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A Frequency Dependent Solution for Microstrip

Transmission Lines

EDGAR J. DENLINGER, MEMBER, IEEE

Abstract—Theoretical and experimental results of “open” micro-

strip propagation on both a pure dielectric and a demagnetized f errite

substrate are presented. The theory enables one to obtain the fre-

quency dependence of phase velocity and characteristic impedance,
and also to obtain the electromagnetic field quantities around the
microstrip line. It utilizes a Fourier transform method in which the

hybrid-mode solutions for a “fictitious” surface current at the sub-
strate-air interface are summed in such a way as to represent the

fields caused by a current distribution that is finite only over the

region occupied by the conducting strip and is assumed equal to that
for the quasi-static case.

1. INTRODUCTION

I CROSTRI P is a very attractive transmission

M
line for microwave integrated-circuit applica-

tions involving a large number of identical

units and requiring a high density of packaging. The

numerical solutions obtained thus far for the phase

velocity and characteristic impedance of microstrip

have been either quasi-static approximations, which

assume a TEM mode of propagation [1 ]– [6 ], or analy-

ses of a dielectric-loaded waveguide with a microstrip

line, which assume a hybrid mode that is decomposed

into LSE and LSM space harmonics [7 ]– [9]. The object

of this paper is to present an approximate hybrid-mode

solution that gives the frequency dependence of an

open microstrip line deposited on either a dielectric or

a demagnetized ferrite substrate.

Fig. 1 shows the physical construction of the micro-

strip line which is assumed to be completely lossless.

The substrate is characterized by the relative dielectric

constant K and the relative permeability M,. For the

cases of a ceramic substrate and a demagnetized ferrite

substrate, these two parameters are taken as isotropic

scalar quantities. As will be shown later on, p. is a func-

tion of the frequency and the saturation magnetization

of the ferrite. In this analysis the strip is assumed to

have a negligibly small thickness.

The formulation of an exact theory for the micro-

strip structure is difficult because the cross section is

not homogeneous. Furthermore, microstrip is an open

structure where the energy is not confined to a finite

region. Without the dielectric it would be a Lecher-type

structure that could support a TEM mode. However,

the presence of the dielectric allows the wave to be

TEM only at zero frequency. For a simple grounded
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K relative dielectric constant of substrate
p, relative permeability of substrate
d substrate thickness
w strip width.

Fig. 1. Microstrip configuration.

dielectric slab configuration subject to a physical field

due to some arbitrary source, the complete solution

consists of a discrete number of surface waves, a con-

tinuous spectrum of evanescent waves, and a continuous

eigenvalue field, i.e., radiation field [10 ]. Leaky modes

which correspond to a flow of power away from the

surface do not satisfy the radiation conditions at in-

finity and thus do not belong to the proper eigenvalue

spectrum [11 ]. Goubau shows that for the case of open

waveguide structures, the radiation fields and the sur-

face-wave fields are mathematically separable by

orthogonality relations [12]. Therefore, the following

theory for microstrip takes into account only the sur-

face-wave fields. Due to boundary conditions involving

transverse inhomogeneity in the dielectric and the

presence of the strip, no pure TE or TM modes may

exist: Thus, a hybrid-mode solution that can be ex-

pressed in terms of a complete set of simpler solutions

having a z dependence of e-jkZ is sought. The proof of

mode orthogonality for surface waveguides, as presented

by Collin [11], enables a given arbitrary field to be ex-

panded into a series of TE and TM modes. A linear

combination- of these modes is allowed for the case

where the substrate’s permeability and dielectric con-

stant are both scalar quantities. The following gives the

derivation of a hybrid mode of propagation.

