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5’ummary-A transmission line is made of a symmetrical pair of

strip conductors, face-to-face, or a single strip parallel to a ground

plane. The strip width is nominally greater than the separation, but

may be somewhat less than the separation.

The field configuration is evaluated by a conformsf mapping pro-

cedure which gives a very close approximation in terms of ordinary

functions (exponential and hyperbolic) rather than the exact solution

in terms of difficult functions (elliptic). Computation procedures are

given for synthesis or analysis, the former following more naturally

from the derivation. For the transitional case of strip width equal to

separation, the mapping approximation is found to leave a relative

error of the order of 10–8, in the wave resistance or shape ratio.

Simple, explicit, practical formulas are developed for practical use

with slide-rule accuracy. Emphasis is placed on establishing and

specifying the residual error of each formula.

1. INTRODUCTION

I

N THE DECADE of 1945 to 1955, there was much

interest in the subject of electromagnetic wave

transmission lines formed of strips of sheet con-

ductor in various configurations. This culminated in a

special issue of these TRANSACTIONS in March, 1955.

A substantial part of the effort was devoted to the

mathematical computation of the properties of strip

lines. Because this was a problem in two-dimensional

electric and magnetic fields, it was natural to apply

the principles of orthogonal transformations on the

plane of the complex variable, a familiar technique

known as conformal mapping The resulting formulas

were usually so complicated that any practical utility

resulted from simplified approximations for limited

ranges of the variables.

One of the simplest and most useful configurations

was most resistant to solution in useful form. This is

the symmetrical case of parallel flat strips, face-to-face,

or the corresponding asymmetrical case of one flat-strip

parallel to a ground plane. The exact solution has been

expressed in implicit form in terms of elliptic functions,

[2]- [4], [6], [13]. The most interesting range, in which

the strip width is comparable to the separation, has

been most resistant to simple derivation in a form con-

venient for computation and established within some

limits of error.

In 1954, the author perceived a procedure for approxi-

mate conformal mapping which gave the essential rela-
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tions in simple forms in terms of “slide-rule” functions

(exponential and hyperbolic) [9], [12 ]. Moreover, the

limits of error were clearly established and the closeness

of approximation was remarkable. This approach was

based on the approximations for “wide” strips, that is,

strip width exceeding the separation, but it provided a

close approximation for moderately narrow strips. Its

range of validity overlapped that of simple formulas

based on approximations for “narrow” strips.

The objective of this paper is the presentation of this

development in conformal mapping. It is intended to

serve a variety of purposes, as follows:

1)

2)

3)

In

To enable the reliable computation of this case,

in terms of “slide-rule” functions, close enough

for the most exacting requirements of mathemati-

cal scrutiny.

To yield simple approximate formulas for practical

computations to “slide-rule” accuracy, and for

showing clearly the principal effects of the vari-

ables.

To present a method of simple approximation in

conformal mapping, applicable to various con6g-

urations of ‘(wide” strip conductors, and suscepti-

ble of determination within close limits of error.

The ‘method is a departure from the straightfor-

ward exact procedure.

the formulation of transmission-line properties, it

is required to express a relation between its electrical

and structural properties. The most significant electri-

cal property is its wave resistance. The most significant

structural property is its shape ratio (strip-width over

separation). The conductors are assumed to be very

thin sheets of perfectly conductive material. The space

is assumed to be filled with a dielectric wave medium

free of dissipation.

The classical approach to the formulation of trans-

mission-line properties has been that of analysis. By

this is meant the evaluation of electrical properties

explicitly in terms of structural dimensions. This is

basically an academic approach, as distinguished from

the engineering approach which requires the design of

a structure to satisfy certain electrical requirements.

The latter approach is that of synthesis, which has

been on the ascendancy over the past few decades. This
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contrast is particularly interesting in the present topic,

because the formulas for synthesis come more naturally.

They are found to be more susceptible to simplification

and close approximation. This is another example of a

principle the writer has applied previously in the study

of other configurations of transmission lines [.s ], [8].

There is particular interest in the same configuration

of conductors applied to the opposite faces of a dielectric

sheet. A simple solution to this problem of mixed di-

electric appears not to have been published, and it would

be helpful in the practical design of printed lines. The

present derivation is intended, incidentally, to provide

the background for a solution of this problem to be

presented subsequently.

The present application of conformal mapping will

first be described with reference to the three significant

planes to be involved in the orthogonal transformations.

Then the mapping gradients will be specified and the

essential mathematical relations derived from them.

From these will be derived some incidental relations

and useful approximations. Finally there will be given

some procedures for computation, ranging from the

complete application of the mapping approximation

down to some simple practical formulas. These will be

organized for either synthesis or analysis. Some of the

numerical results will be given in tabular and graphical

form. The mathematical symbols, which are introduced

in the text, are listed at the end of the paper in Section

XII for convenient reference.

