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. . Cornmumcations 

An Approximate  Formula for Calculating  the  Directivity of 
an  Antenna 

CHEN-TO TAI, FELLOW, IEEE, AND CLOVIS S. PEREIRA 

Absfract-An approximate  general  formula to calculate the  directivity 
of an antenna  based upon the  E-plane and H-plane  patterns is proposed. 
For narrow  beam patterns,  the  directivity is expressed in terms of the 
half-power  beam  widths of the  main  patterns. The better  approximation 
of the formula  presented  here  aver  the  geometrical mean formula is 
pointed out. 

The directivity of an antenna is  defined as 

D =  urnax (1) 1s U(8,d)  sin 8 dB dd 
4n 

where U(@,q5) denotes the far-zone power density, and  it is 
related to  the far-zone electrical field  by 

u(e,d) = - [iEe(8,4)Iz + IE+(Q,d)l21 
1 
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where 

z o  = (po/&o)”2. 

The functions E, and E+ which represent the two angular 
components in a spherical system are,  in general, functions of 
B and q5. In experimental work one often measures the power 
pattern  in two principal planes. These power patterns  correspond 
to 

IEe(6,0)12, the E-plane pattern 
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and 

1 + ( ;)I2 E 8, - , the H-plane pattern. 

From these two patterns we propose that the directivity of the 
antenna  can be obtained approximately, but  quite accurately, 

using the formula 
1 1 1  
D - 2 (Dl ’ $) _ _ -  - 

where 

The simplicity of this  approximate  formula is that only 
one-dimensional integrals are involved in evaluating Dl and D,. 
These can be done numerically if the E-plane and  the H-plane 
patterns are available. The formula given by (2) will be referred 
as  the arithmetic-mean formula. The expression for D,  defined 
by (3) corresponds to  the directivity of an  antenna with a 
rotationally symmetrical pattern IEe(B,0)12 and  that  for D, with 
a rotationally symmetrical pattern !E4(e,(n/2)12. For uniform 
arrays of short dipoles operated as broadside  arrays or as 
end-fire arrays it can be shown that the arithmetic-mean formula 
is exact. For arrays  made of half-wave dipoles there is sufficient 
evidence that the  formula is quite accurate. 

For antennas with a narrow beam pattern it is desirable to 
relate Dl and D, in terms of the half-power beamwidth of the 
E-plane and  the H-plane  pattern, hereby denoted by 8, and 0,. 
An approximate expression for Dl in terms of 8, is 

Dl E 16 In 2/QlZ 

D, N 16 In  2/t?,2 
and similarly 
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These expressions are obtained by considering the asymptotic 
expression for  the directivity of an  antenna with a rotationally 
symmetrical power pattern of the  form U(8) = C O P  8, for 
x12 2 8 2 0, and U(8)  = 0, for n > 8 > n/2  with very large 
value of m. Alternative formulas  can be derived by using the 
asymptotic expressions generated by Legendre polynomials or 
Chebyshev polynomials. This subject will be discussed in detail 
on another occasion. 

It is recalled that an approximate expression for D proposed 
by Kraus  [l ] for a narrow beam pattern is 

4n 
e,e, 

time  harmonic  solution.  For  example, we present  exact  expressions for 
the  transient  near-  and  far-field  around  small  circular  current loops 
involving arbitrarily time-varying  excitation.  The  resulting  convolution 
integrals have been  numerically  evaluated for step  function  currents with 
k i t e  rise  time,  thus  showing  the  influence  of  finite loop radius on the 
radiation  field  in  comparison with the  ideal  magnetic  dipole. 

I. I~TRODUCITON 
A recent paper by G. Franceschetti and C. H. Papas [l] pre- 

sents a number of very interesting procedures and results- 
besides numerous references-relating to  the computation of 
transient  radiation from elementary sources. Here, we take  one 
of their examples-the small circular loop antenna-to give a 
new and quite simple approach to  the handling of certain struc- 
tures  radiating  arbitrarily  in time. The method applies an idea 

Consider the same power e defined above. For credited to Cagniard [21 which has been used to solve seismic 
m = 2, the exact value of D is six. Equation ( 3 ,  with = e,, and electromagnetic pulse problems [3], [4]. It allows us to 
yields = 4.62 \vhile (@ yields D, = 5.09. For = the extend the results of Franceschetti and  Papas  to  the near-field 
exact of is 202 while the approximate values obtained radiation zone Ieading to exact expressions for  the components 
by (5) and (6) are, respectively, 206 and 233. It would be interest- Of the without the Of the 
ing to verify experimentally which formula gives a better overall corresponding time harmonic  solution.  This is especially interest- 

approximation, particularly for asymmetrical patterns. ing in those cases where this solution is rather complicated as 
It should be mentioned that an approximate  formula in the for large loop  antennas with sinusoidal current  distribution [SI. 

A &  

,- The terms “smaI1” or ‘‘large’’ apply to  the VT space scale, T 
Of = was Once proposed by et [21‘  being the rise t h e  ofa  step  function  current and  the phase 

Their formula  does  not  appear to have the analytical foundation velocity of the isotropic, homogeneous, and nondispersive 

dipoles. For  the case of a short horizontal electrical dipole we rise times instead of ideal step functions is of great importance 
have in the physical discussion of the results, because the assumption 

of constant  current over all the small  loop is only fulfilled if 
hence a << vT,  a being the  loop  radius;  that is to say the results based 

on ideal step  functions only comply to  the limiting case a 0, 
thus  the arithmetic-mean formula gives D = 8, which is exact, is.,  to  theidealmagnetic dipole. For  finitea > 0 Franceschetti’s 
while the ge0metric-m- formula yields D = & = 1.73, an  and Papas’ statement, that  the radiated far-field  of the small 
error of 15 percent. loop is not proportional to  the second time derivative of the 

current, is only of mathematical interest because an essential 
physical assumption is not fulfilled. Our numerical results show 

A comment On Our Original manuscript prompted us clearly that  up to a certain  approximation the radiated far-field 
to give a better presentation of the approximation  relating the of small loop antennas is proportiona~ to the second 
directivity and  the beamwidth for narrow beam patterns. The derivative of the current; a finite loop radus a , 0 results only 

appreciated. ideal magnetic dipole. This might be of interest for  the investi- 

as ‘Ompared to OUTS (2) when to uniform Of medium surrounding the  antenna.  The consideration of finite 

6 = Eo[cos 8 cos 4 8 - sin 4 61 
0 1 = 3  D 2 = 1  
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from  the retarded vector potential A(r,t) ,  where 

Transient Fields of Small Loop Antennas 
KARL J6RG LANGENBERG The vector r’ denotes the position in the source  region V ;  

Abstract-A rather simple  and general analysis allows us to  calculate 
directly  the  transient  response of many  different radiators of practical 

v = (co&pop)-1/2 is the light phase velocity, eo& the permittivity, 
and pop the permeability of the isotropic, homogeneous, and 

equation (l), s being the variable in the transform space, yields 
ioterest in the time domain  the of the correspondiog nondispersive medium surrounding v. Laplace transforming 
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