II. DERIVATION OF ELECTROMAGNETIC

FIELD EXPRESSIONS

Two different analyses are presented here: one takes

into account the presence of both a longitudinal and a

transverse component of current on the strip and is,

therefore, very lengthy; the other, which assumes the

transverse current to be negligible, is more practical.
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TABLE I

CURRENT DISTRIBUTION llATA-COMPARISON OF GREEN’S FUNCTION
SOLUTION WITH THAT USING MAXWELL’S FUNCTION

——
I(m): K=l; w/d=O.5 I(m): A-=15; w/d=O.5

——

Maxwell’s Green’s Maxwell’s Green’s
m Function Function Function Function

ufim~uwmn. rmx.puw I unrniumm. WLU I NAY rum Lvubnuw m. JAWS

A. Analysis for Both Longitudinal

and Transve~se Currents

The method of solution is to construct series of func-

tions, each of which independently satisfies the wave

equation for a TE mode or a TM mode and also satisfies

boundary conditions on the ground plane and at infinity.

Appropriate sets of functions are obtained by taking a

Fourier transform of the fields along the x axis, which is

oriented as shown by Fig. 1. The remaining boundary

conditions on the strip and along the substrate-air

interface are satisfied by the use of a linear combination

of the TE- and TM-mode fields. A solution for the

Fourier components of field is first obtained for a

grounded dielectric (or ferrite) slab which does not

possess a current-carrying strip. Instead, it has a

“fictitious” surface current whose amplitude varies

sinusoidally in the x direction along the substrate-air

interface and has vector components both in the x and

the z directions. The hybrid-mode fields that are caused

by the actual current distribution, which is nonzero

only over the region occupied by the strip, are found by

taking a Fourier integral of the above sinusoidal com-

ponents and are forced to satisfy the requirement that

the tangential electric field vanish on the strip.

The Fourier transform method described above was

used by Schetzen [13] in 1954 to obtain the fields which

result from a uniform longitudinal current distribution

on the strip. His theoretical analysis of a microstrip

line on a pure dielectric substrate resulted in the invalid

conclusion that the phase velocity is constant with fre-

quency. From the Green’s function static solution of

Bryant and Weiss [3], it is clear that the current is not

constant across the strip width. In fact, its amplitude

increases very rapidly at the edges of the strip. In the

hybrid -mode analysis the complete solution would treat

the longitudinal and transverse current distributions as

unknowns along with the propagation constant. This

would result in a coupled pair of integral equations that

would be extremely difficult to solve. A first-order solu-

tion is obtained here which estimates the frequency-

dependent current distributions as being equal to that

obtained under quasi-TEM conditions [14]. As long as

the microstrip dimensions of strip width and substrate

thickness are a small fraction of a wavelength, this ap-

proximation is considered good.

Without the substrate the TEM mode’s longitudinal

current distribution is related to the distribution ‘of

charge u(x) (which is obtained from capacitance calcu-

lations [3] with the potential on the strip set to unity)

by the expression

I.(x) = vu(x), v = phase velocity.

This distribution remains the same for any nonmagnetic

dielectric substrate. It is somewhat different for a de-

magnetized ferrite because of the discontinuity in the

permeability at the substrate--air interface. For this

case use can be made of the dual relationships existing
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iVote: m is the number of elementary strip widths (Ax/d= 0.025)
from center of strip region (x= O).

for the electric and the magnetic fields of the micro-

strip [15 ]. The distribution of current can then be ob-

tained by combining the above-mentioned dual rela-

ticmships with the Green’s function method of Bryant

and Weiss. Because the permeability of a demagnetized

ferrite [see (31) ] is always close to one (1 >p, > 0.7)

over the frequency range for which losses are not ex-

cessive, the current distribution remains very close to

that obtained with K = 1, p, = 1. Therefore, in this paper,

the same longitudinal current distribution is used for

m icrostrip with both dielectric and demagnetized ferrite

substrates. A closed-form expression was sought that

would closely describe the numerical charge distribu-

tion data obtained by the quasi-static methods. The

following relationship was derived by Maxwell for the

charge density distribution on an isolated conducting

strip [6], [16 ] (see Appendix for derivation):

a(x)

Table I

Uo—— —~p < ~ < 74)/2
7rdl — (2x/w)2 ‘

= O otherwise. (1)

illustrates how well this relationship agrees

with the computed Green’s function data [3] for two

widely different substrate dielectric constants. It was

found that changing the w/d ratio between 0.2 and 1.2

only affected the amplitude aO without significantly

ch~anging the current’s functional dependence on x. In

the analysis to follow, use is made of the Fourier trans-

form of 1.(x). Therefore its amplitude 1,0 is not needed

in order to find the desired quantities of phase velocity

and characteristic impedance. The Fourier transform of

the current distribution is given by a zero-order Bessel

function as shown below:

