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Orthogonal coordinates
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In mathematicsprthogonal coordinatesare defined as a set dfcoordinates) = (ql, q2, qd) in which the coordinate surfaces all meet at right

angles (note: superscripts are indices, not exponentspoAdmate surface for a particular coordinq'feis the curve, surface, or hypersurface on
which g, is a constant. For example, the three-dimensional Cartesiardinatesy, y, ) is an orthogonal coordinate system, since its coordinate

surfaces = constanty = constant, and = constant are planes that meet at right angles to one anotheare perpendicular. Orthogonal
coordinates are a special but extremely common case oflicei coordinates.
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Motivation

While vector operations and physical laws are normallyesisd derive in Cartesian coordinates, non-Cartesian
orthogonal coordinates are often used instead for theisnlof various problems, especially boundary value
problems, such as those arising in field theories of quam@ohanics, fluid flow, electrodynamics and the
diffusion of chemical species or heat.

The chief advantage of non-Cartesian coordinates is tegtdhn be chosen to match the symmetry of the
problem. For example, the pressure wave due to an explasidroim the ground (or other barriers) depends on
3D space in Cartesian coordinates, however the pressuterpigantly moves away from the center, so that in
spherical coordinates the problem becomes very nearlydonensional (since the pressure wave dominantly
depends only on time and the distance from the center). &nakample is (slow) fluid in a straight circular pipe:
in Cartesian coordinates, one has to solve a (difficult) dimoensional boundary value problem involving a partial
differential equation, but in cylindrical coordinates ti®blem becomes one-dimensional with an ordinary
differential equation instead of a partial differentialegjon.

The reason to prefer orthogonal coordinates instead ofrgecervilinear coordinates is simplicity: many
complications arise when coordinates are not orthogomalekample, in orthogonal coordinates many problems
may be solved by separation of variables. Separation oAbks is a mathematical technique that converts a
complexd-dimensional problem intd one-dimensional problems that can be solved in terms of krfawctions. A conformal map acting on a
Many equations can be reduced to Laplace's equation or timehidiiz equation. Laplace’s equation is separable rectangular grid. Note that
in 13 orthogonal coordinate systems, and the Helmholtztemues separable in 11 orthogonal coordinate systemsine orthogonality of the

(12 curved grid is retained.

Orthogonal coordinates never have off-diagonal termsair thetric tensor. In other words, the infinitesimal
squared distances’ can always be written as a scaled sum of the squared infmisdésoordinate displacements
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ds* =Y (hydg")”
k=1
whered is the dimension and the scaling functions (or scale fagtors

hi(@) = V/gee(a) = ex]

equal the square roots of the diagonal components of theatetisor, or the lengths of the local basis vecerdescribed below. These scaling
functionsh; are used to calculate differential operators in the newdioates, e.g., the gradient, the Laplacian, the divergandethe curl.

A simple method for generating orthogonal coordinatesesystin two dimensions is by a conformal mapping of a standeoedimensional grid

of Cartesian coordinateg,(y). A complex number = x + iy can be formed from the real coordinateandy, wherei represents the square root of
-1. Any holomorphic functiow = f(z) with non-zero complex derivative will produce a conformapping; if the resulting complex number is
writtenw = u + iv, then the curves of constantandyv intersect at right angles, just as the original lines of tamis< andy did.

Orthogonal coordinates in three and higher dimensions eageberated from an orthogonal two-dimensional coordisigtem, either by
projecting it into a new dimensioreylindrical coordinate¥ or by rotating the two-dimensional system about one ofyitsraetry axes. However,
there are other orthogonal coordinate systems in threerdiimes that cannot be obtained by projecting or rotatingadinensional system, such
as the ellipsoidal coordinates. More general orthogonaldinates may be obtained by starting with some necessardioate surfaces and
considering their orthogonal trajectories.

