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In geometry,curvilinear coordinates are a coordinate system for Euclidean space in which the
coordinate lines may be curved. These coordinates may be derived from a set of Cartesian
coordinates by using a transformation that is locally invertible (a one-to-one map) at each point.
This means that one can convert a point given in a Cartesian coordinate system to its curvilinear
coordinates and back. The namecurvilinear coordinates, coined by the French mathematician
Lamé, derives from the fact that the coordinate surfaces of the curvilinear systems are curved.

Well-known examples of curvilinear coordinate systems in three-dimensional Euclidean space

(R3) are Cartesian, cylindrical and spherical polar coordinates. A Cartesian coordinate surface in
this space is a plane; for examplez = 0 defines thex-y plane. In the same space, the coordinate
surfacer = 1 in spherical polar coordinates is the surface of a unit sphere, which is curved. The
formalism of curvilinear coordinates provides a unified and general description of the standard
coordinate systems.

Curvilinear coordinates are often used to define the location or distribution of physical quantities
which may be, for example, scalars, vectors, or tensors. Mathematical expressions involving these
quantities in vector calculus and tensor analysis (such as the gradient, divergence, curl, and
Laplacian) can be transformed from one coordinate system toanother, according to transformation
rules for scalars, vectors, and tensors. Such expressions then become valid for any curvilinear
coordinate system.

Depending on the application, a curvilinear coordinate system may be simpler to use than the Cartesian coordinate system. For instance, a physical

problem with spherical symmetry defined inR3 (for example, motion of particles under the influence of central forces) is usually easier to solve in
spherical polar coordinates than in Cartesian coordinates. Equations with boundary conditions that follow coordinate surfaces for a particular
curvilinear coordinate system may be easier to solve in thatsystem. One would for instance describe the motion of a particle in a rectangular box
in Cartesian coordinates, whereas one would prefer spherical coordinates for a particle in a sphere. Spherical coordinates are one of the most used
curvilinear coordinate systems in such fields as Earth sciences, cartography, and physics (in particular quantum mechanics, relativity), and
engineering.
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Orthogonal curvilinear coordinates in 3d

Coordinates, basis, and vectors

For now, consider 3d space. A pointP in 3d space can be defined using Cartesian coordinates (x,
y, z) [equivalently written (x1, x2, x3)], or in another system (q1, q2, q3), as shown in Fig. 1. The

latter is acurvilinear coordinate system, and (q1, q2, q3) are thecurvilinear coordinates of the

point P.

The surfacesq1 = constant,q2 = constant,q3 = constant are called thecoordinate surfaces; and

the space curves formed by their intersection in pairs are called thecoordinate curves. The
coordinate axesare determined by the tangents to the coordinate curves at the intersection of
three surfaces. They are not in general fixed directions in space, which happens to be the case for
simple Cartesian coordinates.

A basis whose vectors change their direction and/or magnitude from point to point is calledlocal
basis. All bases associated with curvilinear coordinates are necessarily local. Basis vectors that are
the same at all points areglobal bases, and can be associated only with linear or affine coordinate
systems.

Note: usually all basis vectors are denoted bye, for this articlee is for the standard basis
(Cartesian) andb is for the curvilinear basis.

The relation between the coordinates is given by the invertible transformations:

Any point can be written as a position vectorr in Cartesian coordinates:

wherex, y, zare the coordinates of the position vector with respect to the standard basis vectors
ex, ey, ez.

However, in a general curvilinear system, there may well notbe any natural global basis vectors.
Instead, we note that in the Cartesian system, we have the property that

We can apply the same idea to the curvilinear system to determine a system of basis vectors atP.
We define

These may not have unit length, and may also not be orthogonal. In the case that theyare orthogonal at all points where the derivatives are well-
defined, we define the Lamé coefficients (after Gabriel Lamé) by

and the curvilinear orthonormal basis vectors by
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A vectorv (red) represented by • a vector basis
(yellow, left: e1, e2, e3), tangent vectors to coordinate

curves (black) and • a covector basis or cobasis (blue,

right: e1, e2, e3), normal vectors to coordinate
surfaces (grey) in general(not necessarily orthogonal)

curvilinear coordinates (q1, q2, q3). Note the basis and
cobasis do not coincide unless the coordinate system

is orthogonal.[1]

It is important to note that these basis vectors may well depend upon the position ofP; it is therefore necessary that they are not assumed to be
constant over a region. (They technically form a basis for the tangent bundle of at P, and so are local toP.)

