

A similar approximation can be applied to the distance
terms Ex:(h) in (3) and (5), to aceount for the change
Ahy, [8]. Perturbed definite integrals with element length



10 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, JANUARY 1975

in the limits such as those in (1) and (2) may be written and

as foli:‘:vst i _ [B2]{AA®} + [E®]{AA®]} = —[ABD]{AD}
(hi+-Ahi i
/. f(x) dx o~ f(ll?) dz + Ahz[f(h’) —_ f( _hl) ] — [A¢(3)]{A(3)} — {A@z(l)}Az(l) — {@2(1)} (60}12) AAZ(U
—(hitAki) —hi
(21) and &

With these approximations and the substitution of the . .

perturbed currents 7;7(z) in (1), the matrices [®™7], [T,27{AA®} 4 [T, T{A4®}

[Wm7], {@:®}, and { ¥} and the complex coefficients = —[AY,OA®) — AV, HHA®] — [AT,, W] 4,®

A, and {A™} in (12) and (13) are changed to [®™ Tz, WD) (Bohhs) A5, (33)

[Wmp, {@MW)r, {Wp,W)r 4,07 and {A™}» respec- )

tively. We have In view of (26) and the attendant remarks, as well
[6mTp = [&"] + [A®™], m =23 (22) as of (30), the kth element of the right side of (32) can

be written as
[T = [T + [AT™],  m =23 (23) v
[B,0)7 = {BD] + {ADD) (24) 22 [Pa kiR,
=1
(Wae®}? = {¥2u P} + {AT2P}, (25) where [P; ]isan N X N square matrix. Similarly, another

The expressions for the deviation matrices in (22)-(25) N X N matrix [P;] can be defined from the right side
are quite complicated and will be omitted here in order of (33). Equations (32) and (33) become

to conserve space. They can be found in [87]. However, it . @ @

is important to note that the kith elements of the square fe»1 [ ]] fad@ _ LP:] (AR].  (34)
L. e (99 g o bo kth ele = 1.

deviation matrices in (22) and (23) and the kth elements [0,07] [w.®]] |{ado] [P,]

of the column deviation matrices in (24) and (25) can
each be expanded as the sum of two terms, both being From (34), {A®} and {A®} can be found by matrix
proportional to the deviation in element length. For inversion:
{A4 @} [e®] [@®]| [P:] [Q:]
= {AR) = {ARY. (35)
{A4®} [(w.P] [¥.®]] [([Ps] [Qs]
example, the kith element of the deviation matrix [A®™ 7] The perturbed current coefficients {A®}? and {A®}»
in (22) ean be written as can then be determined from (27)-(29). We note that
the development parallels closely to that for spacing

[ADM |y = (BoAhr) ADy: ™' + (BoAh;) Ay (26)  perturbation [17, although, of course, the elements of

, . the various matrices involved are different.
where A®. ;™' and A®y;™" can be evaluated from in-

tegrals containing S8, (z) and other functions [8]. Also IV. RADIATION FIELD FROM
PERTURBED ARRAY
AP = A, 0 4 (ByAhs) AA,W (27) The radiation field of a length-perturbed Yagi-Uda
(A®]r = [4®] + [AA®)] (28) array at a dilstanze R, from a reference origin is
, Joly & . .
[A®}2 = {A®} + (A4} 7 (29) E'(9,¢) = %ROESXD (JBod; sin 8 cos ¢)

where the current deviation coefficients AA,®, {A4®}, hikah: , o, ] .

and {AA®} are to be determined. f I»(2/) exp (jBoz/ cosf) sinf dzi’. (36)
In addition, the number ¥y appearing in the de- __ —\(h'ﬂh') ,

nominator of (11) will also be changed by length per- USing (14)-(21), we can express E'(6,¢) as the sum of

urbation to Fay®7: the radiation field £ (8,¢) of the unperturbed array and a
perturbation field:
WaggV? = W™ - (BoAhs) ATz, (30) Jop ¥
, E'(0,¢) = E(0,9) + 2_ exp (JBod: sin 6 cos ¢)
Substituting (14)—(20) in (1) and (11)-(13), and noting 4o 1o
(21)-(30), we obtain, after second-order deviation terms a s
have been neglected, . / > [AA S e (1)
—hi m=1
A4 = [‘ Mo+ tan mmJ A® (31) + (Bobhi) A A8 (2() ] exp (jBozi’ cos §)
2 p0a (D) o