Basis vectors

Covariant basis

In Cartesian coordinates, the basis vectors are fixed tant)sIn the more general setting of curvilinear coordisat point in space is specified
by the coordinates, and at every such point there is bountld basis vectors, which generally are not constant: thilsésessence of curvilinear
coordinates in general and is a very important concept. \Wiistihguishes orthogonal coordinates is that, though &sshvectors vary, they are
always orthogonal with respect to each other. In other words

e -e; =0 if i#j

These basis vectors are by definition the tangent vectatseofurves obtained by varying one coordinate, keeping tthers fixed:

_Or
B a_q% \L{: increasing

wherer is some point and' is the coordinate for which the basis vector is extractedtier words, a gl increasing
curve is obtained by fixing all but one coordinate; the uetbcoordinate is varied as in a parametric %

e;

curve, and the derivative of the curve with respect to thapater (the varying coordinate) is the basis
vector for that coordinate. r

Note that the vectors are not necessarily of equal length. Thizilfsmictions known as scale factors of
the coordinates are simply the lengh; of the basis vectore; (see table below). The scale factors are
sometimes called Lamé coefficients, but this terminolagyast avoided since some more well known

coefficients in linear elasticity carry the same name. *

ez

The normalized basis vectors are notated with a hat andnautdiy dividing by the length: o
Visualization of 2D orthogonal

6 = & _ & coordinates. Curves obtained by holding
h; lei] all but one coordinate constant are
shown, along with basis vectors. Note
that the basis vectors aren't of equal
length: they need not be, they only need

to be orthogonal.

A vector field may be specified by its components with respethe basis vectors or the normalized
basis vectors, and one must be sure which case is meant. @Gentpan the normalized basis are most
common in applications for clarity of the quantities (folaexple, one may want to deal with tangential
velocity instead of tangential velocity times a scale fagtm derivations the normalized basis is less
common since it is more complicated.

Contravariant basis

The basis vectors shown above are covariant basis vececalfbe they "co-vary" with vectors). In the case of orthagjonordinates, the
contravariant basis vectors are easy to find since theybeilh the same direction as the covariant vectors but recatength (for this reason,
the two sets of basis vectors are said to be reciprocal witheret to each other):

&; e;

hi  h?

e' =
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this follows from the fact that, by definitiore; - e/ = 5;? using the Kronecker delta. Note that:

- e; . i
e=—=he =¢

h;
We now face three different basis sets commonly used toitbeseectors in orthogonal coordinates: the covariant besthe contravariant basis

e, and the normalized basis While a vector is armbjective quantitymeaning its identity is independent of any coordinateesysthe
components of a vector depend on what basis the vector issepted in.

To avoid confusion, the components of the veotavith respect to the, basis are represented sswhile the components with respect to e
basis are representedxgs

xX= E T'e; = E z;e"
i i

The position of the indices represent how the componentsalcellated (upper indices should not be confused with esptigtion). Note that the
summation symbolX (capital Sigma) and the summation range, indicating sumemat/er all basis vectors € 1, 2, ...,d), are often omitted. The
components are related simply by:

2_i_
hiz' = x;

There is no distinguishing widespread notation in use fatarecomponents with respect to the normalized basis; sétticle we'll use subscripts
for vector components and note that the components arelagdduin the normalized basis.

Vector algebra

Vector addition and negation are done component-wise fust @artesian coordinates with no complication. Extra m®rations may be
necessary for other vector operations.

Note however, that all of these operations assume that two \&uta vector field are bound to the same point (in other wdtdstails of vectors
coincide). Since basis vectors generally vary in orthofjooardinates, if two vectors are added whose componentsadealated at different
points in space, the different basis vectors require cenatibn.

Dot product
The dot product in Cartesian coordinates (Euclidean spdtbeaw orthonormal basis set) is simply the sum of the pradattomponents. In

orthogonal coordinates, the dot product of two vectoasdy takes this familiar form when the components of the vectoescalculated in the
normalized basis:

X-yzz:vgég-Zyjéj:Z:vgyg
i i i

This is an immediate consequence of the fact that the naethbasis at some point can form a Cartesian coordinatensytite basis set is
orthonormal.

For components in the covariant or contravariant bases,
xoy = SHay =30 M =S = S
— —~ h? - -

This can be readily derived by writing out the vectors in comgnt form, normalizing the basis vectors, and taking thepdaduct. For example,
in 2D:

x -y = (z'e; +2%;) - (yre! + yoe?)