Is(a) = + s.1.(x)e–~””dx
2rr -w

= IzJo(azv/2). (2)

It will be shown later that the use of this current func-

tion gives results that are in excellent agreement with



32 ISEE TRANSACTIONS ON MICROWAVE THFL)RY AND TECHNIQUES, JANUARY 1971

experimental results and with the TEM solutions at

zero frequency. However, the computations require ex-

cessive computer time. Another expression that was

used by Yamashita [6] was found to give sufficient ac-

curacy, and yet its Fourier transform allowed the com-

puter time to be reduced by a factor of 5 (from two

minutes to about twenty-four seconds per point):

I*(X) = 1.,(1 + I 2x/w] ‘), [xl 5w/2

= O otherwise. (3)

The Fourier transform of (3) is:

21,0 24

{

3[(cm)2 – 8]
I.(a) = — —

ml (clW)’ + (aw) 3
Cos (aw/2)

+ [(m)’ – 12]

(aW)’ }
sin (aw/2) . (4)

Fig. 2 shows a comparison between the current distribu-

tion given by the above function and that calculated by

the Green’s function method. The effect of the lower

1,(z) near the edge of the strip is to give a slightly lower

value (less than one percent) for the microstrip line’s

effective dielectric constant.

In order to estimate the transverse component of

current, the continuity equation is utilized to relate

this quantity to the charge density distribution u(x) on

the strip in the following manner (see Appendix):

(31.(X)
—. = – jco[.($) – c~a(x)l

dx

(5)

where u is the angular frequency and c is the scaling

factor relating the total charges on the strip with and

without the substrate. Substitution of the charge data

into the above equation results in a transverse current

distribution of the form shown in Fig. 3. The following

equations closely describe this current:

irx
IX(z) = l.O sin — IX! ~0.8:

0.7W” ‘

TX
= Izo COS — 0.8<lx15~. (6)

0.2W ‘

Taking the Fourier transform

gives

[

sin Gl(a)
l.(a) = 1.0

Gl(cr) –

of the above equation

sin GZ(a)

G,(a)

COS0.4G~(a) — COS 0.5 G3(CY)
+

G’(a)

COS 0.4 G4(a) — COS0.5 G1(a)
+ —.-

G4(cY) 1 (7)
where

“(a))G’(a)‘04(fiTaw)
G3(CY), G4(a) = aw T 57.

A I,(x)

2- - GREEN,’S
FUNCTION

I= Io[l+l~13]

_--&_ ~
x/o.5w

Fig. 2. Longitudinal current dktribution on microstrip.
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Fig. 3. Transverse current distribution on microstrip.

The electromagnetic field expressions to be derived

are exact for the case of a sinusoidal surface current dis-

tribution flowing along the substrate-air interface,

which does not possess a conducting strip. The solutions

for an infinite number of these fictitious sinusoidal com-

ponents are summed up in such a manner as to repre-

sent the fields caused by a current distribution that is

finite only over the strip width w and equal to the static

charge distribution. At this stage, the conducting strip

is simply represented by a surface current over a finite

region w. The introduction of the boundary condition

that the tangential electric field be zero at (y= d,

1$1 ~w/2) results from the strip being a perfect con-

ductor.

The fictitious surface current flowing at the substrate-

air interface generates a hybrid mode, which can be

represented as a linear combination of TM and TE

modes because these modes form a complete set in

terms of which an arbitrary field can be represented. For

a cylindrical structure of arbitrary cross section, the

TM and TE modes maybe derived from an electric-type

Hertzian potential R.= tiZiVybe(x, y)e~c” ‘–~’) and a mag-

netic Hertzian potential tih = uJV*~(x, y) ej[w ~–~z), respec-

tively [17 ]. ~ is an arbitrary constant that is dependent

upon the source strength, while the functions +. and

th both satisfy a two-dimensional scalar Helmholtz
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equation given below:

V~2#,,), + lJ2#,,h = O (8)

where

~2 = plz = (_#prKpoeo — k2~
y<d

= PZ2 = W2/.loCo – k2, y>d.

