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ABSTRACT: In this paper, the method of lines (MoLs), which has been
proved to be very efficient for calculating the characteristics of one-dimen-
sional and two-dimensional planar microwave structures, is extended to
nonequidistant discretization with pseudospectral technique. This
pseudospectral MoLs is developed by combining pseudospectral technique
and the MoLs, so that its solution is not only analytical along line direction,
but also maintains high accuracy in discrete direction. A pseudospectral-
based discretization strategy, distribution of collocation nodes, global power
series interpolation of differential quadrature, second-order difference ma-
trix, and decoupling of coupled ordinary differential equations are dis-
cussed in detail. The convergence behaviors are provided for line discreti-
zation, based on both the pseudospectral strategy and the second-order
finite difference (FD), respectively. The calculated results are compared
with those published in the previous literature and our numerical results
show that accuracy is improved with reduced computational effort for the
analysis of microstrip lines. © 2002 Wiley Periodicals, Inc. Microwave Opt
Technol Lett 35: 224-227, 2002; Published online in Wiley InterScience
(www.interscience.wiley.com). DOI 10.1002/mop.10563

Key words: pseudospectral technique; method of lines; microstrip line;
hybrid mode

INTRODUCTION

The method of lines (MOLs) was developed by mathematicians in
order to solve partial differential equations. The MOLs has certain
similarities with the mode-matching technique and with the finite
difference method. It differs from the latter in the fact that for a
given system of partial differential equations, all but one of the
independent variables are discretized, thereby transforming the
original set of partial differential equations into a set of coupled
ordinary equations (ODEs). This set of equations can be solved
analytically in most cases of interest. Consequently, the computa-
tional burden, including CPU time and memory storage require-
ments, is considerably reduced in comparison with classical finite
difference (FD) schemes. Therefore, this semi-analytical proce-
dure saves a lot of computing time and thus finds a wide applica-
tion [1-8]. However, this method increases the solution accuracy
by removing the mesh dependence in the mesh line direction, the
discrete error still exists in the other directions. Unfortunately, this

error becomes main factor to determine the solution accuracy in
method of lines. Hence the measurement is thus urgent to be taken
to delete this bottleneck.

Pseudospectral methods, which can be seen as high-accuracy
limits of FD methods with special non-equally-spaced grid distri-
butions, provide a useful alternative to classic finite difference and
finite element methods for the approximate solution of differential
equations. Finite elements may sacrifice computational efficiency
in exchange for great versatility at general boundaries. On the
other extreme, spectral methods are often most effective in cases
where the phenomenon under study occurs in the largely regular
domains. Between them, pseudospectral methods are fortunately
appropriate in a vast regime and can be adapted to most geometry
arising in applications although less flexible than finite elements.
Even when they employ high orders of approximation, the imple-
mentations for it still tend to be comparatively straightforward.
Theoretical studies and numerical experience have confirmed that
for problems with smooth solutions, pseudospectral methods con-
verge much faster than classic finite difference or finite element
methods [6—8]. In fact, pseudospectral method approximates func-
tions and their derivatives by global arguments and with very
smooth basis functions:

N

u(x) = 2, ayd(x)

k=0

where the ¢,(x) are, for example, Chebeyshev polynomials or
trigonometric functions. This approach has notable strengths as
follows: 1. For the analytic functions, the approximating error
typically decay (as N increases) at exponential rather than at (much
slower) polynomial rates. 2. The method is virtually free of both
dissipative and dispersive errors. 3. The approach is surprisingly
powerful for many cases in which both solutions and variable
coefficients are non-smooth or even discontinuous. 4. Especially in
several space dimensions, the relatively coarse grids that suffice
for most accuracy requirements allow very time- and memory-
efficient calculations. But for irregular domains and certain bound-
ary conditions, it still has some difficulties and inefficiencies [9].
In this paper, pseudospectral method is introduced as a tool in the
process of discretization in method of lines. Unlike conventional
FD method, which approximates derivatives of a function with
local arguments such as du(x)/dx = [u(x + h) — u(x — h)]/2h
and is typically designed to be exact for polynomials of low order,
pseudospectral method is global, high order polynomial approxi-
mation. Therefore, the solution accuracy for pseudospectral-based
method of lines is highly improved [6—8]. Because only one
dimension needs discretization for two-dimensional boundary val-
ues, the difficulties for pseudospectral method to treat irregular
domain can also be partly avoided if it is combined with method of
lines. The static problem and the eigenvalues of hollow metallic
waveguide are ever analyzed [6—7] and the pseudospectral MoLs
exhibits the excellent convergence speed. In this paper, it is ex-
ploited for the hybrid mode analysis of microstrip lines and our
results demonstrate that the pseudospectral MoLs has much faster
convergence speed than the conventional MoLs.

