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In the physics of gauge theories,gauge fixing(also calledchoosing a gauge) denotes a mathematical procedure for coping with redundant degrees
of freedom in field variables. By definition, a gauge theoryrepresents each physically distinct configuration of the system as an equivalence class
of detailed local field configurations. Any two detailed configurations in the same equivalence class are related by a gauge transformation,
equivalent to a shear along unphysical axes in configuration space. Most of the quantitative physical predictions of a gauge theory can only be
obtained under a coherent prescription for suppressing or ignoring these unphysical degrees of freedom.

Although the unphysical axes in the space of detailed configurations are a fundamental property of the physical model, there is no special set of
directions "perpendicular" to them. Hence there is an enormous amount of freedom involved in taking a "cross section" representing each physical
configuration by aparticular detailed configuration (or even a weighted distribution ofthem). Judicious gauge fixing can simplify calculations
immensely, but becomes progressively harder as the physical model becomes more realistic; its application to quantum field theory is fraught with
complications related to renormalization, especially when the computation is continued to higher orders. Historically, the search for logically
consistent and computationally tractable gauge fixing procedures, and efforts to demonstrate their equivalence in the face of a bewildering variety
of technical difficulties, has been a major driver of mathematical physics from the late nineteenth century to the present.
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Gauge freedom

The archetypical gauge theory is the Heaviside–Gibbs formulation of continuum electrodynamics in terms of an electromagnetic four-potential,
which is presented here in space/time asymmetric Heavisidenotation. The electric fieldE and magnetic fieldB of Maxwell's equations contain
only "physical" degrees of freedom, in the sense that everymathematical degree of freedom in an electromagnetic field configuration has a
separately measurable effect on the motions of test chargesin the vicinity. These "field strength" variables can be expressed in terms of the scalar
potential and the vector potentialA through the relations:

If the transformation

 
 

 
 (1)

is made, thenB remains unchanged, since

.

However, this transformation changesE according to

.

If another change
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Gauge fixing of a
twisted cylinder.
(Note: the line is on
thesurface of the
cylinder, not inside
it.)

 
 

 
 (2)

is made thenE also remains the same.

Hence, theE andB fields are unchanged if we take any functionψ(r , t) and simultaneously transformA andφ via the transformations (1) and (2).

A particular choice of the scalar and vector potentials is agauge(more precisely,gauge potential) and a scalar functionψ used to change the
gauge is called agauge function. The existence of arbitrary numbers of gauge functionsψ(r , t) corresponds to the U(1)gauge freedomof this
theory. Gauge fixing can be done in many ways, some of which weexhibit below.

Although classical electromagnetism is now often spoken ofas a gauge theory, it was not originally conceived in these terms. The motion of a
classical point charge is affected only by the electric and magnetic field strengths at that point, and the potentials can be treated as a mere
mathematical device for simplifying some proofs and calculations. Not until the advent of quantum field theory could itbe said that the potentials
themselves are part of the physical configuration of a system. The earliest consequence to be accurately predicted and experimentally verified was
the Aharonov–Bohm effect, which has no classical counterpart. Nevertheless, gauge freedom is still true in these theories. For example, the
Aharonov–Bohm effect depends on a line integral ofA around a closed loop, and this integral is not changed by

Gauge fixing in non-abelian gauge theories, such as Yang–Mills theory and general relativity, is a rather more complicated topic; for details see
Gribov ambiguity, Faddeev–Popov ghost, and frame bundle.

An illustration

By looking at a cylindrical rod can one tell whether it is twisted? If the rod is perfectly cylindrical, then the circular
symmetry of the cross section makes it impossible to tell whether or not it is twisted. However, if there were a straight
line drawn along the length of the rod, then one could easily say whether or not there is a twist by looking at the state of
the line. Drawing a line isgauge fixing. Drawing the line spoils the gauge symmetry, i.e., the circular symmetry U(1) of
the cross section at each point of the rod. The line is the equivalent of agauge function; it need not be straight. Almost
any line is a valid gauge fixing, i.e., there is a largegauge freedom. To tell whether the rod is twisted, you need to first
know the gauge. Physical quantities, such as the energy of the torsion, do not depend on the gauge, i.e., aregauge
invariant .