Regions 1 and 2 are the substrate and air regions, re-

spectively. The above potential functions can be written

in terms of their Fourier transform ~(a, y) with respect

tox:

s

.

+(% Y) = ; _“ *(a, y)ejazda = ~ s27r –*
4 da (9)

w

where

d = ~(a, y)e~”’.

Combining (8) and (9) results in the following differen-

tial equations:

Since the total energy of the wave must be finite and

the natural propagating modes for the grounded dielec-

tric slab configuration are surface modes [1 O], the fields

must decay exponentially with y in the air region (y> d).

Therefore, the transverse wavenumber can be defined by

~2 = (~z – p22)1/20 (11)

If radiation from the line is neglected, then 92 will al-

ways be a real positive number as long as k2 > U2LLOC0,

which is true for a slow wave. Radiation from the micro-

strip [18 ] becomes significant only when the line is in

the form of an open-circuited resonator or a disk cavity

resonator and has a large normalized substrate thick-

ness (d/Ao > 0.01) and/or a substrate of low dielectric

constant (K< 9). The field components in the two re-

gions (-i =1, 2) are obtained by means of the following

equations [11 ]:

pi2

Hzi = ~ #hi(x, y). (12)

The possible modes existing on the microstrip may be

subdivided into the ~Ii ~dd—$. ~.~n and the ~~ .dd—#h ~~~~

modes, the plane of even and odd symmetry being x = O.

The former corresponds to the fundamental mode for

33

which the symmetry plane is a magnetic wall. It is con-

sidered to be a small perturbation from the pure TEM

mode that would exist without the substrate and is of

greatest interest. A solution for the higher order modes,

namely the ~e odd–~~ e“,n modes, would proceed along

the same steps except that the magnetic wall in the

plane of symmetry is replaced by an electric wall. Since

these modes are believed to be insignificant unless the

microstrip dimensions are an appreciable fraction of a

wavelength, the computations in this paper have been

confined to the fundamental mode case.

The boundary conditions on the ground plane and at

infinity as well as the symmetry around the plane x = O

cause the fundamental mode’s potential functions to

have the form:

(f% = t.(a, y) Cos ax

#,(a, y) = .48 sin ply, y<d

= B, exp [–@,(y – d)], y>d

oh = #~(a, y) sin ax

+/’(% y) = Cs Cos Ply, y<d

= D, exp [–,8,(y – d)], y > d (13)

where

@l = (pla – @I/2. (14)

The coefficients A., B., C,, and D,, and thus all the

field expressions, can be determined from the following

boundary conditions at the interface between the sub-

strate (region 1) and the air (region 2):

&.1 = E.2 (15)

8.1 = 8.2 (16)

X,1 – w., = – I.(a) (17)

3CZ1 – 3(3,2 = I.(a). (18)

All the above field quantities are Fourier transforms

with respect to x of the real fields. The boundary condi-

tions lead to four simultaneous equations from which

the coefficients of the potentials can be obtained in

terms of the two components of current on the strip

and the unknown propagation constant k. The expres-

sions for the real field quantities can then be obtained by

the use of (9), (12), and (13).

B. Analysis for Only Longitudinal

Component of Current

As mentioned in the Appendix, the amplitude of the

transverse current component is proportional to the

normalized strip width w/A, which for most applica-

tions is very small. When this parameter is less than

0.1, the transverse current is at least an order of mag-

nitude smaller than the longitudinal current. Thus, a

good approximation to the exact microstrip solution is

to follow the same procedure as discussed in the previous

section but to make 1. equal to zero. As a result, each

of the coefficients of the potentials has only one term.

instead of two.
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II 1. DERIVATION OF INTEGRAL EQUATION

FOR THE PHASE VELOCITY

This section contains derivations of the integral

equations for obtaining the microstrip phase velocity.

The same two cases involving the current components

as were treated in Section 1 I are considered here.

