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In geometrycurvilinear coordinates are a coordinate system for Euclidean space in which the
coordinate lines may be curved. These coordinates may beddrom a set of Cartesian
coordinates by using a transformation that is locally itibé (a one-to-one map) at each point.
This means that one can convert a point given in a Cartesiandic@te system to its curvilinear
coordinates and back. The namavilinear coordinatescoined by the French mathematician
Lamé, derives from the fact that the coordinate surfacesettrvilinear systems are curved.

Well-known examples of curvilinear coordinate systemsireé-dimensional Euclidean space

(R3) are Cartesian, cylindrical and spherical polar coordisaf Cartesian coordinate surface in
this space is a plane; for exampe 0 defines thex-y plane. In the same space, the coordinate

surfacer = 1 in spherical polar coordinates is the surface of a uniesphwhich is curved. The ,
formalism of curvilinear coordinates provides a unifiedl@@neral description of the standard —> b
coordinate systems.

Curvilinear coordinates are often used to define the looati distribution of physical quantities
which may be, for example, scalars, vectors, or tensorshéfaatical expressions involving these
quantities in vector calculus and tensor analysis (suchegradient, divergence, curl, and
Laplacian) can be transformed from one coordinate systeandther, according to transformation
rules for scalars, vectors, and tensors. Such expres$iensecome valid for any curvilinear
coordinate system.

Curvilinear, affine, andCartesian
coordinates in two-dimensional space

Depending on the application, a curvilinear coordinatéesysmay be simpler to use than the Cartesian coordinatensyBta instance, a physical

problem with spherical symmetry defined®? (for example, motion of particles under the influence oftcalrforces) is usually easier to solve in
spherical polar coordinates than in Cartesian coordin&®sations with boundary conditions that follow coordaatirfaces for a particular
curvilinear coordinate system may be easier to solve ingystem. One would for instance describe the motion of aglaiits a rectangular box

in Cartesian coordinates, whereas one would prefer sgli@aordinates for a particle in a sphere. Spherical coatdmare one of the most used
curvilinear coordinate systems in such fields as Eartmses, cartography, and physics (in particular quantum em@ch, relativity), and
engineering.
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Orthogonal curvilinear coordinates in 3d

Coordinates, basis, and vectors

For now, consider 3d space. A poidin 3d space can be defined using Cartesian coordingates (
Y, 2) [equivalently written X;, X,, X3)], or in another systeng, g,, g;), as shown in Fig. 1. The a, axds
latter is acurvilinear coordinate system and @, g,, g3) are thecurvilinear coordinates of the
point P.

The surfaces); = constantg, = constantg, = constant are called tr@ordinate surfaces and q,—cors -7 20

the space curves formed by their intersection in pairs dteccthecoordinate curves The %

coordinate axesare determined by the tangents to the coordinate curves attérsection of
three surfaces. They are not in general fixed directionpats, which happens to be the case for /
simple Cartesian coordinates. .
g, axis
A basis whose vectors change their direction and/or mag@ittom point to point is calletbcal

basis All bases associated with curvilinear coordinates aressarily local. Basis vectors that are

the same at all points agdobal basesand can be associated only with linear or affine coordinate

systems. Fig. 1 - Coordinate surfaces, coordinate lines,
) ) ) . ) and coordinate axes of general curvilinear
Note: usually all basis vectors are denotedebyor this articleeis for the standard basis coordinates.

(Cartesian) ané is for the curvilinear basis.

The relation between the coordinates is given by the indlertransformations:
x = (g1, 92, 93), ¥ = Y(q1, 42, @3), 2 = 2(q1, 92, Ga)
a1 =q(2,y,2), @2 = @2(7,9,2), s = qa(x,y, 2)

Any point can be written as a position vectoin Cartesian coordinates:

r = e, + ye, + ze;

wherex, y, zare the coordinates of the position vector with respectestandard basis vectors
& & &
Fig. 2 - Coordinate surfaces, coordinate lines,
However, in a general curvilinear system, there may welbeoany natural global basis vectors. ' and coordinate axes of spherical coordinates.
Instead, we note that in the Cartesian system, we have tipepydhat Surfaces:r - spheres - cones g - half-
planesiLines: r - straight beams) - vertical

or or or L ) T
=—ie =€ =_—. semicirclesg - horizontal circlesAxes:r -

Oz dy Oz straight beamd) - tangents to vertical
semicirclesy - tangents to horizontal circles

€x

We can apply the same idea to the curvilinear system to deteransystem of basis vectorsRit
We define

or or _Or

h; =—; = — = —.
! dqr’ 2 dgy’ Jqs

These may not have unit length, and may also not be orthogioridle case that thegre orthogonal at all points where the derivatives are well-
defined, we define the Lamé coefficients (after Gabriel Exty

hy = |hy[; hy = |hy|; ha = |hy|

and the curvilinear orthonormal basis vectors by
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It is important to note that these basis vectors may well deépgon the position d?; it is therefore necessary that they are not assumed to be
constant over a region. (They technically form a basis fertdngent bundle (g?* at P, and so are local tB.)