Coulomb gauge

TheCoulomb gauge(also known as the transverse gauge) is much used in quantum chemistry and condensed matter physics and is defined by the
gauge condition (more precisely, gauge fixing condition)

It is particularly useful for "semi-classical" calculations in quantum mechanics, in which the vector potential is quantized but the Coulomb
interaction is not.

The Coulomb gauge has a number of properties:

1. The potentials can be expressed in terms of instantaneousvalues of the fields and densities (in SI units)

whereρ(r , t) is the electric charge density, and (wherer is any position vector in space andr ′ a point in the charge or

current distribution), the operates onr and d3r is the volume element atr .

The instantaneous nature of these potentials appears, at first sight, to violate causality, since motions of electric charge or magnetic field
appear everywhere instantaneously as changes to the potentials. This is justified by noting that the scalar and vector potentials themselves do
not affect the motions of charges, only the combinations of their derivatives that form the electromagnetic field strength. Although one can
compute the field strengths explicitly in the Coulomb gaugeand demonstrate that changes in them propagate at the speed of light, it is much
simpler to observe that the field strengths are unchanged under gauge transformations and to demonstrate causality in the manifestly Lorentz
covariant Lorenz gauge described below.

Another expression for the vector potential, in terms of thetime-retarded electric current densityJ(r , t), has been obtained to be:[1]
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.

2. Further gauge transformations that retain the Coulomb gauge condition might be made with gauge functions that satisfy∇2
ψ = 0, but as the

only solution to this equation that vanishes at infinity (where all fields are required to vanish) isψ(r , t) = 0, no gauge arbitrariness remains.

Because of this, the Coulomb gauge is said to be a complete gauge, in contrast to gauges where some gauge arbitrariness remains, like the

Lorenz gauge below.

3. The Coulomb gauge is a minimal gauge in the sense that the integral ofA2 over all space is minimal for this gauge: all other gauges give a

larger integral.[2] The minimum value given by the Coulomb gauge is

.

4. In regions far from electric charge the scalar potential becomes zero. This is known as theradiation gauge. Electromagnetic radiation was

first quantized in this gauge.

5. The Coulomb gauge admits a natural Hamiltonian formulation of the evolution equations of the electromagnetic field interacting with a

conserved current, which is an advantage for the quantization of the theory. The Coulomb gauge is, however, not Lorentz covariant. If a

Lorentz transformation to a new inertial frame is carried out, a further gauge transformation has to be made to retain theCoulomb gauge

condition. Because of this, the Coulomb gauge is not used in covariant perturbation theory, which has become standard for the treatment of

relativistic quantum field theories such as quantum electrodynamics (QED). Lorentz covariant gauges such as the Lorenz gauge are usually

used in these theories. Amplitudes of physical processes inQED in the noncovariant Coulomb gauge coincide with those inthe covariant

Lorentz gauge.[3]

6. For a uniform and constant magnetic fieldB the vector potential in the Coulomb gauge is

which can be confirmed by calculating the div and curl ofA . The divergence ofA at infinity is a consequence of the unphysical assumption

that the magnetic field is uniform throughout the whole of space. Although this vector potential is unrealistic in general it can provide a good

approximation to the potential in a finite volume of space inwhich the magnetic field is uniform.

7. As a consequence of the considerations above, the electromagnetic potentials may be expressed in their most general forms in terms of the

electromagnetic fields as

whereψ(r , t) is an arbitrary scalar field called the gauge function. Thefields that are the derivatives of the gauge function are known as pure

gauge fields and the arbitrariness associated with the gauge function is known as gauge freedom. In a calculation that iscarried out correctly

the pure gauge terms have no effect on any physical observable. A quantity or expression that does not depend on the gauge function is said

to be gauge invariant: all physical observables are required to be gauge invariant. A gauge transformation from the Coulomb gauge to another

gauge is made by taking the gauge function to be the sum of a specific function which will give the desired gauge transformation and the

arbitrary function. If the arbitrary function is then set tozero, the gauge is said to be fixed. Calculations may be carried out in a fixed gauge

but must be done in a way that is gauge invariant.