II. CONFORM~L MAPPING

The principles of conformal mapping are applied here

to give a close approximation in simple form, rather

than an exact representation in terms of elliptic func-

tions.

Fig. 1 shows the cross section of a transmission line

formed of a symmetrical pair of parallel strips. Each

strip is assumed to be a perfect conductor of zero thick-

ness. The essential dimensions are the strip width (2a)

and separation (26). The shape ratio (a/b or b/a) is the

significant parameter. The balanced pair has a certain

wave resistance (R). The capacitance between the pair

of strips is the classic case of a parallel-plate capacitor

with an edge effect associated with the “fringing field. ”

The same solution is applicable to the case of a single

strip spaced from a parallel ground plane by the half

separation (b) giving half the wave resistance (*R).

Here the wave resistance of the line is to be expressed

relative to the wave resistance (RJ of the dielectric

medium (377 ohms in free space or air).

Fig. 2 shows the space coordinates of one quadrant

of the cross section of the balanced pair of strips. The

wave resistance of this quadrant is the same as that of

the pair (R). The quadrant includes the half width (a)

and the half separation (b) on one quadrant of the z

plane (x +jy = z). The critical points for mapping are

designated by numbers (1 to 8). The heavy solid lines

represent electric equipotential boundaries (conductors)

and the heavy dashed lines represent flux-bisection

boundaries. The light dashed line shows the flux line off

the edge of the strip (3, 7).

While the emphasis here is on “wide” strips (a/b> 1),

the strips are shown rather narrow (a/b about ~) so that

some regions of mapping remain large enough to dia-

gram roughly to scale. This shape is roughly the limit of

close approximation in the present derivations for

“wide” strips.

At the left of the quadrant of interest, the conductor

lines are extended from (4) to (5” at cc= -- cc) to (6).

This region will be excluded in the mapping operation,

The half separation is made equal to a half circle of

angle (b= ~) to correspond with the associated reversal

of direction along the conductor boundary (jy =j~

=ln–1).

Fig. 3 shows the coordinates on which the conductor

boundaries are mapped on a straight line. This is the w

plane (u +jzI = w). The mapping is such that changes in

direction are limited to reversals, so the mapping gradi-

ents are rational fractions. The flux-bisection boundaries

(y axis) are not colinear, but join the potential bounda-

ries at right angles, as in Fig. 1.

The excluded area appears inside of a region, (5),

which is approximately a semicircle. Thi!s is the focal

region, which includes a group of quantities which will

assume particular significance. Therefore this region is

shown enlarged in Fig. 4, to emphasize the small dif-

ferences of these quantities, as will appear in the mathe-

matical presentation. This region on the w plane

corresponds to the left quadrant on the z plane, which

is to be excluded in the mapping operation.

If the four quadrants of the w plane are completed by

imaging, the excluded regions have nearly the same

shape as the cross section of a pair of round wires. This

is the idea behind the approximations to be relied on,

In this case, however, the flux and potential contours

are interchanged, so the w plane is related by duality

to the pair of round wires.

Fig. 5 shows the flux-potential coordinates on which

the actual boundaries are to be mapped. They are to

match the coordinate lines exactly on three of the four

sides and approximately on the fourth sidle. This is the

z’ plane (x’ +jy’ = z’) of flux (x’) and pDtentiaI (y’).

The half separation is the same as on the z plane (b= T)

so that the width is directly comparable with the strip

half width. The extra width is a measure of the edge

effect. The width is divided in proportion to the flux

ratio on the outer and inner faces of the strip, as indi-

cated.

On the fourth side (4 to 6), the departure from a

straight line is exaggerated. The first approximation

will be based on the ends of this side. The second ap-

proximation will be based on the perpendicular straight
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line which includes nearly the same area as the actual

boundary, mapped on this plane. The principal curva-

ture of this boundary is associated with the second-

order space harmonic as will be implicit in some of the

exponential series to be given.

One function of the flux-potential plane is to provide

a simple rectangular grid of contours from which the

wave resistance of the line becomes apparent. The as-

pect ratio of the rectangle on the z’ plane is nominally

g/~, in terms of the effective half width (g). After mak-

ing the correction for the curvature of one side, the

aspect ratio is slightly increased to g’/~. The wave

resistance in the quadrant, which is equal to that of the

balanced line (Fig. 1), is therefore

R = R.~/g’ ; g’ = TRJR. (1)

(All symbols are listed in a later section.) The cor-

responding values of inductance (L) and capacitance

(C) are related to the length (1) as well as the properties

of the dielectric wave medium (~, e).