In general, curvilinear coordinates allow the generalfthasis vectors not all mutually perpendicular to each othed not required to be of unit
length: they can be of arbitrary magnitude and directiore Tike of an orthogonal basis makes vector manipulationdesittiian for non-
orthogonal. However, some areas of physics and engineg@amnticularly fluid mechanics and continuum mechanicgquie non-orthogonal
bases to describe deformations and fluid transport to axtdoucomplicated directional dependences of physicahtjties. A discussion of the
general case appears later on this page.

Vector calculus
Differential elements

Since the total differential change iins

dr = ﬁdql or

or
9 dgs + ——dga = hidgiby + hydgobs + hadgzbs
1

+ -
g2 dq3
so scale factors are

_|or

hi = dq;

They can also be written for each component:of

Ry = —.
£ o

However, this designation is very rarely used, largelyaeptl with the components of the metric tengpi(see below).

Covariant and contravariant bases

The basis vectors, gradients, and scale factors are altefaéed within a coordinate system
by two methods:

1. the basis vectors are unit tangent vectors along the it@tedcurves:

1 o 10r
Y |or aqa'_h»saqg
dg;

which transform like covariant vectors (denoted by loweretices), or
2. the basis vectors are unit normal vectors to the coomrimatfaces:

i Vi I B>
b = = Vg :
[Vl vz oAl
which transform like contravariant vectors (denoted bgediindices)y is the del A vectorv (red) represented by « a vector basis
( , left: e., e,, e,), tangent vectors to coordinate
operator. 23

curves black) and « a covector basis or cobasisug,

So depending on the method by which they are built, for a gearvilinear coordinate right: e, €, €%), normal vectors to coordinate
system there are two sets of basis vectors for every pdt:tf,, b} is the covariant basis,  gyrfaces grey) in general(not necessarily orthogonal)

and {bl, b?, b3} is the contravariant basis. curvilinear coordinatesyf, ¢, o°). Note the basis and
cobasis do not coincide unless the coordinate system

A vectorv can be given in terms either basis, i.e., . 1
is orthogonal:

v = v'b; + v®by 4+ v°by = v;b! + wyb? 4+ v b%

The basis vectors relate to the component&l§§30-32)

v -b' = v¥b, - b =5, =

k k
V'b.g:'t)kb 'b.g:'t)kts%- =1
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and
v-b; = Ukbk b = Q‘ksvk
v-b' =ub" - b = g™y,
whereg is the metric tensor (see below).

A vector is covariant or contravariant if, respectivelg, édbmponents are covariant (lowered indices, writigror contravariant (raised indices,

written vk). From the above vector sums, it can be seen that contravaeators are represented with covariant basis vectodsgavariant
vectors are represented with contravariant basis vectors.

A key convention in the representation of vectors and tensoterms of indexed components and basis vectarw&iancein the sense that
vector components which transform in a covariant mannecdotravariant manner) are paired with basis vectors thasform in a contravariant
manner (or covariant manner).

Covariant basis
Constructing a covariant basis in one dimension

Consider the one-dimensional curve shown in Fig. 3. At pBjritken as an origir is one of the
Cartesian coordinates, aqi'jis one of the curvilinear coordinates (Fig. 3). The localnnumit) G curve
basis vector i®, (notatedh,; above, withb reserved for unit vectors) and it is built on ttﬂaaxis

which is a tangent to that coordinate line at the p&inThe axisq1 and thus the vectds; form an

, . , . , » G axis
anglea with the Cartesiam axis and the Cartesian basis veator

It can be seen from trianglRAB that

le|
coso = — = |e)| = |by|cosa P
by

dx D el A

Fig. 3 — Transformation of local covariant
basis in the case of general curvilinear
Note thatPAis also the projection df; on thex axis. coordinates

where ¢, b,| are the magnitudes of the two basis vectors, i.e., thersoadaiceptsPB andPA.