1 é?

= (z'h1é1 + 2°hyy) - (yli—l + th—Z) = aly + 2%y,
where the fact that the normalized covariant and contramtibases are equal has been used.
Cross product
The cross product in 3D Cartesian coordinates is:

X Xy = (29ys — Taya)er + (Tayr — T1Ys)€s + (X132 — Tay1)€s

The above formula then remains valid in orthogonal coottéimé the components are calculated in the normalized basis
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To construct the cross product in orthogonal coordinatéls @g@variant or contravariant bases we again must simplyalize the basis vectors,

for example:
xxy=) ze;xy yle; =Y a'hée;x Y y'hsg
i i i J

which, written expanded out,

hoh hyh hyh
x xy = (2%° — 2%y) = "e + (2%l — 2lyt) ey + (2ly? — 2¥yl) ey
h,]_ h? h’3

Terse notation for the cross product, which simplifies galieation to non-orthogonal coordinates and higher dsmars, is possible with the

Levi-Civita tensor, which will have components other thanas and ones if the scale factors are not all equal to one.

Vector calculus

Differentiation

Looking at an infinitesimal displacement from some poiti, apparent that
ar=3" ard*’—ze-d*
- - aq.g q - - i q

By definition, the gradient of a function must satisfy (tdisfinition remains true if is any tensor)

df =Vf-dr = df=Vf-) edq

It follows then that del operator must be:

; 0
szé:eaqa.

and this happens to remain true in general curvilinear doatés. Quantities like the gradient and Laplacian follavotigh proper application of

this operator.

Basis vector formulae

From d and normalized basis vectogs the following can be constructéd¥

Differential
Vectors Scalars
element

Tangent vector to coordinate curve
G: Infinitesimal length
i

Line element

or d0 = Vr -dr = \/1} dg} + 13 dg3 + h da3
d—g = h«gé.g = E

Normal to coordinate surfacg =

constant:
Infinitesimal surface
Surface dS = (hig:&;) x (h;g;6;) o
element or or dSy = hih; dq' dg’
= hih;q:q; (— X —)
dq; 3%‘
= h;hjqiqe,
Infinitesimal volume
element = |e1 sep X ea| 11213 A4y Qg3 43
= Jdqi dgy dgs
= hihphs dgy dgo dgs
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where

|2 (s )| < | Bl

g dq2  Oga 9(q1,92, q3)

is the Jacobian determinant, which has the geometric irgtpon of the deformation in volume from the infinitesinoabe ddydz to the
infinitesimal curved volume in the orthogonal coordinates

= hihohg

Integration

Using the line element shown above, the line integral alopgth” of a vectorF is:
/F-drzfz:ﬂe*-zejdqdzz:/ﬂdq*
P P 7 T JP

An infinitesimal element of area for a surface described diging one coordinateg, constant is:

dA =[] ds; = [] hidg'
ik ik

Similarly, the volume element is:
dvV = []ds; = [T hidg’

where the large symbal (capital Pi) indicates a product the same way that a Iargelicates summation. Note that the product of all the scale
factors is the Jacobian determinant.

As an example, the surface integral of a vector funckaver aq1 = constantsurfaces in 3D is:

hoh
/F-dA:/F-ﬁdA:/F-él dA:/Fl =22 4 dg?
S S S S h’l

Note thatFllh1 is the component df normal to the surface.

Differential operators in three dimensions

Since these operations are common in application, all vectmponents in this section are presented with respecetodimalised basis:
Fg = F . é.g.

Operator Expression

& Jdp & dop &3 d¢

Gradient of a scalar field V¢ = Ty O + = Ty OF + = s

. ! 1 a 0
Divergence of a vector fieltV - F = Thaha {3 - (Fihoha) + 50 (th3h1) * of (FahlhE):|
e a & [0 d
V x F = h2h3 |:d P (hst) dq3 (h Fz):l h3h1 I:aq {h F]_] a 1 thg):|
Curl of a vector field hié; hyé; hzé;

dq! hihohs| 8¢ 8¢ O¢?

hFy hoFs hyFy

1 [0 (hehad6), 9 (hahy @6\, 0 (huhy 6]
hihoha |0g' \ hy Og dq% \ hy O¢? d¢® \ hy 9q¢3