THEORETICAL ANALYSIS

For convenience, the method is demonstrated on the shieclded
microstrip line, as shown in Figure 1. Because of symmetry, only
the half cross section is considered and the electromagnetic field
can be described by two scalar potentials I1¢ and I1”, which have
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Figure 1 Cross section of a shielded microstrip line

to satisfy Helmholtz’ equation and the corresponding boundary
condition

a2He,h aZH(),h
W + Tyz + (kZ _ BZ)HEJ1 =0 (])
all® —0 IFl_=o0 all° — o
dx x=0 - |"‘:” - (")y y=0,b -
o11" o 2)
Hh|x:0 =0 ox =0 Hh|y:0,1; =0

x=a

For the given N distinct nodes 0 = x; < x, < -+ < xpy_; <
X, = a in the segment [0, a] and the global method of differential
quadrature, based on the high-order polynomial approximation, is
first introduced. Following the idea of integral quadrature, it is
assumed that any derivative at a grid point is approximated by a
linear summation of all the functional values in the whole com-
putational domain. For example, the first derivatives of f(x) at a
point x; are approximated by

N
fix) =2 byflx) fori=1,2,...,N 3)

J=1

where N is the number of grid points, and b,; are the weighting
coefficients. To determine the weighting coefficients b,
pseudospectral method assume that f(x) is approximated by a

high-order polynomial,

N

flx) =2 e 4)

k=1

Then, under the analysis of a linear polynomial vector space, the
following explicit formulation is used to compute b,;:

__ M) forj#i 5
T (x— x) MY (x)) o 2)

N
by=— > by (5b)

j=1j#i

where
N

MO(x) = [ (x,—x) ©6)

J=1j#k

In the above discussion, the sample points are arbitrary distri-
bution in interval [0, a]. In the pseudospectral method, each
dependent variable in the differential problem is approximated by

a polynomial of finite degree. The discrete approximating equa-
tions are then obtained by setting residuals to zero at an appropri-
ate set of collocation points in the solution domain. The proper
choice of collocation points is crucial in terms of accuracy, stabil-
ity, and ease of implementation of boundary conditions. Usually,
the equispaced node distribution is adopted but the large deviation
is observed near the two endpoints. The easiest way to offset these
errors is to concentrate the nodes toward the ends of the interval.
It is well known that the Chebyshev distribution has smallest error
and minimum node spacing, which decreases as O(1/N?). The
Chebyshev-distribution characteristic of minimum node spacing
enhances the ability to treat the irregular domain for discrete
technique of pseudospectral method. For a given problem the pair
of boundary conditions is either Dirichlet-Neumann, or Neumann—
Dirichlet. The difference matrix with the DN lateral boundary
condition is denoted by [a,,] and can be obtained as follows:

b .
N+1,j+1
DN _ _
a; = bi+l.j+l biiinii b
N+1LN+1

L]

i=1,2,...,N—-1,j=1,2,...,N—1 (1)
and the [a,,] is as follows:
bl,‘l
a?’/@ = bi+1.j+1 — b1y b]j:
i=1,2,...,N—-1,j=1,2,...,N—1 (8

For the first derivative of I1¢ with respect to the x-direction, one
obtains:

dI1¢ _

E = [aND]He ©)

where T1¢ denotes the discretized I1¢. Since I1¢ and I1” have dual
boundary conditions, the finite difference expression for the first
derivative of I1” becomes

U

dll -
“dx = [apyJII" (10)

Combining Eqgs. (9) and (10), one obtains for the second-order
derivatives

e daite _

e = [apy] dx = [apy][ayp]11¢ (11)
d21=[h dﬁh .

e = [anp] “dx = [aypl[apy]I1" (12)

For a homogeneous layer, the second order pseudospectral differ-
ence operators D are the products of two different first order
operators and their eigenvalues —A?2, and the eigenvector matri-
ces T*" are defined as follows:

[DLIT"] = [anpllapy][T"] = —[T"](A7] 13)
[DLIT] = [apsllan][T°] = —[T][A7] 14

where [7°"] are eigenvector matrices of the second-order
pseudospectral difference matrices. Although D¢/ are not sym-
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metric, for these real matrices there exist the real matrices [7¢"]
such that

[T '[DYNT"] = —diag[d,,] (152)
[T"]'[DX][T] = diagld.]
[T]7'[D*][T"] = —diagld..] (15b)

where [T"] is directly solved from Eq. (13) and the [T*] is derived
as follows [10]:

(7] = [ap][T"1[A; ]
A transformed potential vector U is now introduced,
0(’,]1 — [Te,h]*lﬁe,h’ (16)

so that one can write a system of N ordinary differential equations,
which are now uncoupled:

dZ Ue,h

n

dy*

+ (k2 - Bz - d/%.\fll

YW<"=0 n=1,2,...,N (17

The general solution to the above equation may be written as
follows:

o~ | Ancos(yny),  y€I[0,9)
Uily) = {B‘; cos[y.,(b —y)] y E (1, b]

— Aﬁ Sin('}’m)’)y y S [0, t)
Uiy) = {B’; sin[y,,(b — y)] y € (1, b] (18)

where

— 2 2 2 ) 2 2
Yin = \e/srkO - B - d.xxn Yon \s/k() - B - dx,m

Matching the tangential fields in the interfaces can obtain the
following equations [11]:
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Figure 2 Normalized guide wavelength versus frequency
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Figure 3 Convergence curves of the normalized guide wavelength for
the shielded microstrip line