However, this method for basis vector transformationsgidirectional cosiness inapplicable to curvilinear coordinates for the follogi
reasons:

1. By increasing the distance frof the angle between the curved qujeand Cartesian axisincreasingly deviates from.
2. At the distancéB the true angle is that which the tangeipoint C forms with thex axis and the latter angle is clearly different frem

The angles that the}1 line and that axis form with the axis become closer in value the closer one moves towardsPaind become exactly
equal atP.

Let pointE be located very close 1, so close that the distan&E is infinitesimally small. ThelPE measured on the}1 axis almost coincides

with PE measured on the}1 line. At the same time, the rati®D/PE (PD being the projection oPE on thex axis) becomes almost exactly eqtal
cosa.

Let the infinitesimally small intercep®D andPE be labelled, respectively, ax and dql. Then

COsSy = da = |e1|

dg'  [by|’

Thus, the directional cosines can be substituted in tramsftions with the more exact ratios between infinitesignathall coordinate intercepts. It
follows that the component (projection) bf on thex axis is

L e le] dx P dx
—by = by osa = [y > L=
L o R o 7L A7

1
T=
S Hd*
Ifq =g (X, X5, X5) @ndx; = xi(ql, q2, q3) are smooth (continuously differentiable) functions trensformation ratios can be Writtena—z and
i
3:1:3-

e That is, those ratios are partial derivatives of coordiadtelonging to one system with respect to coordinates dielgto the other system.
G
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Constructing a covariant basis in three dimensions

Doing the same for the coordinates in the other 2 dimensionsan be expressed as:

3:1:1 3:1:2 3:1:3
aqch + €3 + aqlc‘s

by = p'e; + pPey + pes = 5
q

Similar equations hold fdb,, andb so that the standard basig,{ e,, &} is transformed to a local (ordered andrmalised) basis {,, b,, b3} by
the following system of equations:

by = Oxy N Oz N O3
gt " aqt ° " gt °

by — axln N axgn N O3
g o ° " o °

by = axln N axgn N a:tzgn
¢ " a¢ T AP

By analogous reasoning, one can obtain the inverse tranafimm from local basis to standard basis:

_ 9q¢' dq° ¢
= a_:tlbl + a—xle + a—xlba
_ 9q¢' dq° ¢
ey = a_xgbl + 3_:tng2 + a—xgba
_o¢' 0 O¢
= a_:te,bl + a_:te,bg + a—xaba

e

€3

Jacobian of the transformation

The above systems of linear equations can be written in xfatnin as

3:1:3- aq‘
;= b-, _b'a' = €.
_eaq’“ k Bz, €

This coefficient matrix of the linear system is the Jacobiatrix (and its inverse) of the transformation. These ageetfuations that can be used
to transform a Cartesian basis into a curvilinear basis vézelversa.

In three dimensions, the expanded forms of these matriees ar

3:1:1 3:1:1 axl 39’1 aql
d¢t ¢ O or, Ozy
g |9%2 Ox2 Or:) g4 |0¢° O’
gt ¢ a¢|’ axé axg
Oy Ows Oz o0 90
aql 39'2 3(}3 Oxy O

In the inverse transformation (second equation systera)ttknowns are the curvilinear basis vectors. For all pdirgse can only exist one and
only one set of basis vectors (else vectors are not well défat those points). This condition is satisfied if and ofthé equation system has a

single solution, from linear algebra, a linear equationtesyshas a single solution (non-trivial) only if the deteramimh of its system matrix is non-

zero:

det(J71) #0
which shows the rationale behind the above requirementesaimg the inverse Jacobian determinant.
Generalization to n dimensions
The formalism extends to any finite dimension as follows.

Consider the real Euclideandimensional space, thati®'= R x R x ... xR (ntimes) whereR is the set of real numbers and x denotes the
Cartesian product, which is a vector space.

The coordinates of this space can be denote&isy{x,, X,,...X,). Since this is a vector (an element of the vector spacedyitoe written as:

n
_ i
X = E T;€
i=1
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wheree! = (1,0,0...,0)¢° = (0,1,0...,00€* = (0,0,1...,0),..6" = (0,0,0...,1) is thestandard basis set of vectdiar the spac®k", andi = 1, 2,..nis an
index labelling components. Each vector has exactly ongpooent in each dimension (or "axis") and they are mutuatlyagonal

(perpendicular) and normalized (has unit magnitude).