In general, curvilinear coordinates allow the generality of basis vectors not all mutually perpendicular to each other, and not required to be of unit
length: they can be of arbitrary magnitude and direction. The use of an orthogonal basis makes vector manipulations simpler than for non-
orthogonal. However, some areas of physics and engineering, particularly fluid mechanics and continuum mechanics, require non-orthogonal
bases to describe deformations and fluid transport to account for complicated directional dependences of physical quantities. A discussion of the
general case appears later on this page.

Vector calculus

Differential elements

Since the total differential change inr is

so scale factors are

They can also be written for each component ofr :

.

However, this designation is very rarely used, largely replaced with the components of the metric tensorgik (see below).

Covariant and contravariant bases

The basis vectors, gradients, and scale factors are all interrelated within a coordinate system
by two methods:

1. the basis vectors are unit tangent vectors along the coordinate curves:

which transform like covariant vectors (denoted by loweredindices), or

2. the basis vectors are unit normal vectors to the coordinate surfaces:

which transform like contravariant vectors (denoted by raised indices),∇ is the del

operator.

So depending on the method by which they are built, for a general curvilinear coordinate
system there are two sets of basis vectors for every point: {b1, b2, b3} is the covariant basis,

and {b1, b2, b3} is the contravariant basis.

A vectorv can be given in terms either basis, i.e.,

The basis vectors relate to the components by[2](pp30–32)
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Fig. 3 – Transformation of local covariant
basis in the case of general curvilinear
coordinates

and

whereg is the metric tensor (see below).

A vector is covariant or contravariant if, respectively, its components are covariant (lowered indices, writtenvk) or contravariant (raised indices,

written vk). From the above vector sums, it can be seen that contravariant vectors are represented with covariant basis vectors, and covariant
vectors are represented with contravariant basis vectors.

A key convention in the representation of vectors and tensors in terms of indexed components and basis vectors isinvariancein the sense that
vector components which transform in a covariant manner (orcontravariant manner) are paired with basis vectors that transform in a contravariant
manner (or covariant manner).

Covariant basis

Constructing a covariant basis in one dimension

Consider the one-dimensional curve shown in Fig. 3. At pointP, taken as an origin,x is one of the

Cartesian coordinates, andq1 is one of the curvilinear coordinates (Fig. 3). The local (non-unit)

basis vector isb1 (notatedh1 above, withb reserved for unit vectors) and it is built on theq1 axis

which is a tangent to that coordinate line at the pointP. The axisq1 and thus the vectorb1 form an

angleα with the Cartesianx axis and the Cartesian basis vectore1.

It can be seen from trianglePAB that

where |e1|, |b1| are the magnitudes of the two basis vectors, i.e., the scalar interceptsPB andPA.

NotethatPA is also the projection ofb1 on thex axis.

However, this method for basis vector transformations using directional cosinesis inapplicable to curvilinear coordinates for the following
reasons:

1. By increasing the distance fromP, the angle between the curved lineq1 and Cartesian axisx increasingly deviates fromα.

2. At the distancePB the true angle is that which the tangentat point C forms with thex axis and the latter angle is clearly different fromα.

The angles that theq1 line and that axis form with thex axis become closer in value the closer one moves towards point P and become exactly
equal atP.

Let pointE be located very close toP, so close that the distancePE is infinitesimally small. ThenPE measured on theq1 axis almost coincides

with PE measured on theq1 line. At the same time, the ratioPD/PE (PD being the projection ofPE on thex axis) becomes almost exactly equalto
cosα.

Let the infinitesimally small interceptsPD andPE be labelled, respectively, asdx and dq1. Then

.