Since the final boundary condition cannot be applied in the
transformed domain, the above equation has to be transformed
back to the original domain. For this case, the metallic strip makes
up the smaller part of the interface, so that the reverse transfor-
mation is performed only for the number of lines that pass through
the strip. The following equation results:

le ZlZ Jx'n _ Exn =0 20
Zy ZpllJa) TLEL T <0
The impedance matrix is now a full matrix and it will have

nontrivial solutions for the propagation constants of the structure
only, which are found from the determinant equation

det[Z(B)] =0 21D

NUMERICAL RESULTS AND DISCUSSION

As shown in Figure 1, a shielded microstrip line is analyzed with
pseudospectral method of lines. The parameters of the structure is
as follows: b — ¢t = 12.7 mm; ¢t = 1.27 mm; 2a = 12.7 mm;
2w = 1.27 mm. As given in Figure 2, the normalized guide
wavelength is calculated by the pseudospectral MoLs. A compar-
ison is made between the results of the pseudospectral MoLs,
conventional MoLs and those from the spectral domain approach
[12]. It can be observed that there is a good agreement between
them for the normalized guide wavelength. The convergence
curves are also plotted in Figure 3 for the normalized guide
wavelength of the shielded microstrip line. It can be founded that
the pseudospectral MoLs has much faster convergence speed than
the conventional MoLs. The new developed pseudospectral MOL
adopts high-order interpolation polynomial to approximate the
derivatives in controlling equation. As a result, it can approximate
the smooth field inside of the domain of interest so that the solution
not only is analytical along line direction but also maintains high
accuracy in discrete direction. Although the second-order differ-
ential matrix for the pseudospectral MoLs is not sparse like that in
conventional second-order MoLs, the eigenvalues, eigenvectors
and transformation matrix can be numerically solved by matured
algorithm and the computation cost is little because of fewer lines
needed in the numerical simulation. This method is being extended
to analyze three dimension harmonic electromagnetic field bound-
ary value problems.

CONCLUSIONS

In this paper, the novel pseudospectral MoLs is introduced to
solve time-harmonic electromagnetic problem and its basic
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concept and theory is described in detail through the hybrid
mode analysis of microstrip lines. Some numerical results are
given to demonstrate the efficiency and accuracy of this
method. It can be seen that the pseudospectral MoLs has a fast
convergence speed, because it can achieve high accuracy in
both analytical and discretized direction.
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ABSTRACT: We have used the 4 X 4 Luttinger—Kohn Hamiltonian to
analyse the presence of delta-strain in quantum well on the polarization
properties of semiconductor optical amplifiers. The analysis is per-
formed for a 1.55 um InGaAsP/InP lattice matched system grown in the
[001] direction with and without the electrostatic effects of the carrier

charges. The importance of electrostatic effects is indicated. © 2002
Wiley Periodicals, Inc. Microwave Opt Technol Lett 35: 227-230, 2002;
Published online in Wiley InterScience (www.interscience.wiley.com).
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INTRODUCTION

In many applications of semiconductor optical amplifiers (SOA)
polarization independence is required. The subject has been anal-
ysed by several groups [1, 2, 3, 4, 5, 6]. To achieve polarization
insensitivity, different approaches have been proposed using com-
binations of tensile and/or compressive strain in well and/or bar-
rier. It has also been shown that polarization-insensitive optical
gain over a wide bandwidth can be realized in a coupled quantum
wells [7].

Recently, a new method of achieving polarization insensitivity
in MQW modulators was analysed [8], based on introducing a thin
layer inside quantum well. An application of this idea to SOA has
been published in [9].

In the present work we analyse, for the first time, combined
effects of light and heavy hole-band mixing and electrostatic
effects on optical modal gain in delta-strained quantum wells. In
this analysis, the band-mixing effects are incorporated in the
Luttinger—Kohn (LK) effective mass equation [10, 11, 12]. We use
a parabolic model for the conduction band electrons and valence
band holes in order to model electrostatic effects. For the gain
calculations, we will use the LK model instead of the parabolic
model for the valence band.

GAIN CALCULATIONS
The eigenfunctions for the parabolic band model are [13]:

ik-x

Wa(k, r) = Fo(2) % 1, (1) 1

where Kk, x, and S are, respectively, the momentum, position, and
area in the plane perpendicular to the wells, r = (x, z). The
symbol « denotes the conduction (c), heavy-hole (HH), and light-
hole (LH) bands. u_(r) are the Bloch functions for the various
bands and F,(z) are the normalized envelope functions in its nth
subband which are the solutions of

1d 1 d o _ papa
[Ed? [m] gy Va(z)}F,,(z) —ERG O

V,(z) and m*(z) are the position dependent conduction band
offset and electron effective mass. We assume in Eq. (2) and
thereafter that the system of units is # = 1. E¢ is the subband edge
energy. For uncoupled subbands, the energy dispersion is para-
bolic, so that F;(z) has no k dependence.

For LK model of the valence band, the wavefunctions are

vk = S Fk Y 3
2K, T) = . K, Z \/E ( )

where F(k, z) are the eigenfunctions
[[H*] + [VI]F,(k, 2) = E}(k) F,(k, z) )
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