More generally, we can define basis vectbyso that they depend an= (qy, ds....4,), i.€. they change from point to poirit; = b;(q). In which

case to define the same poinin terms of this alternative basis: tkeordinateswith respect to this basig also necessarily depend &ralso, that
isv; = v;(x). Then a vectow in this space, with respect to these alternative coordinate basis vectors, can be expanded as a linear combinatic
in this basis (which simply means to multiply each basiseegtby a numbew, — scalar multiplication):

n n

v=> ob; = #(q)bj(q)

j=1 j=1

The vector sum that describesn the new basis is composed of different vectors, althobghstim itself remains the same.

Transformation of coordinates

From a more general and abstract perspective, a curviltmadinate system is simply a coordinate patch on the @ifféable manifold=" (n-

dimensional Euclidean space) that is diffeomorphic to thet€sian coordinate patch on the manifldNote that two diffeomorphic coordinate
patches on a differential manifold need not overlap difféiesbly. With this simple definition of a curvilinear codrdite system, all the results that
follow below are simply applications of standard theoremdifferential topology.

The transformation functions are such that there's a ommearelationship between points in the "old" and "new" damates, that is, those
functions are bijections, and fulfil the following requments within their domains:

1. They are smooth functions g qi x)
2. The inverse Jacobian determinant

9" 9¢' 9¢"

or; Oz Ox
J_lz 3:1:1 aIQ axﬂ 750

o o o

3:::1 axg 3:1:,;

is not zero; meaning the transformation is invertibigq).

according to the inverse function theorem. The conditiat the Jacobian determinant is not zero reflects the fatthihee surfaces from

different families intersect in one and only one point angsttletermine the position of this point in a unique Wﬂy.

Vector and tensor algebra in three-dimensional curvilinea coordinates

Note: the Einstein summation convention of summing on tegeadices is used below.

Elementary vector and tensor algebra in curvilinear coatis is used in some of the older scientific literature ictmaaics and physics and can

be indispensable to understanding work from the early andI8D0s, for example the text by Green and Zdthsome useful relations in the
algebra of vectors and second-order tensors in curvilineardinates are given in this section. The notation andecastare primarily from

Ogden[,s] NaghdiV] Simmondd?! Green and zern&! Basar and Weichel! and Ciarlet®}
Tensors in curvilinear coordinates
A second-order tensor can be expressed as
S =SYp,@b; =5 ;b;@b =SB @b; =S5;b @b
where® denotes the tensor product. The componéﬁBre called theontravariant <:omponents'$j i the mixed right-covariant components§ J

the mixed left-covariant components, anaj the covariant components of the second-order tensor. The components skttond-order tensor
are related by

59 = g* 57 = ¢*SY = g*¢" Sie
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The metric tensor in orthogonal curvilinear coordinates

At each point, one can construct a small line elen@bgtso the square of the length of the line element is the scataupt & « dx and is called
the metric of the space, given by:

Ox; Ox; .
cdx = 7 dgidgF
dx - dx 3(}3'@&{} dg

and thesymmetriaquantity

- ail:kaitk
(6 4) = = by - by
9ii(d',4°) 97 07 j

is called thefundamental (or metric) tensor of the Euclidean space in curvilinear coordinates.
Indices can be raised and lowered by the metric:

o= ga’kvk
Relation to Lamé coefficients

Defining the scale factorls; by

ox

hihj = gij=bi-b; = hi=\/g;=|bi| = 3_q‘

gives a relation between the metric tensor and the Laméicimefts. Note also that

ox  Ox
Gij = 3_q‘ 3713': (heiey) - (h'mjem) = hyihyy

whereh;; are the Lamé coefficients. For an orthogonal basis we alge:ha

0= G119 = hihahi = /g = hihohs = J
Example: Polar coordinates
If we consider polar coordinates f&2, note that
(z,y) = (rcosf, rsind)
(r, 0) are the curvilinear coordinates, and the Jacobian deterrhiof the transformatiornr @) — (r cos6, r sin6) isr.