+€‘3 {d(hQFz) d(hﬂ)]:#i i i

Laplacian of a scalar field V¢ =

The above expressions can be written in a more compact fairrg tre Levi-Civita symbol, definindd = hqhyhs, and assuming summation over
repeated indices:
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Expression

. i . &, d¢
Gradient of a scalar field |(V@). = T O

Operator

1 9 (H
. ielV-F=—_— | —F;
Divergence of a vector fiel(V H ok (h’k ")

heer O
(V x F), = % (h;F})

Curl of a vector field —— €
H g’

| _ 1.9 (Hos
20— - ¥
Laplacian of a scalar field| V¢ = H ag* (hi aqk)

Table of orthogonal coordinates

Besides the usual cartesian coordinates, several otteetatarlated beloW) Interval notation is used for compactness in the coordgetéumn.
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- . Transformation from
Curvillinear coordinates (ql, dy q3) ] Scale factors
cartesian (, y, 2)

Spherical polar coordinates T = rsinfcos¢ h=1
. y = rsinf sin ¢ ho=r
(r,8,0) €[0,00) x [0,7] x [0,27) = rcosf hy = 7sinf
Cylindrical polar coordinates T =rcosd
. . hl = h,g = 1
(r,¢,2z) € [0,00) x [0,27) x (—o0, c0) y=rsing hy =
=z
Parabolic cylindrical coordinates - 1 2 _ 2
v 2( v) hy = hy = Vu? 4+ v?
(u,v,2) € (—00,00) X [0,00) x (—o0,00) ¥ = UV hy =1
=z
Paraboloidal coordinates T =uvcos¢
y = uvsin ¢ hy = hy = Vu? 402
(u,v,¢) € [0,00) x [0,00) x [0, 2m) L l(ug _ ) hy =ww
2
Elliptic cylindrical coordinates T = acoshucosv
. . hy = hy = aV/sinh?u + sin? v
y = asinhusinv
(‘L-',_, v, z) € [D' OO) S [D' 2?]—) S (_OO!OO) h'S =1
=z
Prolate spheroidal coordinates x = asinh € sin7 cos ¢ [ 2e 2.
y = asinh & sin 7 sin ¢ ha = hy = ay[sinh™{ + sin®n

(& ¢) €[0,00) x [0, 7] x [0, 2m) 2z = acosh&cosy hz = asinh & sing

T = acoshf cosncos ¢ \/272
y = acosh§ cosnsin ¢ =y = ay/sinh" ¢+ sin

Oblate spheroidal coordinates

. T
(& n, ¢) €10,00) x [_E’ E} x [0,2m) 2z = asinhEsiny hz = acoshé cosn
Ellipsoidal coordinates
22 y? 52
PTRY + 5 + =1
( ';'2) s 2 @?—q V-g -—q _ 1 (9; — ai) (g — @)
A< < <d hi =5 @)@ -0)@—a)
& <pu<h?<d, where(q1, @2, ga) = (A, i1, v) & W~
< <v<a
) . B asinhv
Bipolar coordinates T = osho — cosu hy = hy = a
_ asin u coshv — cosu
(u,v,2) €[0,2m) x (—o0,00) x (—00,00) Y= osho —cosu ha =1
z=2z
asinh v cos¢
r=——"—
Toroidal coordinates coshv — cosu hy=hy—— %
__ asinhvsing coshv — cosu
(u,v,¢) € (—m, 7] x [0,00) x [0, 27) Y= coshv — cosu hy = _ asinhv
asin u coshv — cosu
z=——
coshv — cosu
Conical coordinates v = A‘% hy =1
al
A2 (% — 2
(A p,v) _A (p* —a?)(v* —a?) hj = 2 _U_g B2 _) 2
2 _ 32 2 2 y 2 _ 2 (1? — a®)( 1)
r<b<put<a a a’ —b N2 (% — 12)
Ae 0,00 _A (2= - b)) k=
[0, o) 2—3\/ )0 ) )

See also

= Curvilinear coordinates
= Tensor
= Vector field
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= Skew coordinates
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