Thus, the directional cosines can be substituted in transformations with the more exact ratios between infinitesimally small coordinate intercepts. It
follows that the component (projection) ofb1 on thex axis is

.

If qi = qi(x1, x2, x3) andxi = xi(q
1, q2, q3) are smooth (continuously differentiable) functions the transformation ratios can be written as and

. That is, those ratios are partial derivatives of coordinates belonging to one system with respect to coordinates belonging to the other system.
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Constructing a covariant basis in three dimensions

Doing the same for the coordinates in the other 2 dimensions,b1 can be expressed as:

Similar equations hold forb2 andb3 so that the standard basis {e1, e2, e3} is transformed to a local (ordered andnormalised) basis {b1, b2, b3} by

the following system of equations:

By analogous reasoning, one can obtain the inverse transformation from local basis to standard basis:

Jacobian of the transformation

The above systems of linear equations can be written in matrix form as

.

This coefficient matrix of the linear system is the Jacobianmatrix (and its inverse) of the transformation. These are the equations that can be used
to transform a Cartesian basis into a curvilinear basis, andvice versa.

In three dimensions, the expanded forms of these matrices are

In the inverse transformation (second equation system), the unknowns are the curvilinear basis vectors. For all pointsthere can only exist one and
only one set of basis vectors (else vectors are not well defined at those points). This condition is satisfied if and only if the equation system has a
single solution, from linear algebra, a linear equation system has a single solution (non-trivial) only if the determinant of its system matrix is non-
zero:

which shows the rationale behind the above requirement concerning the inverse Jacobian determinant.

Generalization to n dimensions

The formalism extends to any finite dimension as follows.

Consider the real Euclideann-dimensional space, that isRn = R × R × ... ×R (n times) whereR is the set of real numbers and × denotes the
Cartesian product, which is a vector space.

The coordinates of this space can be denoted by:x = (x1, x2,...,xn). Since this is a vector (an element of the vector space), it can be written as:
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wheree1 = (1,0,0...,0),e2 = (0,1,0...,0),e3 = (0,0,1...,0),...,en = (0,0,0...,1) is thestandard basis set of vectorsfor the spaceRn, andi = 1, 2,...n is an
index labelling components. Each vector has exactly one component in each dimension (or "axis") and they are mutually orthogonal
(perpendicular) and normalized (has unit magnitude).

More generally, we can define basis vectorsbi so that they depend onq = (q1, q2,...,qn), i.e. they change from point to point:bi = bi(q). In which

case to define the same pointx in terms of this alternative basis: thecoordinateswith respect to this basisvi also necessarily depend onx also, that

is vi = vi(x). Then a vectorv in this space, with respect to these alternative coordinates and basis vectors, can be expanded as a linear combination

in this basis (which simply means to multiply each basis vector ei by a numbervi – scalar multiplication):

The vector sum that describesv in the new basis is composed of different vectors, although the sum itself remains the same.

Transformation of coordinates

From a more general and abstract perspective, a curvilinearcoordinate system is simply a coordinate patch on the differentiable manifoldEn (n-

dimensional Euclidean space) that is diffeomorphic to the Cartesian coordinate patch on the manifold.[3] Note that two diffeomorphic coordinate
patches on a differential manifold need not overlap differentiably. With this simple definition of a curvilinear coordinate system, all the results that
follow below are simply applications of standard theorems in differential topology.

The transformation functions are such that there's a one-to-one relationship between points in the "old" and "new" coordinates, that is, those
functions are bijections, and fulfil the following requirements within their domains:

1. They are smooth functions: qi = qi(x)

2. The inverse Jacobian determinant

is not zero; meaning the transformation is invertible:xi(q).

according to the inverse function theorem. The condition that the Jacobian determinant is not zero reflects the fact that three surfaces from

different families intersect in one and only one point and thus determine the position of this point in a unique way.[4]

Vector and tensor algebra in three-dimensional curvilinear coordinates

Note: the Einstein summation convention of summing on repeated indices is used below.