The orthogonal basis vectors dig= (cos®, sin®), b, = (-r sin6, r cos). The normalized basis vectors a&e= (cos#, sinb), g, = (-sind, cos
0) and the scale factors arg= 1 andh,=r. The fundamental tensor @, =1, g,» =r?, 912 = 07 =0.
The alternating tensor
In an orthonormal right-handed basis, the third-orderatgéng tensor is defined as
E= eg-jke" ®e ®e"
In a general curvilinear basis the same tensor may be exqutess
E=E;b @b @b =E7b,@b; @b,

It can also be shown that

83’3’& 1 1
= —fjix — ——Fiik
T g

Christoffel symbols

Christoffel symbols of the first kind

db; :
b= g Lijeb® = by by =T
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where the comma denotes a partial derivative (see Ricaikayr To expresk;, in terms ofgij we note that

Gijk = (bi - bj) k= big - bj +bi - bjy = i + i
Gikj = (bi-b) j=b;; by +b; by j = Tije + Liji
Hiki = (bj : bk),a’ =bji by +b;-by; =i+ Ty

Since
bij=bji = Tiyn=Tj
using these to rearrange the above relations gives

1
Lijr = (ga'k,j + Gjki — ga'j,k) = 5[(}3@ : bk),j + (bj : bk),a’ — (b; - bj),k]

B =

Christoffel symbols of the second kind

, . b :
" =Tk, i Ti;*by
This implies that
db; db*
l"g-ij—_-bk :—b.g "
gl gl

Other relations that follow are

ab%. i ke ke j i ik j
@:—r Jﬁ'b y ngzr“ b;b @bj, Vb =—1"J;bb @bj

Vector operations
1. Dot product:
The scalar product of two vectors in curvilinear coordisagsl32)
u-v=uvy=uv = ga'juévj = Qéjuz'vj
2. Cross product:

The cross product of two vectors is givedB§P32-34)

U X V= €,UjUp€;

where€ijk is the permutation symbol areilis a Cartesian basis vector. In curvilinear coordinates etijuivalent expression is
ux v =[(by xb,) bJu"v"b’ = Eppu™v"b*

where&jx is the third-order alternating tensor.

Vector and tensor calculus in three-dimensional curvilin@r coordinates

Note: the Einstein summation convention of summing on tegeadices is used below.

Adjustments need to be made in the calculation of line, seréad volume integrals. For simplicity, the following résts to three dimensions and
orthogonal curvilinear coordinates. However, the samaraemts apply fon-dimensional spaces. When the coordinate system is naigotial,
there are some additional terms in the expressions.

Simmondd? in his book on tensor analysis, quotes Albert Einstein sﬁ%ﬁh

The magic of this theory will hardly fail to impose itself onybody who has truly understood it; it represents a genuinmph of the
method of absolute differential calculus, founded by GaR#smann, Ricci, and Levi-Civita.

http://en.wikipedia.org/wiki/Curvilinear_coordinate 3.2.2015 10:20:25



Curvilinear coordinates - Wikipedia, the free erlopedia Page 9

Vector and tensor calculus in general curvilinear coorgieds used in tensor analysis on four-dimensional cueélirmanifolds in general
relativity,[ll] in the mechanics of curved shelfjn examining the invariance properties of Maxwell's ecquragiwhich has been of interest in
metamaterial$?'3 and in many other fields.

Some useful relations in the calculus of vectors and secwoddr tensors in curvilinear coordinates are given in tattien. The notation and
contents are primarily from Ogdéjn“,] Simmondd?! Green and zern&! Basar and Weichel! and Ciarlet®)

Let ¢ = ¢(X) be a well defined scalar field and= v(x) a well-defined vector field, and}, 1,... be parameters of the coordinates
Geometric elements

1. Tangent vector: If x(1) parametrizes a curv@ in Cartesian coordinates, then

%_8}(3(}‘_ h_a_q‘ b
ax  agox \Fax|*

is a tangent vector t€ in curvilinear coordinates (using the chain rule). Using tlefinition of the Lamé coefficients, and that for the nmetri
g = 0 wheni #j, the magnitude is:

oy 2
ox dq' dg? dgt aqi‘ ) aq'
a)\‘ \/h”“h’” I\ OX \/9” axaxr -\ M (a_)\)

2. Tangent plane elementif x(4,, 1,) parametrizes a surfa@n Cartesian coordinates, then the following cross prodfingent vectors is

a normal vector t&with the magnitude of infinitesimal plane element, in clingar coordinates. Using the above result,

ox  ox _ (ox o ox ¢\ g’
N O (a_qé aAl) X (@6‘_}\2) = bum (h’“ ) (% 0o )

where¢ is the permutation symbol. In determinant form:

e ) e ) e; )
o\ O 1 1 1

og og g’
Mgy MiaN, Mgy,

Integration
Operator Scalar field Vector field
Line b 0 b
! [ ets= [ otxn || x Jvea-ds= [vexon- (55)
integral  Jo a A c