-sin @ dz;’. (37)
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It is convenient to define the following quantities for
the integrals in (37):

ke
MM (9) = ’3—;)/ S (2) exp (jBoz: cos ) sin 6 dz/’
29 g,
(38)

ki ’
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24 gy
(39)
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Y g
(40)
Be [ , oy . ,
M®(9) = 35 AS; W (2/) exp (jBoz: cos @) sin 0 dz,'.
~hi

(41)

Substitution of (35) and (38)—(41) in (37) enables us to
write

E'(8,¢) = E(8,9) + AE(8,)
— B(0$) + (D)T]ak} (42)

where the superscript T denotes transposition, and {D}
isan N X 1 column matrix whose kth element is

60 - . .
D, = % {[Ax@ sin Bohz + $4:® sin 380k ] tan 0
0
-sin (Bhi cos 8) exp (JBod: sin 6§ cos ¢)

AT
+ 25 ([Qe1iM;® (6) + [@s]nlM ;™ (6))
J=1

-exp (jBud; sin 0 cos ¢) ], k#= 2. (43)

Fork = 2,
J60
D, = 7 {[A:DH-#(8) + AADOM,D(6)]
0

-exp (JBds sin 0 cos ¢) + [A:® sin Boha

+ £4.® sin 3Bohs | tan 8 sin (Bohs cos 6) exp (7Bude
N

-sin f eos ¢) + > ([Q21M ;@ (8) + [Qs]:M ;® (6))
=1

-exp (7Bod; sin 6 cos ¢) | (44)
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where [@. ] and [@:] denote, respectively, the jkth
element of the square matrices [Q.] and [Qs] defined in
(35). Equation (42), which expresses the deviation field
AE explicitly in terms of length perturbations {Ah},
enables us to formulate a directivity-optimization pro-
cedure by adjusting the lengths of the array elements.

V. DIRECTIVITY OPTIMIZATION BY
LENGTH PERTURBATION

To increase the directivity of a Yagi-Uda array by
length perturbation, we follow a procedure similar to
that used for spacing perturbation [17. The directivity
of an array in the direction (6y,¢0) is

I E(00)¢0) IZ

(45)

where P;, is the time-average input power. With length
perturbation E becomes E’, Pi;, becomes Pi,’, and the
perturbed directivity becomes

| E,(00)¢0) |2

G’ (60,¢0) = 60P~

(46)

From (42)

| B (Bo,0) |* = | E P + 2{ARYT{By} + {AR}7[Re Ci]{ AR}

(47)
where
{Bi} = Re (E{D*}) (48)
and
[Re C1] = Re ({D}*(D}7). (49)
Py’ in (48) is
Py’ = 3 Re [Vu*l,?(0)] = Pin + {AR}T{B;} (50)
where
Py, = L1V Re { il A0 8,0 (0) 1. (51)
The kth element of {B,} in (50) is
7V Re {[Q: 2eS2® (0) + [Qs 5 (0) },
k2

{32}k =3 %Voz Re {[Qz]zzsz(”(oj + [Q3]22‘S2(3) (0
+ AA4;M8,M(0) + A2V AS®(0)
| +4:PA8:2(0) + 4:PAS®(0)1, k

f
Lo

(52)
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For a lossless array, P’ can be written in an alternative
form [1]
P/ = Pi, + 2{Ah}7{Bs} 4+ {Ah}T[Re Cy){ AR}

where

(53)

Py = 24t)7r fohdqbfule(m) [2sinfdode (54)
l 2x T
{Bs} = 2207 J, d¢-/|; {By} sin 0 d6 d¢ (55)
and
1 27 x
[02]=£()— 0 de j; [Ci]sin@dode.  (56)

{B;} and [C,] in (55) and (56) have been defined in
(48) and (49), respectively, and [C.] is a positive definite
Hermitian matrix.
The change in directivity due to length perturbation
{ah} is
AG(007¢0) = G,(007¢0) - G(BUNSO)
which, by the use of (45)-(53), becomes

1 [AR}T{B} + {AR}T[Re Cy]{ Ak}

(57)

AGBndo) = 60 Pin+ 2{ARIT{Bs} + {AR}T[Re Cy]{ Ak}
(58)
where
{B} = 2{B1} — 60G(6q,0) { Bz} (39)

We note that the negative sign in (59) for {B} in the
numerator of AG(fs,¢0) in (58) indicates that the array
directivity may decrease for an improper choice of {Ah}.