Elementary vector and tensor algebra in curvilinear coordinates is used in some of the older scientific literature in mechanics and physics and can

be indispensable to understanding work from the early and mid-1900s, for example the text by Green and Zerna.[5] Some useful relations in the
algebra of vectors and second-order tensors in curvilinearcoordinates are given in this section. The notation and contents are primarily from

Ogden,[6] Naghdi,[7] Simmonds,[2] Green and Zerna,[5] Basar and Weichert,[8] and Ciarlet.[9]

Tensors in curvilinear coordinates

A second-order tensor can be expressed as

where denotes the tensor product. The componentsSij are called thecontravariant components,Si
j themixed right-covariant components,Si

j

themixed left-covariant components, andSij thecovariant components of the second-order tensor. The components of the second-order tensor

are related by
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The metric tensor in orthogonal curvilinear coordinates

At each point, one can construct a small line elementdx, so the square of the length of the line element is the scalar product dx • dx and is called
the metric of the space, given by:

and thesymmetricquantity

is called thefundamental (or metric) tensor of the Euclidean space in curvilinear coordinates.

Indices can be raised and lowered by the metric:

Relation to Lamé coefficients

Defining the scale factorshi by

gives a relation between the metric tensor and the Lamé coefficients. Note also that

wherehij are the Lamé coefficients. For an orthogonal basis we also have:

Example: Polar coordinates

If we consider polar coordinates forR2, note that

(r, θ) are the curvilinear coordinates, and the Jacobian determinant of the transformation (r,θ) → (r cosθ, r sinθ) is r.

The orthogonal basis vectors arebr = (cosθ, sinθ), b
θ = (−r sinθ, r cosθ). The normalized basis vectors areer = (cosθ, sinθ), e

θ = (−sinθ, cos

θ) and the scale factors arehr = 1 andhθ= r. The fundamental tensor isg11 =1, g22 =r2, g12 = g21 =0.

The alternating tensor

In an orthonormal right-handed basis, the third-order alternating tensor is defined as

In a general curvilinear basis the same tensor may be expressed as

It can also be shown that

Christoffel symbols

Christoffel symbols of the first kind
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where the comma denotes a partial derivative (see Ricci calculus). To expressΓijk in terms ofgij we note that

Since

using these to rearrange the above relations gives

Christoffel symbols of the second kind

This implies that

Other relations that follow are

Vector operations

1. Dot product:

The scalar product of two vectors in curvilinear coordinates is[2](p32)

2. Cross product:

The cross product of two vectors is given by[2](pp32–34)

where is the permutation symbol and is a Cartesian basis vector. In curvilinear coordinates, the equivalent expression is

where is the third-order alternating tensor.

Vector and tensor calculus in three-dimensional curvilinear coordinates

Note: the Einstein summation convention of summing on repeated indices is used below.

Adjustments need to be made in the calculation of line, surface and volume integrals. For simplicity, the following restricts to three dimensions and
orthogonal curvilinear coordinates. However, the same arguments apply forn-dimensional spaces. When the coordinate system is not orthogonal,
there are some additional terms in the expressions.

Simmonds,[2] in his book on tensor analysis, quotes Albert Einstein saying[10]

The magic of this theory will hardly fail to impose itself on anybody who has truly understood it; it represents a genuine triumph of the
method of absolute differential calculus, founded by Gauss, Riemann, Ricci, and Levi-Civita.



Page 9Curvilinear coordinates - Wikipedia, the free encyclopedia

3.2.2015 10:20:25http://en.wikipedia.org/wiki/Curvilinear_coordinates

Vector and tensor calculus in general curvilinear coordinates is used in tensor analysis on four-dimensional curvilinear manifolds in general

relativity,[11] in the mechanics of curved shells,[9] in examining the invariance properties of Maxwell's equations which has been of interest in

metamaterials[12][13] and in many other fields.