Surface 8x ox )
ds = x( A, A — | dA dA dsS = x( A1, A dAd\
integral / ) // 1he)) ‘ 8)\1 e / vix)- // 1he))- ( 8)\ 1

Volume
. /// 99(17.‘9.‘ z)a’.V = /// X(Q1!QZ!QS)JdQ1dq2dq3 /// u(:t:,y, z)a’.V = /// V(Ql.‘QE!QS)JdmdQZdQS
integral v v v v

Differentiation

The expressions for the gradient, divergence, and Laplaaa be directly extended tedimensions, however the curl is only defined in 3d.

The vector fieldo; is tangent to th(fqi coordinate curve and formsmatural basis at each point on the curve. This basis, as discussed at the
beginning of this article, is also called tkevariant curvilinear basis. We can also defineegiprocal basig or contravariant curvilinear basis,

b'. All the algebraic relations between the basis vectorsjsazigsed in the section on tensor algebra, apply for thealdiasis and its reciprocal
at each poink.
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Operator Scalar field Vector field 2nd order tensor field
Loy 1 gv a8
Gradient Vp=——=b Vv=—-—@b; VS=_—@b
?” hog hi g’ o7 ©
(V-S)-a=V-(5-a)
L wherea is an arbitrary constant vector. In
i V.v= (v [ ] R;) curvilinear coordinates,
Divergence | N/A Hj h; 0 g J
aS%'J' 1 1 ik}, 7
V S =—= FM-SQ- — rkjS.g g% b/

og*

. 1 9 (ILhjop
2. J
Laplacian V7 I, % 00 ( 1 ag

For vector fields in 3d only,

1
Curl N/A VXV = s St N/A

whereé€ijk is the Levi-Civita symbol.

Fictitious forces in general curvilinear coordinates

An inertial coordinate system is defined as a system of spaddime coordinates;, X,, X5, t in terms of which the equations of motion of a

particle free of external forces are simp@»(fidt2 = 0¥ n this context, a coordinate system can fail to be “inetdther due to non-straight

time axis or non-straight space axes (or both). In other sydtte basis vectors of the coordinates may vary in time atfpositions, or they may
vary with position at fixed times, or both. When equationsmaftion are expressed in terms of any non-inertial coordisgstem (in this sense),
extra terms appeatr, called Christoffel symbols. Strighgaking, these terms represent components of the absaohketeation (in classical

mechanics), but we may also choose to continue to rengx[tﬂtf as the acceleration (as if the coordinates were inertial)teaat the extra terms

as if they were forces, in which case they are called fiattitorced?® The component of any such fictitious force normal to the pdittne
particle and in the plane of the path’s curvature is theredatentrifugal forcét’]

This more general context makes clear the correspondeteedrethe concepts of centrifugal force in rotating cocatirsystems and in

stationary curvilinear coordinate systems. (Both of thas®epts appear frequently in the IiteratHTeé[.lQ][ZO]) For a simple example, consider a
particle of massn moving in a circle of radius with angular speed relative to a system of polar coordinates rotating with dagspeedV. The

radial equation of motion isw” = F, + mr(w +VV)2. Thus the centrifugal force imrtimes the square of the absolute rotational speedv + W of
the particle. If we choose a coordinate system rotatingeasfieed of the particle, th& = A andw = 0, in which case the centrifugal force is

mrA?, whereas if we choose a stationary coordinate system weWav@ andw = A, in which case the centrifugal force is agaimAz. Thereasol
for this equality of results is that in both cases the basisors at the particle’s location are changing in time in ¢lyatbe same way. Hence these
are really just two different ways of describing exactly ane thing, one description being in terms of rotating cioatés and the other being in
terms of stationary curvilinear coordinates, both of whach non-inertial according to the more abstract meaninpatfterm.

When describing general motion, the actual forces acting particle are often referred to the instantaneous osnglaticle tangent to the path
of motion, and this circle in the general case is not centatedfixed location, and so the decomposition into centefwand Coriolis components
is constantly changing. This is true regardless of whethemntotion is described in terms of stationary or rotating doates.

See also

= Covariance and contravariance

= Basic introduction to the mathematics of curved spacetime
= Orthogonal coordinates

= Frenet—Serret formulas

= Covariant derivative

= Tensor derivative (continuum mechanics)

= Curvilinear perspective

= Del in cylindrical and spherical coordinates
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