In order to be certain that AG(8,¢,) will be positive,
we make use of a known relation in the theory of matrices
[1], [2], which asserts that if the length changes in | AR}
are chosen such that

[AR} = o[Re C:J1(2{By} — 60G{B:}) (60)
then

AG = —

1 a(2{Bi} — 60G{B:})T[Re C:1"1(2{B;} — 60G{B:}) + {Ah}T[Re C1]{Ah}
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in general be nonuniformly spaced and their lengths will
be different. Typical results will be illustrated by numerical
examples in the following section.

VI. NUMERICAL EXANMPLES

We present here the computed results of two examples
that illustrate the effectiveness of the length-perturbation
procedure for increasing the directivity of a Yagi~Uda
array. In both cases we start with a six-element array
that consists of a driven dipole, a reflector, and four
uniformly spaced directors of equal lengths. The reflector
is situated a quarter-wavelength behind the driven ele-
ment, as this combination has been found to be optimum
relative to directivity [17], [4], [6]. Length perturbation
(keeping the spacings fixed) is applied to the array in the
first example to maximize the directivity. In the second
example, a double-perturbation procedure is used, in
which the element spacings and then the element lengths
are adjusted in order to obtain a maximum directivity.

Example 1

Siz-Element Yagi-Uda Array: Reflector length, 2k =
0.510); driver length, 2k, = 0.490)\; equal length of four
directors, 2h; = 2hy = 2h; = 2hs = 0.430); dipole radius,
a = 0.0033697; element spacings ba = 0.250A, by =
b = bss = bss = 0.310\. The lengths of all the elements
are to be adjusted for a maximum directivity.

The directivity of the initial array referring to that
of a half-wave dipole is calculated by using (11)-(13),
(45), and (51) to be 7.544(8.77 dB). Now keeping the
element spacings fixed, the lengths of all the dipole ele-
ments are perturbed in accordance with (60). Three
iterations converge rapidly to a directivity (referring to
a half-wave dipole) of 10.012 (10 dB), an increase of 32
percent from the initial array. The new lengths of the six
elements in the perturbed array are given in Table I.
Several length combinations obtained by Green [5] for
optimum six-element uniform Yagi-Uda arrays (all
directors of equal lengths) on the basis of sinusoidal
current distributions have been recomputed using the

60 Pin + 2{ARITIBs} + {AR}T[Re Co]l AR

The « in (60) should be sufficiently small to satisfy the
condition (Ah:)/h;< 1. The new directivity (' as the
result of length changes specified by (60) can be calculated
from (61) and (57). A second perturbation can then be
performed on G', and the process repeated until further
increases are negligible. Again similar to the spacing per-
turbation procedure, the iterative process converges
rapidly.

By combining the spacing and length perturbation
procedures, we can obtain a Yagi-Uda array of dipole
elements of optimum lengths that are optimally spaced to
yield a maximum possible directivity. The elements will

> 0. (61)

three-term approximation. In comparison, the directivity-
of the six-element length-perturbed array is more than
15 percent higher than that computed from Green’s data.

The normalized radiation patterns for both the initial
and the optimized arrays are given in Fig. 2. It is seen
that the pattern for the optimized array has a slightly
narrower main beam and lower sidelobes.