Lorenz gauge

TheLorenz gauge is given, in SI units, by:

and in Gaussian units by:
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This may be rewritten as:

whereAµ = (φ/c, −A) is the electromagnetic four-potential,∂µ the 4-gradient [using the metric signature (+−−−)].

It is unique among the constraint gauges in retaining manifest Lorentz invariance. Note, however, that this gauge was originally named after the
Danish physicist Ludvig Lorenz and not after Hendrik Lorentz; it is often misspelled "Lorentz gauge". (Neither was the first to use it in
calculations; it was introduced in 1888 by George F. FitzGerald.)

The Lorenz gauge leads to the following inhomogeneous wave equations for the potentials:

It can be seen from these equations that, in the absence of current and charge, the solutions are potentials which propagate at the speed of light.

The Lorenz gauge isincomplete in the sense that there remains a subspace of gauge transformations which preserve the constraint. These
remaining degrees of freedom correspond to gauge functionswhich satisfy the wave equation

These remaining gauge degrees of freedom propagate at the speed of light. To obtain a fully fixed gauge, one must add boundary conditions along
the light cone of the experimental region.

Maxwell's equations in the Lorenz gauge simplify to

wherejν = (ρc, j ) is the four-current.

Two solutions of these equations for the same current configuration differ by a solution of the vacuum wave equation

.

In this form it is clear that the components of the potential separately satisfy the Klein–Gordon equation, and hence that the Lorenz gauge
condition allows transversely, longitudinally, and "time-like" polarized waves in the four-potential. The transverse polarizations correspond to
classical radiation, i. e., transversely polarized waves in the field strength. To suppress the "unphysical" longitudinal and time-like polarization
states, which are not observed in experiments at classical distance scales, one must also employ auxiliary constraintsknown as Ward identities.
Classically, these identities are equivalent to the continuity equation

.

Many of the differences between classical and quantum electrodynamics can be accounted for by the role that the longitudinal and time-like
polarizations play in interactions between charged particles at microscopic distances.

R
ξ

gauges

TheRξ gaugesare a generalization of the Lorenz gauge applicable to theories expressed in terms of an action principle with Lagrangian density .

Instead offixing the gauge by constraining the gauge fielda priori via an auxiliary equation, one adds to the "physical" (gaugeinvariant)
Lagrangian a gaugebreaking term

The choice of the parameterξ determines the choice of gauge. TheLandau gauge, obtained as the limitξ → 0, is classically equivalent to Lorenz
gauge, but postponing taking the limit until after the theory is quantized improves the rigor of certain existence and equivalence proofs. Most
quantum field theory computations are simplest in theFeynman–'t Hooft gauge, in whichξ = 1; a few are more tractable in otherRξ gauges, such

as theYennie gaugeξ = 3.

An equivalent formulation ofRξ gauge uses an auxiliary field, a scalar fieldB with no independent dynamics:
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The auxiliary field can be eliminated by "completing the square" to obtain the previous form. From a mathematical perspective the auxiliary field
is a variety of Goldstone boson, and its use has advantages when identifying the asymptotic states of the theory, and especially when generalizing
beyond QED.

Historically, the use ofRξ gauges was a significant technical advance in extending quantum electrodynamics computations beyond one-loop order.

In addition to retaining manifest Lorentz invariance, theRξ prescription breaks the symmetry under local gaugetransformations while preserving

the ratio of functional measures of any two physically distinct gaugeconfigurations. This permits a change of variables in which infinitesimal
perturbations along "physical" directions in configuration space are entirely uncoupled from those along "unphysical" directions, allowing the latter
to be absorbed into the physically meaningless normalization of the functional integral. Whenξ is finite, each physical configuration (orbit of the
group of gauge transformations) is represented not by a single solution of a constraint equation but by a Gaussian distribution centered on the
extremum of the gauge breaking term. In terms of the Feynman rules of the gauge-fixed theory, this appears as a contribution to the photon
propagator for internal lines from virtual photons of unphysical polarization.

