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Optimum Element Lengths For Yagi-Uda  Arrays 

C. A. CHEN AKD DAVID K. CHENG, FELLOW, IEEE 

Abstract-An analytical method is developed for the maximization 
of the directivity of a  Yagi-Uda  array  by adjusting the lengths of the 
dipole elements. The effects of a Gnite dipole radius and the mutual 
coupling between  the  elements are taken into consideration. Cur- 
rents in the array elements are approximated  by three-term expan- 
sions with complex coefficients that convert the governing integral 
equations into matrix equations. Array directivity is maximized by 
a  perturbation  procedure  that adjusts the lengths of all array ele- 
ments simultaneously and that converges very  rapidly. This method 
can be combined with the previously developed spacing-perturba- 
tion method to form a double-perturbation  procedure  and obtain a 
Yagi-Uda  array of nonuniformly spaced elements of unequal lengths, 
which yields a maximum directivity. 

I. IKTRODUCTION 

I N A  PREVIOUS paper [l] a  method was presented 
for the maximizat,ion of the directivity of a. Yagi-Gda. 

array  by  adjusting the interelement  spacings  in a. sys- 
tematic  ma.nner. The effects of a  finitme dipole radius and 
the  mutual coupling  between  t.he array elements were 
taken  into consideration. A three-term expansion with 
complex  coefficients was used to a.pproximat,e the current. 
dist,ribution  in the elements and  to convert the governing 
integral  equations into simulta.neous  algebraic  equat,ions. 
This approach  has the  advantage of rapid convergence 
in  the numerical  solution.  For an  array with -1: elements 
the largest  matrices  encountered are of a dimension 
2N x 2 x .  

The method employed a  spacing  perturbation  technique 
and was based  upon  a  theorem [2], 131, which a.ssured 
that,  the directivit,y of an  array would be  increased  by a 
proper  set of spacing  adjustments. It was found 111 that, 
in a  typical  case,  t,he  directivit,y of a spa.ce-optimized 
6-element Yagi-Uda array could be increased  by more 
than 57 percent  over that of an a.rray  with  equally spaced 
directors. The radiation pattern for the optimized array 
was also  found to have lower sidelobes and  a slightly 
narrower ma.in beam, in addit,ion to having an increased 
field intensity  in  the  direction of maximum  radiation,  as 
compared  with that. for the  array with  equally  spaced 

Besides the interelenlent  spacings, the lengths of the 
array e1ement.s present  themselves as a.nother  set of para.m- 
eters that could be  adjusted  for  direct,ivity  increases.  The 
problem  first  appeared to be  a  rat,her difficult one since 
the various  element  lengths come into play not only in 

~ directors. 

dist,a.nce expressions (a.s  do the element spa.cings) , but 
also  in the limit.s of definite  integmls.  Ehrenspeck and 
Poehler [4] obtained some experiment'al result.s showing 
the dependence of the ga.in of Yagi-Uda arrays  on  director 
height  for  given  dirwt.or  spacings and  array lengths.  Using 
the classic.al dipole t.heory of sinusoidal  current  distribu- 
tions,  Green [5] compiled an extensive collection of dat.a 
listing maximum  obtainable  directivit,ies  for Yagi-Uda 
arrays of equally  spaced  elements. The lengths of the 
reflector, the  driver,  and  the direct,or  elements  (all  director 
elements were of equal  length) that combined to yield a 
maximum  directivit,y were tabulated. As far as the  authors 
ca.n determine, no work has  been  reported  in the 1it.erature 
tha.t  enables the systemat,ic  determina,tion of the  (un- 
equal)  element  lengths of a Yagi-Uda army for  direct.ivitg 
optimization 

This  paper employs a pert,urbation  technique  for  deter- 
mining the element  lengths needed for  directivity maximG 
zation,  similar t,o t.hat used for obt,aining  optimum  element 
spacings [l]. The three-t.erm  theory developed by  King 
and his associates [SI is used for finding the  currents  in 
the dipoles. The  technique can be applied to  an a.rray 
with arbitrary spacings.  Typical  numerical  results  for  a 
uniformly  spaced array with  optimum  element,  lengths 
are presented, and radiation  patt.erns and  current dis- 
tribut,ions on the element,s are  plotted. 