A. Solution for Both Longitudinal

and Transverse Currents

In anticipation of a slow-wave type of solution for a

lcssless microstrip line, the axial propagation constant

ok) is taken to be a pure imaginary quantity and the

value of k is expected to be in the range ko <k <ko

~pTK, where k. =u<po~o. The quantity k along with

the phase velocity v are of the form

21r _
k=---~t

z = vo/~~ (19)

where

VO velocity of light in vacuo

AO free-space wavelength

t l-kff%ff

peff effective relative permeability of microstrip line

c,ff effective relative dielectric constant of microstrip

line.

~ is found by using the following boundary conditions

which result from the strip region being a perfect con-

ductor:

E,,(Z, d) = o, (20)

fwz,(x, d) o —w/2 < z < w/2.

dy=’
(21)

Now, the total fields EZZ and Hz, are given by the follow-

ing Fourier integral representations in terms of the coeffi-

cients B. and D,:

smP22
E.,(X, y) = ~ B, cos ax exp [–~,(y – d)]da (22)

—m

s*P22
Zzz,(x, y) = ~ D, sin ax exp [–~~(y – d)]da. (23)

—m

These expressions describe the longitudinal fields caused

by the actual current distribution, which is nonzero only

over the region occupied by the strip. Use of the rela-

tions for B. and D. and (20)–(23) results in a coupled

pair of integral equations involving the two current

components:

S“[1.” “ * 12:611–Flbal Iz(cz) sin at da
–m det P12

s-Mu–l.O — I.(a) sin CM da = O (24)
-K det

where x lies within the strip region I xl 5zv/2 and

b“=-b’’=o[(:)’-’lUP061P2 2
bl, = —

[()

_ ~, tan ~ld _ p

k PI P11C!dYeoplP2 2
bsl = —

[()

1 /32
~ cot~ld+— —

k K /?l1
WAJOP1 tan Dd

PI == —–- .
P,’

The phase constant k or the quantity $ can be found by

setting the determinant of the coefficients of the un-

known current amplitudes lZO and lSO to zero. Because

the integrands in the above equations are all quite

lengthy, it is quite apparent at this point that the com-

putation time for such a solution will be enormous. A

more practical solution is presented in the next section.

B. Solution for Only Longitudinal Current

As mentioned previously, the strip width is usually

very small compared to a wavelength so that for the

lowest order hybrid mode it suffices to neglect the trans-

verse current and to satisfy (20) and (21) only at the

center of the strip x = O instead of over the range

—w/2 5X sw/2. Thus, a single integral equation con-

taining the unknown quantity ~ can be obtained from

the coupled pair of integral equations (24) by setting

both IZo and x equal to zero and is given by:

S
. ~lZI,(y)

(

dy = O (25)
B2

0 (m’+; A(J’@, Q cot fl,d—’——

K~l )

where

Note that the lower integration limit can be made zero

since the integrand is an even function of ~. Also note

that the amplitude 1,0 of the current distribution func-

tion is not needed for the solution of ~; only the part

of the Fourier transform that is a function of y is util-

ized.
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As will be shown later, the alternate expression for

the current Fourier transform given by (4) gives better

than one-percent accuracy for .$ and, furthermore, re-

quires much less computer time. It is, in fact, the best

function to use for microstrip lines having a large w/d

ratio. This stems from the fact that the Maxwell current

distribution is strictly correct for an isolated conducting

strip, i.e., for the case where the ground plane is an in-

finite distance away from the strip. As the ground plane

is brought closer, the ratio w/d increases and the current

distribution approaches a more constant distribution

across the strip width [19 ].