Some useful relations in the calculus of vectors and second-order tensors in curvilinear coordinates are given in this section. The notation and

contents are primarily from Ogden,[14] Simmonds,[2] Green and Zerna,[5] Basar and Weichert,[8] and Ciarlet.[9]

Let φ = φ(x) be a well defined scalar field andv = v(x) a well-defined vector field, andλ1, λ2... be parameters of the coordinates

Geometric elements

1. Tangent vector: If x(λ) parametrizes a curveC in Cartesian coordinates, then

is a tangent vector toC in curvilinear coordinates (using the chain rule). Using the definition of the Lamé coefficients, and that for the metric
gij = 0 wheni ≠ j, the magnitude is:

2. Tangent plane element:If x(λ1, λ2) parametrizes a surfaceS in Cartesian coordinates, then the following cross productof tangent vectors is

a normal vector toSwith the magnitude of infinitesimal plane element, in curvilinear coordinates. Using the above result,

where is the permutation symbol. In determinant form:

Integration

Operator Scalar field Vector field

Line

integral

Surface

integral

Volume

integral

Differentiation

The expressions for the gradient, divergence, and Laplacian can be directly extended ton-dimensions, however the curl is only defined in 3d.

The vector fieldbi is tangent to theqi coordinate curve and forms anatural basisat each point on the curve. This basis, as discussed at the

beginning of this article, is also called thecovariant curvilinear basis. We can also define areciprocal basis, or contravariant curvilinear basis,

bi. All the algebraic relations between the basis vectors, as discussed in the section on tensor algebra, apply for the natural basis and its reciprocal
at each pointx.
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Operator Scalar field Vector field 2nd order tensor field

Gradient

Divergence N/A

wherea is an arbitrary constant vector. In
curvilinear coordinates,

Laplacian

Curl N/A

For vector fields in 3d only,

where is the Levi-Civita symbol.

N/A

Fictitious forces in general curvilinear coordinates

An inertial coordinate system is defined as a system of spaceand time coordinatesx1, x2, x3, t in terms of which the equations of motion of a

particle free of external forces are simply d2xj/dt2 = 0.[15] In this context, a coordinate system can fail to be “inertial” either due to non-straight

time axis or non-straight space axes (or both). In other words, the basis vectors of the coordinates may vary in time at fixed positions, or they may
vary with position at fixed times, or both. When equations ofmotion are expressed in terms of any non-inertial coordinate system (in this sense),
extra terms appear, called Christoffel symbols. Strictly speaking, these terms represent components of the absolute acceleration (in classical

mechanics), but we may also choose to continue to regard d2xj/dt2 as the acceleration (as if the coordinates were inertial) and treat the extra terms

as if they were forces, in which case they are called fictitious forces.[16] The component of any such fictitious force normal to the pathof the

particle and in the plane of the path’s curvature is then called centrifugal force.[17]

This more general context makes clear the correspondence between the concepts of centrifugal force in rotating coordinate systems and in

stationary curvilinear coordinate systems. (Both of theseconcepts appear frequently in the literature.[18][19][20]) For a simple example, consider a
particle of massm moving in a circle of radiusr with angular speedw relative to a system of polar coordinates rotating with angular speedW. The

radial equation of motion ismr” = Fr + mr(w + W)2. Thus the centrifugal force ismr times the square of the absolute rotational speedA = w + W of

the particle. If we choose a coordinate system rotating at the speed of the particle, thenW = A andw = 0, in which case the centrifugal force is

mrA2, whereas if we choose a stationary coordinate system we haveW = 0 andw = A, in which case the centrifugal force is againmrA2. Thereason
for this equality of results is that in both cases the basis vectors at the particle’s location are changing in time in exactly the same way. Hence these
are really just two different ways of describing exactly thesame thing, one description being in terms of rotating coordinates and the other being in
terms of stationary curvilinear coordinates, both of whichare non-inertial according to the more abstract meaning of that term.

When describing general motion, the actual forces acting ona particle are often referred to the instantaneous osculating circle tangent to the path
of motion, and this circle in the general case is not centeredat a fixed location, and so the decomposition into centrifugal and Coriolis components
is constantly changing. This is true regardless of whether the motion is described in terms of stationary or rotating coordinates.

See also

Covariance and contravariance

Basic introduction to the mathematics of curved spacetime

Orthogonal coordinates

Frenet–Serret formulas

Covariant derivative

Tensor derivative (continuum mechanics)

Curvilinear perspective

Del in cylindrical and spherical coordinates
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