By  combining the met.hod developed in  this paper  mdh 
that in  t,he  previous  paper [1], a. double  perturbation 
procedure is obtained that will yield optimum  element 
spacings as n-ell as  optimum  dipole  lengths.  The  result 
is a Yagi-Uda array of nonuniforndy  spaced  element,s of 
different  lengths nith a  maximum  directivity for a  given 
number of dipoles of a specified radius.  Typical  results 
of this double  perturbation  procedure  are also presented. 
In order to bring out  the essential  steps of this develop- 
ment,  without being overly  burdened by complicated 
mathematical expressions, much  detailed work will be 
omitted  and  the  reader nil1 be  referred to related  earlier 
work. 

11. CURRENT  DISTRIBUTIOXS  IK 
YAGI-UDA ARRAY 

Fig. 1 shows the sketch of a typical Yagi-Uda array 
of dipole element.s, of which only the second one is driven 
by a source and all  ot,hers  are  parasit,ic.  Element 1 is a 
reflector and element,s 3 to A T  are directors. The integral- 
equa.tion  formulat.ion for the  currents  in t.he N elements 
using  a  three-term  approximation  for the driven  element 
and two terms for  t,he  parasitic  elements  has been dis- 
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Fig. 1. Typical Yagi-Uda array. 

will be included  here. The N simult.a.neous integral  equa- 
tions t.o be solved are 
N hi  

l i (z i )Kkid(zk,z l )  dzl  

R l ; i ( Z k )  = [(Zk - z l ) 2  + bki2]1/2 (4) 

Rki(hk) = [(hk - 2;)' + bki2]1/2 (5) 

bkk = a. ( 6 )  

In solving the simultaneous  integral  equations ( l ) ,  
the  current  distributions l i ( z )  are assumed to have the 
following I orm : 

3 

li(2) = A i ( m ) S i ( m ) ( Z )  (7) 
m=l 

with 

Si(l)(z)  = sinPo(hi - I z I) (8 )  

S,'"(z) = cos poz - cos pohi (9) 

Si'3' (2) = cos +poz - cos 3POh.i ( 10) 

and Ai(') = 0, for i # 2. Substitut.ion of (7) in ( 1 )  a.nd 
use of certain  approximate  relations  for  t,he  integrals 
involved yield 

The expressions for \k&) and  for  the elements of the 
L l i  X X square  matrices [ W ) ] ,  [W3)], {*(')I, and [\kd'3'] 

a.s  well as those  for t.he elements of t,he X X 1 column 
matrices { a2(l)] and { @ d l ) )  are  rather involved. They 
ca.n be  found  in [ 6 ]  and [ 7 ] .  Suffice it t,o say  tha.t when 
t,he  geometrical dimensions are given, the complex  coeffi- 
cients A2(l), { A ( ? ) ] ,  and { A ( 3 )  ] can  be  det,ermined from 
(11)-(13). With  these coefficients known, the  current 
distributions  in all the dipole elements of a Yagi-Uda 
array  can  be  obtained from (7). We n0t.e that t,he mutual 
coupling effects among  t,he array elements are  taken  into 
considera.t,ion inherent,ly  in the formulation  and that  the 
currents  in  the elements  can  deviate  much  from a sinusoid 

When t,he driven  element  (element 5 )  is a half-wave 
dipole, some of the quant.it.ies in  the preceding  formulation 
will become indeterminate  and a.n alternative fornzulation 
is available [l], [7 ]  in order t o  avoid  computat,ional 
difficulties. However,  computational  and  experimental 
evidence [4], [ 5 ]  indicates that none of the a.rra.y elements 
will be very close to a half-wavelength in  length in a 
maximum-directivity  arrangement,.  Hence there nill be 
no  need to consider this special case. This conclusion is 
supported  by the results of the numerical  examples in 
Section VI. 

[ S I ,  c71. 