IV. DETERMINATION OF THIZ

CHARACTERISTIC IMPEDANCE

For a hybrid mode an exact definition for character-

istic impedance does not exist. However, one definition

that is used for most other types of transmission lines

is given in terms of the power P flowing along the longi-

tudinal direction and of the total current 1 flowing

on the strip:

ZO = P/I’. (26)

An expression for power is obtained by integrating the

z component of the Poynting vector S = E X H* over

the cross section a’ of the microstrip configuration as

shown below [11 ]:

P = 1/2
Ss

(E X H*) .ti. dxdy. (27)
,,J

The total current is obtained simply by integrating the

current distribution 18(x) across the width of the strip:

slu/2

I= I.(*)dx. (28)
-.m/2

The fact that the microstrip line is an open structure

makes the computation of the above expression very

Iengthy. This computation is hardly justified at the

present time since the experimental microstrip imped-

ance determinations require an accuracy beyond the

limit of available measurement techniques. Therefore,

the following TEM-like expression for impedance in

terms of the dispersive parameters of phase velocity

and effective dielectric constant is probably adequate

over a frequency range in which the dispersion remains

only a few percent:

where

c=

co =

g=

20 \x=l =

1
ZO=Z=UZO]K=l

dt (29)

c~#O = capacitance/unit length

C for K=l, ~r=l
Vll

4X

1 characteristic impedance of air micro-
— = strip line.
Voclj
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The effective value of permeability p~ff and the normal-

ized propagation constant k/k O= ~~ are frequency-

dependent quantities obtained from the integral equa-

tion (25) while zOI ~=1 may be obtained from Wheeler’s

theory [1]. ‘

V. PRESENTATION AND DISCUSSION OF THEORETICAL

AND EXPERIMENTAL RESULTS

Using a digital computer to solve integral equation

(25) for the quantity $, it was only necessary to sum

over values of the integration variable 7 between O and

100 in order to acquire accuracy to within the fourth

decimal place because the integrand converged quite

rapidly. A half-interval search technique [20] was used

to find the root of the equation. It found the value of

& that makes the left-hand side of (25) less than 10-’.

A. Single Microstrip Line on a Dielectric Sabstrate

In order to establish the validity of the theory, it was

necessary to initially make a comparison with the quasi-

static solutions of Bryant and Weiss [3] by solving for

$ =e.ff at zero frequency. Longitudinal current solutions

were obtained using the Fourier transforms for both

current distributions given by (2) and (4), and the re-

sults were plotted as functions of K and w/d, as shown

by Figs. 4 and 5, respectively. The first curve, which was
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calculated for a w/d ratio of 0.4, showed that the use

of the Maxwell distribution for the current produces

results that agree almcst exactly (within 0.2 percent)

with Bryant and Weiss’s solution, whereas the current

distribution of (4) yields a solution which is about 0.6–

0.8 percent low. With K held constant, Fig. 5 shows

that the solution utilizing the Maxwell function agrees

best with the recent quasi-static solutions mentioned in

Section I for w/d values in the range O <w/d< 1.2,

while the current distribution function of (4) yields

better agreement for higher w/d values (w/d > 1.2). If

the least amount of computer time is desired, then the

use of the latter function, which is accurate to better

than one percent for all values of w/d and K, is recom-

mended.

The complete solution obtained from the coupled

pair of integral equations involving both components of

current required a large amount of computer time.

Several points were computed and the results were in

excellent agreement with the longitudinal current solu-

tion both at zero frequency and at a finite frequency.

It was concluded that the solution which neglects the
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Fig. 8. Theoretical and experimental curves of phase velocity ver-
sus frequency: K = 15.87; w/d= 0.543; d.= 0.1016 cm. Note: Per-
cent difference between experimental and theoretical curves is
u constant 0.3 percent for the least accurate current distribution.

transverse current is a very good approximation as long

as the normalized strip width w/A is less than about 0.1.

Returning to (25) and solving for $ = c.ff as a function

of frequency results in a dispersion curve, illustrated by

Fig. 6. Even though the extent of the theoretical plot

is beyond the frequency range over which the trans-

verse current can be neglected, the shape of the curve

checks with the results of Hartwig et al, [21]. The

effective dielectric constant asymptotically approaches

K at very high frequencies, indicating that all the energy

is being confined to the dielectric. Since the hybrid-

mode solution is a superposition of an infinite number of

surface waves, this result is expected. The phase velocity

v can now be obtained from (19); its frequency depend-

ence is shown in Fig. 7. It is interesting to note the

relative position of the divergence frequency f. for the

TE1 surface wave, which is given by the following equa-

tion:

‘Po
j,=

4d~K – 1 “
(30)

It appears to occur very close to the inflection point of

the phase velocity curve. In practice, use of microstrip

should be restricted to frequencies below f. in order to

avoid excitation of surface waves that will propagate

away from the strip.