Example 2

Six-Element Yagi-Uda Array: Reflector length, 2k, =
0.510A; driver length, 2k, = 0.490); equal length of four
directors, 2hs = 2hy = 2h; = 2hs = 0.430X; dipole radius,



CHEN AND CHENG! YAGI—UDA ARRAYS 13

TABLE I
DirecrrviTy OpTiMizATION FOR S1X-ELEMENT YAGI-Upa ARRaY (PERTURBATION OF ELEMENT LENGTHS)
Directivity
(referring to
. half-wave

hy/A ha/ hs/X ha/A hs/\ he/A dipole)

Initial Array 0.255 0.245 0.215 0.215 0.215 0.215 7.544

Length-Perturbed Array 0.236 " 0.228 0.219 0.222 0.216 0.202 10.012

ba1 = 0.250%, b2 = 0.310M(7 = 3,4,5,6), ¢ = 0.003369A.

TABLE 11
Direcrivity OpTimizaTioN FOR Six-ELEMENT YAGI-UpA ARraY (PERTURBATION OF ELEMENT SpaciNgs aND ELEMENT LENGTHS)

Directivity
.. (referring to
hg/}\ hg/)\ h;g/)\ hq/}\ h5/; hs/)\ bzl/)\ bsg/) b43/)\ b54/)\ bss/) half—wave dipole)

Initial Array 0.2565 0.245 0.215 0.215 0.215 0.215 0.250 0.310 0.310 0.310 0.310 7.544

Array after Spaecing Perturba- Same as above 0.250 0.289 0.406 0.323 0.422 11.687
tion

Optimﬁm Array after Spacing 0.238 (.226 0.218 0.215 0.217 0.215 Same as above 13.356

and Length Perturbations
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a = 0.003369); element spacings bz = 0.250), by = by =
bss = bg; = 0.310n. A double-perturbation procedure is
to be applied, spacing perturbation followed by length
perturbation, in order to obtain the maximum possible
directivity.

This array is initially the same as the one given in
Example 1. We first keep the lengths of the array elements
fixed and apply the spacing-perturbation technique [1]
to obtain the proper element spacings for maximum
directivity. Only one iteration is needed to increase the
directivity referring to a hali-wave dipole from 7.544
(8.77 dB) to 11.687 (10.68 dB), an increase of 53 percent.
With the new spacings we adjust the lengths of the dipoles
in accordance with the procedure developed in the preced-
ing section to increase the directivity further. After three
iterations we obtain the data listed in the last line of
Table I1. The directivity referring to that of a half-wave
dipole is now 13.356 (11.25 dB), an increase of 77 percent
from that of the initial array. As shown in Table II, the
array elements are now nonuniformly spaced and are of
different lengths. It is found that a further application
of the double-perturbation process does not vield a signi-
ficant improvement.

The real and imaginary parts of the currents in the six
elements of the initial array are plotted in Fig. 3, and
those for the optimized array in Fig. 4. The absolute cur-
rent amplitudes in the elements of the optimized array
after spacing and length perturbations are about ten
times those in the initial array. The input admittance
for the optimum array in Table IT is found to be 0.07136 —
j0.04293, while that for the initial array is 0.006503 —
70.005135. The computed field intensity in the direction
of maximum radiation for the initial array is only one-
nineteenth of that for the optimized array.

The normalized radiation patterns for the initial array,
the array after spacing perturbation, and the optimum
array after both spacing and length perturbations are
plotted in Fig. 5. We see that higher directivity is accom-
panied by a slightly narrower main beam, lower sidelobes,
and a higher front-to-back ratio. These results may be
explained by a comparison of the current amplitudes and
phases in the array elements 2 through 6 before and after
optimization, ag follows.!
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the amplitudes decrease smoothly and rapidly and the
phases decreasc eontinuously and slowly. The optimization
procedure with respect to element spacings and element
lengths apparently leads to an array on which a pre-
dominantly traveling wave is sustained. Hence an in-
creased directivity is accompanied by a generally improved
radiation pattern.

VII. CONCLUDING REMARKS

Employing a perturbation technique, a method has
been developed for the maximization of the directivity
of a Yagi-Uda array by adjusting the lengths of the dipole
elements. The effects of a finite element radius and the
mutual coupling between the elements are talken into
consideration. A three-term expansion with complex
coefficients 1s used to approximate the current distribution
in the dipoles and to convert the governing integral equa-
tions into matrix equations. The method is systematic
and rapidly convergent, and it vields the optimum lengths
of all elements simultaneously. The length-perturbed
array is guaranteed to have an increased directivity and
no trial-and-error process is involved.