111. LESGTH  PERTURBATION 

To  adjust  the elenlent  lengths in a Yagi-Uda array for 
maximum  directivity it is assumed t,hat t,he length of the 
ith element be changed by a  small amount Ahi(poAhi << 1 ) .  
The  perturbed  currents l p ( z )  m-ill be  obtained  from a 
modified version of (7) : 

3 

l i " ( Z )  = A i ( m ) P S ; ( m ) p ( z )  (14) 
7n=l 

with 

s S i ( 3 ) ( ~ )  + ( p 0 b h i ) ~ S i ( 3 ) ( ~ )  (17) 

where 

A similar  approximation  can  be  applied to  the distance 
terms Rki(hk) in (3) a.nd ( 5 ) ,  t,o  account for the change 
Ahk C8J. Perturbed definite  integrals  with  element  length 
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in the limits  such as those in (1) and (2) may  be  written 
as follows: 

1 f(z) d r  S 1 f(z) dz 4- Ah.iCf(hi) - f (  -hi)]. 
(h;+Ahi) hr 

4 h i i A h i )  -hi 

(21) 
With  these approximations and t,he  substitution of the 
perturbed  currents l i p ( z )  in (1) ,  the matrices [@(m)], 

[JTd(m)], { and { \ k & ) }  and the complex  coefficient,s 
A p ( l )  and { A ( " ) }  in (12) and (13) are changed to [@(m)]P, 

[JTd(m)]~, { CP,(l) } p ,  ( \k&) } p ,  A 2 ( l ) p ,  and { A(m) ] p ,  respec- 
tively. We have 

[ @ ( m ) ] ~  = [@(m)] + [AWm)],  m = 2,3 (22) 

[JT,3(m)]P = [\kd(m)] + [A\kd(m)], 771 = 2,3  (23) 

{ @?(')}P = ( @z(')) + ( A@z('))  (24) 

{\E2d(l '}P = ( \ k ~ ( l ) }  + { A\k?d(''}. ( 2 5 )  
The expressions for the deviation  matrices in (22) - (  25) 
are quit,e complicated and will be  omitted  here  in  order 
to conserve space. They can be found  in [SI. However, it 
is important, to  note t,hat, the  kith elements of t,he square 
deviation  matrices in ( 2 2 )  and (23) and t.he kth elements 
of the column deviation  matrices in (24) and (2.5) can 
each be expanded as t.he sum of t,mo t.erms, bot-h being 
proportional t.0 the deviation in element length. For 

example, the  kith element. of the devia.tion matrix [A@(m)] 

in (22) can  be  written  as 

where the current  deviation coefficients A A z ( l ) ,  { A A @ ) } ,  
and ( A A c 3 ) }  are to be det,ermined. 

In  addition,  the number \k22dc1) appea.ring in  the de- 
nominator of (11) will also be changed by  length per- 
turbation  to \k22d(1)P : 

\ke2a(')"  \kzzd(') + (POAhe) A Q m ( ' ) .  (30) 

Substituting (14)-(20) in (1) and (11)-( 13),  and not.ing 
(21)-(30) we obt,a,in, after second-order deviation t,erms 
have been neglected, 

The pert,urbed  current, coefficients ( A ( * ) } p  and 
can  then  be determined  from (37)-( 29). NTe note  that 
the development, parallels closely to  that for  spacing 
perturbation [l], although, of course, the elements of 
t.he various mat.rices involved are different. 

11'. RADIATION  FIELD FROM 
PERTURBED ARRAY 

The radiat.ion field of a  length-perturbed  Pagi-Uda 
array  at a  distance Ro from a reference origin is 

h;+Bki ./ l ? ( z i l )  exp ( jP0zi '  cos 0) sin e dzi'. (36) 

Csing (14)-(21),  we can express E'(O,+) as the  sum of 
the radiat,ion field E ( @ )  of the  unperturbed  array  and a 
perhrbation field : 

-(h;+Ah;) 
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It is convenient to define the following quantities for 
the integrals in (37) : 

where [&2]jk and [Q3]i~: denot,e,  respectively, the jkth 
element of the  square  matrices [Qz] and [Q3] defined in 
(35).  Equation  (42), which expresses the deviation field 
AE explicitly in  terms of length  pert.urbations { A h ]  , 
enables  us to  formulat,e a directivity-optimization pro- 
cedure  by  adjusting the lengths of the  array elements. 