An experimental check of the above frequency de-

pendence of velocity can easily be accomplished by the

use of a microstrip resonator which is in the form of a

ring [22 ] or a straight open-ended line. The former is

employed whenever end effects associated with the

straight-line resonator become significant. The results

of velocity measurements along with theoretical curves

are shown in Fig. 8 for a 50 CJ microstrip line deposited

by vacuum-deposition techniques onto a very com-

monly used magnesium titanate substrate.’ The dielec-

Material made by Trans-Tech, Inc., Gaithersburg, Md.
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Fig. 9. Characteristic impedance versus frequency
(same parameters as in Fig. 8).

tric constant of a sample of this material was accurately

measured by Courtney of M. I .T. Lincoln Laboratory,

using a precise TEO1 cavity technique [23]. Since the

substrate’s dielectric constant was large and its thick-

ness small, no significant fringing at the end of the

straight-line resonator would be expected [18]. How-

ever, as a check, two different lengths of line were used

in the measurement and the velocities compared. Negli-

gible difference was observed. In comparing the above

results with the theory, there is extremely good agree-

ment if the Maxwell current distribution is used in the

integral equation (25). The other distribution (4) pro-

duces an inaccuracy of only about 0.3 percent while

requiring one-fifth as much computer time as the

Maxwell function.

Using the values of effective dielectric constant versus

frequency obtained from the above calculations, (29)

was used to get the variation of characteristic imped-

ance with frequency. The theoretical curve is given in

Fig. 9 and shows a total impedance change of only three

percent at 8 GHz.

B. Single MicrostYip Line on a Demagnetized Ferrite

.%bstrate

For the demagnetized ferrite case, integral equation

(25) is again used to obtain ~ =p,ffem. The expression

for the ferrite’s scalar permeability, which must be sub-

stituted into the integral equation, is a function of the

material’s saturation magnetization 4TM. (in kilogauss)

and the frequency [24 ] j (in gigahertz):

(31)

where m, is known as the normalized saturation mag-

netization and is given by

{~

with the factor 2.8 being the gyromagnetic ratio in units

of GHz/kG. With the use of (19), a theoretical curve of

THEORETICAL

/ ‘m=3i8GHz

[ I I I I I
4,0 5,0 6.0 70 8.0

FREQUENCY (GHz)

Fig. 10. Demagnetized ferrite microstrip phase velocity versus
frequency: K= 15.5; w/d= O.431; d= O.074 cm; 47rM. = 1.210 kG.
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Fig. 11. Demagnetized ferrite microstrip effective permeability
versus normalized saturation magnetization (same parameters as
in Fig. 10).

.

ferrite microstrip phase velocity versus frequency can

be obtained with 47rM,, K, w/d, and d as parameters.

Fig. 10 shows such a curve for a microstrip on a Trans-

Tech G-1OO1 garnet substrate. As the permeability of

the material decreases rapidly near the natural resonant

frequency f~ = 2.8 (477M,), the phase velocity increases

at a fast rate. Experimental measurements obtained

with a ring resonator given in the same figure show good

agreement with the theoretical results.

A normalized curve that is useful for all ferrite sub-

strates with the same geometrical parameters and di-

electric constant is that of effective permeability ~eff

versus normalized saturation magnetization m.. Such a

curve can be derived by using the quantity ~ calculated

above as well as an e.ff that is a solution of the integral

equation for a pure dielectric substrate having the same

values of K, w/d, and d as the ferrite. Then pa will be

simdv given by

(32)

Fig. 11 shows the results of this calculation along with

experimental values. It has been experimentally verified
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by the author at M.1 .T. Lincoln Laboratory that micro-

strip lines with frequently used ferrite materials having

saturation magnetizations between 400 G and 1400 G

obey this same ~eff versus m. curve.