By combining the length-perturbation procedure with
the spacing-perturbation procedure developed in a previ-
ous paper [17], a Yagi-Uda array with dipole elements
of optimum lengths and optimum spacings is obtained
which has a max-max directivity. Typical results for a
doubly perturbed six-element optimum array show a
tenfold increase in current amplitudes in the dipole ele-
ments and a generally improved radiation pattern.

As in most multiparameter synthesis and optimization
problems, the solution is not unique. There are many minor
maxima for directivity in the multidimensional space.
Hence the initial choice is expected to affect the end result
as well as the rate of convergence; so is the order of double
perturbation. It is wise to start with an initial array that
is known to have a good directivity either from empirical
data or from experimentation.
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Ferroscan: Toward Continuous-Aperture Scanning

ERNEST STERN, sENIOR MEMBER, IEEE, AND G. N. TSANDOULAS, MEMBER, IEEE

Abstract—Work done several years ago, which represents a step
toward eliminating the necessity for subdividing a phased array
aperture into many discrete elements, each with its own phase
shifter, is reported on for the first time. A 5-wavelength, X band
horn aperture, partially loaded with ferrite material, was designed
and fabricated. The resulting antenna replaces at least 10 conven-~
tional phase shifter-element units and was successfully controlled
by an external magnetic circuit to form sum and difference patterns
and to scan the beam.

INTRODUCTION

HE RESEARCH and development accorded to the

phased array in the last decade was principally due
to requirements for increased radar versatility. Phased
array antennas have become progressively more sophis-
ticated instruments that provide rapid and reliable elec-
tronic scanning capability as well as certain signal process-
ing functions at the radar “front end.”

The operation of differential shifting of the phase of the
radiated wave, essential to beam scanning, has been
traditionally carried out by dividing the antenna aperture
into many individual radiating elements and attaching
to each of these an electronieally controlled phase shifting
device. This process of aperture discretization has worked
reasonably well but at considerable cost and great com-
plexity, the very things that many consider to be the
Achilles’ heel of phased arrays. One answer to these
drawbacks is component integration in which one com-
ponent performs several functions, For example, a radiat-
ing element, which is its own phase shifter, would be in
this category. Another example is the use of continuous-
aperture scanning. In continuous-aperture scanning the
aperture is used in its original unbroken form and a pro-
gressive phase change is applied across the aperture
without subdividing it into separate elements.

In this work, we are focusing attention on continuous-
aperture scanning with a technique that we call Ferroscan.
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In our example, we replace at least 10 discrete phase
shifter-clement units with a single ferrite-loaded aperture
whose properties are externally controlled to scan a beam.

THE FERROSCAN PRINCIPLE

The Ferroscan idea consists of using ferrite, which
partially fills an aperture, as a field displacement device.
In Fig. 1 an aperture of length L and width a is shown
partially filled with ferrite material of thickness d. The
remaining volume is occupied by a dielectric of relative
dielectric constant e;. For an incident field with fransverse
(along ) variation only, such as the TE; mode of a
rectangular waveguide, a displacement of the field toward
the more densely loaded portion of the aperture takes
place, qualitatively shown in Fig. 1. The phenomenon is
well known and has been described in the literature [1].
Such devices ordinarily involve waveguides whose cross
sectional dimensions are less than 1/2 wavelength. The
novel features of the ferrite loaded radiating section are
that it is much wider than 1/2 wavelength and that the
ferrite, which is operated in the remanent state, is mag-
netized in a step-wise fashion along its length by an ex-
ternal driver circuit. This can be used to generate a tilted
phase front across the aperture and the outgoing wave
may be scanned in the ¥z plane.

Taking the applied magnetic field to be in the y direc-
tion, the permeability tensor for remanent ferrite may be
written as

My 0 jl(

v=m 0 1 0 (1)

_.7 x 0 Kr

We characterize the remanent state [2] with the usual
Polder expressions for u, and «, with the internal magnetiz~
ing field set equal to zero. In this case, y, = 1 and « =
wn/w, where wyr = yuoM,. M, is the remanent magnetiza-
tion, and v is the gyromagnetic ratio. These assumptions
have yielded useful performance estimates for the rectan-