V. DIRECTIVITY  OPTIMIZATION BY 
LENGTH  PERTURBATIOK 

To increase the directivity of a Yagi-Uda a.rray by 
length  perturbation, we follow a procedure  similar to  
that used  for  spacing perturbation El]. The  directivity 
of an a.rray in the direction (t90140) is 

~ ~ ( 4 ) ( e >  = 1 Asj(l)(z;) exp ( j p o z i  cos e)  sin e d z i .  
hi where Pi, is the   he-average input power. mith length 

-h; perhrbation E becomes E’, Pin becomes Pi:, and  the 
perturbed  directivity becomes 

i 41) 

Substitution of (35) and (38)-(41) in (37) enables  us to 

Pi: in (46) is 

For k = 2, 

The  kth element of { Bg] in (50) is 



12 IEEE TRANSACTIONS ON A N T R ? i i X S  AWD PROPAGATIOK;, JAhTJARY 1975 

where 
1 A x  .a 

and 

fB1] and [CJ in ( 5 5 )  and  (56)  have been defined in 
(48) and (49), respectively, and LC2] is a  positive definite 
Hermitian  matrix. 

The cha,nge in directivity  due t.o length  pert.urbation 
{Ah.} is 

AG(@o,&) = G'(OO,+o) - G ( e o J 6 )  ( 57) 

which, by  the use of (45)-(  53), becomes 

1 { A h j T { B }  + {AhIT[Re C1llAh.I 
AG(eo,+o) = - 60Pin+2{Ah}T{B3] + {Ah.}T[ReC2](Ah) 

(58) 

where 

{ B }  = 2{B1) - ~OG(BO,&I){B~}. (59) 

We  note  that  the negative sign in  (59)  for ( B }  in  the 
numerator of  AG(Oo,&) in (58) indicates  that,  the  array 
directivity  may  decrease  for an improper choice of {Ah} .  

In order t o  be  certain  that AG(eo,&I) dl be  positive, 
we make use of a known relation  in the t,heory of matrices 
[l], [2], which asserts that if the length  changes in A h }  
are chosen such that 

(Ah) = cr [ReC2~(2{B1} - 60G(B2})  (60) 

then 

in general be nonuniformly spa.ced a.nd their  lengths n3I 
be different. TIypical results will be  illustrated by numerical 
examples in the following section. 

VI.  NUMERICAL EXAMPLES 
We present  here the computed  results of txro examples 

that illustrate the effectiveness of the length-perturba.t,ion 
procedure  for  increasing the directivity of a Yagi-Uda 
array. In  both cases n-e start, TVith a six-element array 
that consists of a driven dipole, a reflector, and  four 
uniformly spaced  directors of equal  lengths.  The reflector 
is situated a quarter-wave1engt.h behind the driven ele- 
ment., as  this combinat,ion has been  found to  be  optimum 
relat.ive to direct.ivity [l], [4], [SI.  Length perhrbation 
(keeping the spacings fixed) is  applied t.o t.he array  in  the 
first example to maximize the directivity. In  the second 
example,  a  double-perturbation  procedure is used, in 
which the element  spacings and  then  the element  lengths 
a.re adjusted  in  order t.0 obt,ain  a  maximum direct,ivit,y. 

Example 1 

Six-Element Yagi-Uda Array:  Reflector length, 2hl = 
0.510h; driver  length, 2 h 2  = 0.4901;  equal  length of four 
directors, 2hs = 2111 = 2hj = 2hs = 0.4301; dipole radius, 
a = 0.003369X; element, spacings b21 = O.250Xl bSZ = 

br3 = bj, = b~ = 0.310X. The lengt,hs of all the elements 
are  to  be adjust.ed  for  a  maximum  direct,ivity. 