The photon propagator, which is the multiplicative factor corresponding to an internal photon in the Feynman diagram expansion of a QED
calculation, contains a factorgµν corresponding to the Minkowski metric. An expansion of thisfactor as a sum over photon polarizations involves

terms containing all four possible polarizations. Transversely polarized radiation can be expressed mathematicallyas a sum over either a linearly or
circularly polarized basis. Similarly, one can combine thelongitudinal and time-like gauge polarizations to obtain "forward" and "backward"
polarizations; these are a form of light cone coordinates inwhich the metric is off-diagonal. An expansion of thegµν factor in terms of circularly

polarized (spin ±1) and light cone coordinates is called a spin sum. Spin sums can be very helpful both in simplifying expressions and in obtaining
a physical understanding of the experimental effects associated with different terms in a theoretical calculation.

Richard Feynman used arguments along approximately these lines largely to justify calculation procedures that produced consistent, finite, high
precision results for important observable parameters such as the anomalous magnetic moment of the electron. Althoughhis arguments sometimes
lacked mathematical rigor even by physicists' standards and glossed over details such as the derivation of Ward–Takahashi identities of the
quantum theory, his calculations worked, and Freeman Dysonsoon demonstrated that his method was substantially equivalent to those of Julian
Schwinger and Sin-Itiro Tomonaga, with whom Feynman sharedthe 1965 Nobel Prize in Physics.

Forward and backward polarized radiation can be omitted in the asymptotic states of a quantum field theory (see Ward–Takahashi identity). For
this reason, and because their appearance in spin sums can beseen as a mere mathematical device in QED (much like the electromagnetic four-
potential in classical electrodynamics), they are often spoken of as "unphysical". But unlike the constraint-based gauge fixing procedures above,
theRξ gauge generalizes well to non-abelian gauge groups such as the SU(3) of QCD. The couplings between physical and unphysical

perturbation axes do not entirely disappear under the corresponding change of variables; to obtain correct results, one must account for the non-
trivial Jacobian of the embedding of gauge freedom axes within the space of detailed configurations. This leads to the explicit appearance of
forward and backward polarized gauge bosons in Feynman diagrams, along with Faddeev–Popov ghosts, which are even more "unphysical" in that
they violate the spin-statistics theorem. The relationship between these entities, and the reasons why they do not appear as particles in the quantum
mechanical sense, becomes more evident in the BRST formalism of quantization.

Maximum Abelian gauge

In any non-Abelian gauge theory, anymaximum Abelian gaugeis anincomplete gauge which fixes the gauge freedom outside of the maximum
Abelian subgroup. Examples are

For SU(2) gauge theory in D dimensions, the maximum Abelian subgroup is a U(1) subgroup. If this is chosen to be the one generated by the

Pauli matrixσ3, then the maximum Abelian gauge is that which maximizes the function

where

For SU(3) gauge theory in D dimensions, the maximum Abelian subgroup is a U(1)×U(1) subgroup. If this is chosen to be the one generated

by the Gell-Mann matricesλ3 andλ8, then the maximum Abelian gauge is that which maximizes the function

where
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This applies regularly in higher algebras (of groups in the algebras), for example the Clifford Algebra and as it is regularly.

Less commonly used gauges

Weyl gauge

TheWeyl gauge(also known as theHamiltonian or temporal gauge) is anincomplete gauge obtained by the choice

It is named after Hermann Weyl.

Multipolar gauge

The gauge condition of theMultipolar gauge (also known as theLine gauge, point gaugeor Poincaré gauge) is:

.

This is another gauge in which the potentials can be expressed in a simple way in terms of the fields

Fock–Schwinger gauge

The gauge condition of theFock–Schwinger gauge(sometimes called therelativistic Poincaré gauge) is:

wherexµ is the position four-vector.
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