VI. CONCLUSION

A frequency-dependent solution has been presented

for microstrip on both a dielectric and a demagnetized

ferrite substrate. It utilizes a Fourier transform method

that sums up the solutions for a fictitious surface current

distribution in order to obtain the fields that are caused

by the actual current distribution that is finite only

over the region occupied by the conducting strip. Due

to the fact that the transverse current is expected to be

much smaller in amplitude than the longitudinal current

for normal operating frequencies and strip widths, a

solution involving only the longitudinal current was

found to be sufficiently accurate. This has been demon-

strated by the excellent agreement obtained between

theoretical and experimental values of phase velocity

over a wide frequency range.

Two interesting theoretical results obtained from the

study of frequency-dependent behavior of microstrip

lines are 1) the dispersion curve has an inflection point

which is a function of the substrate’s thickness d, dielec-

tric constant K, and velocity of light ZJOaccording to the

equation j.= vO/(4dtiK — 1); and 2) at very high fre-

quencies the effective dielectric constant asymptotically

approaches the substrate’s dielectric constant K and the

phase velocity approaches vo/4~, which indicates an

increasing part of the energy is being confined to the

dielectric. However, the coupling to surface waves and

the increasing importance of radiation near and above

~, prevent accurate experimental verification of theoreti-

cal results. For these high frequencies the most accurate

analysis should include the contribution of the trans-

verse current and the higher order modes.

APPENDIX

MICROSTRIP CURRENT DISTRIBUTION

This appendix gives a derivation of the expressions

(1) and (6) for the longitudinal and transverse compo-

nents of current, respectively.

A. Longitudinal Current

An expression for the charge density distribution on

an isolated conducting strip was derived by Maxwell

[16]. For the dynamic case, it applies to the TEM solu-

tion for the longitudinal surface current distribution on

a microstrip line as long as the ground plane is spaced

far enough away from the strip. As shown in Section V,

this restriction corresponds to keeping the zv/d values

less than about 1.2. Because the circuit dimensions are

very small compared to a wavelength, we assume this

treatment to be quasi-static in nature and thus the

hybrid-mode current distribution is taken to be the

same as that for a pure TEM mode. This assumption is

borne out by the extremely good agreement between

theoretical and experimental results. Since this good

agreement extends up to very high frequencies (at least

8 GHz), the skin effect, which would draw the current

distribution even further to the edges of the strip with

increasing frequency [25 ], must be a second-order effect.

The Maxwell distribution approaches infinity at the

strip’s edge anyway, so that the form of the distribution

remains consistent with the skin effect.

Maxwell considered an isolated conducting strip on

which a charge of 1 C/m was placed. He used a con-

formal transformation to find how this charge distrib-

utes itself across the strip. The following function for the

surface charge density u(x) results:

1
a(z) = ——===== , –l<x <l. (33)

zr<l — X2

If the strip width is w instead of 2 and the total charge

on the strip is UO instead of 1, then the surface charge

distribution becomes

Uo
o(x) = — — —w/’2 < x < w/’2. (34)

zr<l — (2x,/w)~ ‘

The approximate expression for the longitudinal current

is 1,(x) ~vu(x), where v is the phase vel,ocity.

B. Transverse Current

The transverse current distribution can be obtained

by using the continuity equation

(35)

In the quasi-TEM-mode approximation, the following

expression relates the longitudinal current to the charge

density distribution u.(x) without the substrate, which

has been scaled up in the ratio of the total charges [14]

u~ di~lecti~ic, ul’ ~ir:

Thus, (35) becomes

C?I.

d% =
– jw(x) + jhcua(x)

. – ja [a(x) – cu.(x)]. (37)

For the microstrip’s lowest order mode, 12(x) is zero at

the center of the strip and has odd symmetry about this

point. Therefore, the expression for Iz(x) is the follow-

ing:

l.(x) = – ja (sgn x) s‘[a(x) – Ca.(x)]dx,
o

sgnz=—1, *<O

=+1, X>o.
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Upon substituting charge distribution data from Bryant

and Weiss’s solution [3], it was found that the form of

the distribution can be described by (6), and its magni-

tude is proportional to the normalized strip width w/L

For values of w/A< 0.1, the average transverse current

amplitude across one-half the strip width is less than

ten percent of the average longitudinal current ampli-

tude.
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