The directivit,y of the init,ial array referring to  that 
of a half-wave dipole  is  calculated by using (11)- ( 13) , 
(45), and (51) to  be 7.544(8.77 dB). S o w  keeping the 
element  spacings fixed, the lengths of all the dipole ele- 
ments  are  perturbed  in accordance wit.h (60).  Three 
iterations converge rapidly to a directivity  (referring to  
a half-wave dipole) of 10.012 (10 dB),  an increa.se of 32 
percent  from the init,ial array.  The new lengths of t.he six 
element,s in  t,he perturbed  array  are given in  Table I. 
Several  length  combinat,ions  obt,ained by Green [.5] for 
opt,imum six-element, uniform Yagi-Uda arrays  (all 
directors of equal  lengths)  on t.he basis of sinusoidal 
current  distributions  have  been  recomput,ed  using  t.he 

The o( in  (60) should  be  suf6ciently  small to satisfy  t,he 
condition (Ah.i) / h i  << 1. The new directivity G' as the 
result of length  changes specified by (60)  can  be ca.lculat,ed 
from  (61)  and (57) .  A second perturbat,ion  can  t,hen  be 
performed on G', and  the process repeated  unt,il  further 
increases are negligible. Again similar to  the spacing per- 
turbation procedure, the  iterative process  converges 
rapidly. 

By combining the spa.cing and  length  perturbat.ion 
procedures,  we can  obtain  a Yagi-Uda array of dipole 
elements of optimum  lengths that  are optimally  spaced to 
yield a maximum possible directivity. The elements niu 

three-term  approximation. In comparison, the directivity 
of the six-element length-perturbed  array is more than 
1.3 percent  higher  tha.n that. computed from Green's data. 

The normalized mdiation  patterns for both  the  initial 
and  the optimized arrays  are given in  Fig. 2. It. is seen 
that  the  pattern for the optimized army  has a  slightly 
narrower  main bea,m and lower sidelobes. 

Example 2 
Six-Element Yagi-I'du Array: Reflector length, 2hl = 

0.510X; driver  lengt,h, 2hs = 0.490X; equal  length of four 
directors, 2h3 = 2h.4 = 2hj = 2hs = 0.4301; dipole radius, 
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T-4BLE I 
DIRECTIYITY OPTINIZATION FOR SIX-ELEMEXT PAG1-UDA4 ARRAY (PERTURBATION OF ELENENT LENGTHS) 

Directivity 
(referring t.0 
half-wave 

hdX hzlA hslX h,/X hJX he/A dipole) 

Initial  Array 0.255 0.245 0.215 0.215 0.215 0.215 7.544 

Length-Perturbed Array 0.236 0.228 0.219 0.222 0.216 0.202 10.012 

bzl 0.250X, biz = 0.310X(i = 3,4,5,6), u = 0.003369X. 

Initial -4rray 0.255  0.245 0.215 0.215  0.215  0.215  0.250  0.310  0.310  0.310  0.310 7.514 

Array  after Spacing Pert.urba- Same  as above 0.250  0.289 0.406 0.323  0.422  11.687 

~~ ~ 

tion 
Optimum Array after Spacing 0.238 0.226 0.218 0.215 0.217 0.215 

and  Length  Perturbations 
Same as above 13.386 

0 0 
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a = 0.003369A; element, spacings bnl = 0.250X, b32 = b43 = 

b54 = b,jj = 0.31OX. A double-perturbation  procedure is 
to  be applied,  spacing perturbation followed by lengt,h 
pertubation,  in order t.0 obtain  t,he  maximum possible 
directivit.y. 

This  array  is init,ially the same as  the one given in 
Example  1.  We  first  keep the lengt,hs of the  array  elements 
fixed and  apply t,he  spacing-perturbation  t,echnique [l] 
to obtain the proper element. spacings for maximum 
direct.ivity. Only one iteration  is needed to increase  t,he 
direct.ivit,y referring t,o a half-wave dipole from 7.544 
(8.77  dB)  to 11.687 (10.68 dB),   an increase of 55 percent. 
With  the new spacings n-e adjust  the lengt,hs of the dipoles 
in accordance nit,h t,he  procedure developed in  the preced- 
ing section to increase the directivit,y further. After three 
iterations we obtain the  dat,a  listed  in  the last. line of 
Table 11. The  directivity  referring to  that of a half-wave 
dipole is now  13.356 (11.25 dB) ~ an increase of 77 percent 
from  that of the initrial  arra.y. As shown in  Table 11: the 
array elements are non- nonuniforndy spaced and  are of 
different  lengths. It is  found tha.t a further applicat,ion 
of the double-perturba.tion process does not yield a signi- 
ficant. improvement. 

The real and  imaginary  parts of the currents  in t.he six 
elements of t,he  init,ial array  are plot.ted in Fig. 3, and 
those  for the optinlized array  in Fig. 4. The  absolute cur- 
rent  amplitudes  in  the elements of the opt.imized array 
after spacing and  length  perturbations  are  about  ten 
times t-hose in  the  initial  array.  The  input,  admithnce 
for the optimum  array  in  Table I1 is  found to  be 0.07136 - 
j0.04293, n-hile that for the initial  array  is 0.006503 - 
j0.00513S. The  computed field intensit,y  in the direction 
of maximum  radiation  for the initial  army  is only  one- 
nineteenth of t,hat,  for  t.he  optimized array. 

The normalized radiation  patterns for the initia.1 a.rra.y, 
the  array  after spacing  perturbat,ion,  and the optimum 
a,rrap  after  both spacing and  length  perturbations  are 
plotted  in Fig. 5. We see that, higher direct,ivity is accom- 
panied by a slight,ly narron7er main  beam, lon-er sidelobes, 
and a  higher front-t.o-back rat.io. These  results  may be 
explained by a comparison of t,he  current  a.mplitudes  and 
phases in  the a,rray  elements  2  t,hrough 6 before and a.fter 
optimization, as fol1on-s.l 

the amplitudes decrease smoothly  and  rapidly  and  the 
phases decrease continuously and slowly. The  optimization 
procedure  with  respect to element. spacings a.nd element 
lengt,hs  appa.rently  leads to  an  array on which a pre- 
dominantly  traveling  wave is sustained.  Hence an in- 
creased directivity  is a.ccompa.nied by a  generally  improved 
mdiation  patt,ern. 

VII. COSCLKDISG REMARKS 
Employing  a perturbation  technique, a  met,hod has 

been  developed for  t,he  maximization of the direct.itit.y 
of a Yagi-LTda array  by  adjusting the lengths of the dipole 
elements. The effects of a finitre element  radius and  the 
mutual coupling betn-een t.he elements are  taken  into 
consideraBion. A t,hree-t.erm expansion with complex 
coefficients is used to  approximate the current.  dist,ribution 
in  the dipoles and  to convert t.he governing  integral  equa- 
t,ions int.0 matrix  equations.  The  method is systema.t.ic 
and ra.pidly convergent?  and  it yields the opt,imum  lengths 
of all element,s simulta.neously. The  length-perturbed 
array is gua.ranteed to  have a.n increa.sed direc.tivit,y and 
no trial-a,nd-error process is  involved. 

By combining t,he  length-pert.urbation  procedure wit.h 
the spacing-perturbation  procedure developed in a previ- 
ous paper [l]? a Yagi-Uda array  nit,h dipole elements 
of optimum  lengths  and opt.imum  spacings  is  obt,ained 
Khich has a  max-mas  directivity.  Typical  results  for  a 
doubly  perturbed six-element opt,imum array show  a 
tenfold increa.se in  current  amplitudes in  the dipole ele- 
ments  and a. generally  improved  radia.tion  pat.t,ern. 

-4s in  most  multiparameter  synthesis a.nd opt,imkation 
problems, the solution  is not, unique.  There  are  many minor 
maxima. for  directivit.y in  the mult,idimensiona.l space. 
Hence the initial choice is expect.ed t.0 affect, the end  result 
as well as  the  rate of convergence; so is the order of double 
perturbation. It is wise to st.art. nqth a.n initial  a.rray that 
is lmon-n to have  a good direct-ivity  either  from  empirical 
data or from  experimentat.ion. 
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Ferroscan: Toward  Continuous-Aperture Scanning 

C 

Abstract-Work done several  years ago, which represents a step 
toward  eliminating the necessity for subdividing a phased  array 
aperture into many discrete elements, each with its own phase 
shifter, is reported on for  the kst time. A Swavelength, X band 
horn  aperture, partially loaded with ferrite material, was designed 
and fabricated. The r e d t i n g  antenna  replaces  at  least 10 conven- 
tional phase shifter-element units  and was  successfully  controlled 
by an external  magnetic  circuit to form sum and difference patterns 
and  to  scan  the beam. 

T 
INTRODUCTION 

HE RESEARCH  and development  accorded to  the 
phased array in the  last decade was principally  due 

to  requirements  for  increased radar versatility.  Phased 
array antenna.s  have become progressively more  sophis- 
ticated  instruments that provide  rapid and reliable elec- 
tronic  scanning  capability as well as certain  signal process- 
ing  funct.ions a t  t.he  rada.r  “front  end.” 

The operation of differential  shifting of the phase of the 
radiated  wave,  essential to  beam  scanning,  has  been 
traditionally  carried  out.  by  dividing the  antenna a.perture 
into  many individual  radiating  elements and  attaching 
to  each of these an electronically  controlled  phase  shift.ing 
device. This process of aperture discretization  has  worked 
reasonably well but. a.t. considerable  cost and  great com- 
plexit,y,  t.he  very  things that  many consider to be the 
Achilles’  heel of phased  arra.ys. One answer to  these 
drawbacks is component  integration  in which one com- 
ponent  performs  several  functions.  For  example,  a  radiat- 
ing  elenient, which is its o ~ m  phase  shifter, would be  in 
this category.  Another  example  is the use of continuous- 
aperture scanning. In continuous-aperture  scanning the 
a.perture is used in  its original  unbroken  form and  a pro- 
gressive phase  change  is  applied  across the  aperture 
w-it,hout subdividing it  into  separate elements. 

In this  work, we are focusing at,tention on cont,inuous- 
aperture scanning  with  a  technique that we call Ferroscan. 
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In  our example, we replace at  least 10 discret.e  phase 
shifter-element units  with  a single ferrite-loaded  a,perture 
whose properties are externally  controlled to sca.n a  beam. 

THE FERROSCAN  PRINCIPLE 
The Ferroscan  idea  consists of using ferrite, which 

partially fills an aperture, as a.  field displacement device. 
In  Fig. 1 an  aperture of length L and  width a is shown 
partially filled with  ferrite  mat,erial of thickness cl. The 
rema.ining volume is occupied by a dielectric of relat,ive 
dielectric constant Ed. For an incident field with  transverse 
(along z) va.riation only, such  as the TE,, mode of a 
rectangular  waveguide,  a  displacement of t.he field toward 
the more  densely  loaded  portion of the  aperture t,akes 
place,  qualitat.ively shown in Fig. 1. The phenomenon is 
well known and  has been described  in the lit.erature [l]. 
Such devices ordinarily  involve  waveguides whose cross 
sectional dimensions are less t.han 1/2 wavelength. The 
novel features of the ferrite  loaded  mdiating  section  are 
that  it is much  wider than 1/2 wavelength and  tha.t  the 
ferrite, which is operated  in the remanent  state, is mag- 
netized  in  a stepwise fashion  along its length by  an ex- 
ternal driver  circuit. This can  be used to generate  a  t-ilted 
phase front across the  aperture  and  the outgoing  wave 
may  be  scanned in the yz pla.ne. 

Taking  the applied  magnetic field to  be in the y direc- 
tion,  the permeability  tensor  for  remanent  ferrite may be 
mitten as 

We chara.cterize the remanent  state [ Z ]  with the usual 
Polder expressions for L L ~  and K,  with the internal ma.gnetiz- 
ing field set equal to zero. In  this case, p,. = 1 and K = 

W M / W ,  where W-W = ypoM,. M ,  is the remanent  magnet,iza- 
tion,  and y is the gyromagnetic  ratio.  These  assumptions 
have yielded useful performance  estimates for the recta.n- 