L = @r/g’; g’ = TIP/L

c = Elg’/7r ; g’ = 7rc/el.

The marginal condition for “wide” strips (a/b = I)

corresponds roughly to R = ~R,. Therefore, the case of

g’= 27r is to be taken as representative of this condition.

It happens that the present approximation is useful for

even narrower strips (say a/b = ~ as diagramed in

Fig. 2), corresponding roughly to R = R.. Therefore the

case of g’ = m is to be taken as the extreme condition of

narrowest strips for the present study. It will be found

that the mapping approximation is still very close at

this extreme.

Having introduced the three coordinate planes and

the ideas of their relationship, the mapping will be

developed.
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III. ESSENTIAL RELATIONS

In the conformal mapping, the first step is to specify

the mapping gradient between the z plane and w plane

of Figs. 2 and 3. There are two reversals in each quad-

rant on the z plane, and these are symmetrical about

the center on the w plane.

8Z (W+ C)(W– C) w’–c’=, l+dz–cz ~2)

ilw=(w+ d)(w-d)=w’ -d’ W2 _ d’

1 + d/w
z=w—in = w — 2 antitanh d/w

1 – d/’w

1 + w/d
=jr+w–in

1 – w/d

= jir + w – 2 antitanh w/d. (3)

FIere we can give an explicit formulation for z of w but

not w of z. The constant of integration is chosen to

match the far field on both planes, where the mapping

gradient approaches unity.

The second step is to specify the mapping gradient

between the z’ plane and the w plane of Figs. 5 and 3.

There is only one reversal in each c~uadrant on the z’

plane.

8Z’ 2d’
— (4)

dw – d!z _ W2

1 + w/d’
z’ == in = 2 antitanh w~d’

1 – w/d’

= jr + 2 antitanh d’/w (5)

w = d’ tanh ~z’. (6)

Here it appears that we can give an explicit formulation

for 2’ of w or w of z’.

From these relations, we can express z of z‘.

2 = j~ + d’ tanh *z’ — 2 antitanh
(’:tanh+z’) “)

It is noted that d and d’ are nearly equal, as seen in

Figs. 3 and 4.

Let us locate on all three planes the point (3) which

is the edge of the strip.

z=j~+a; W=G; # = at (8)

This point is identified by the property 8z/8w = O with

reference to (3).

13z 2/d 2/d
—=1– o=l– —— (9)
8W 1 – (w/d) 2 ; 1 – (c/d)’

c=<d(d– 2)=<(d–1)2–1< (d–1) (10)

1

c= (d– 1) ‘~~+~~_l)~_i

=(d-l)- 2(d~ 1)-=&7-.. (11)

(d–l)=<c’+l; d=l+~l+c2>2; (12)

also d > c+ 1. From formula (3)

a = G – 2 antitanh c/d < c < (d – 1). (13)

By (10), utilizing relations of hyperbolic functions,

d+c
2 antitanh c/d = antisinh c = in —

d–c
———.

= antisinh <(d – 1)2 – ‘1

= anticosh (d – 1)

. in [(d – 1) + <(d – 1)” – I] (14)

a = c — antisinh c. (15)

This is the simplest equation for a of c, and can be used

for computing c of a by usual methods (trial, interpola-

tion, continuing successive approximation n, etc.).

On the z’ plane, at point (3),

a,= 2 antitanh c/dr = ln~~- ~ (16)

The next critical points are (4) and (6) in the space

between the two strips.

At point (4),

~ =J”T; ~=jf=j–+; # =, g# (17)

From (3),

O = j’ – 2 antitanh -f’/d, (18)

At point (6),

Z=(); w=jff=j-+~; z’ = g -tj7r. (19)

From (3),

O = j“ – 2 antitanh d/j” (20)

f = ~f~ + +f~~< (21)

From (18) and (20),

(22)+d =
w

= *j” tanh +f”
tanh ~j’

f–4
~ = j’/j” = tanh tj’ tanh ~f”

. Coshf – Cosh 4 (Dw 653.2) (23)
coshj + cosh I#J

d cosh d)
.— . (24)

7 cosh j

If d is specified as the parameter to cletermine the

shape, c is given explicitly by (10); j’ andl ~f” are given

implicitly by (22). This will be included in one sequence

of computation.
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At points (4) and (6) on the z’ plane and w plane,

from (6), (17) and (19),

tanh ~g = ~’/d’ = d’/j” (25)

d’=~f~~=~f2_&<f (26)

f–dJ

~~ = f’/f” = tanh’ ~g = Cosh g – 1
(27)

cosh g + 1

@/f = l/cosh g = sech g <<1 (28)

In terms of the pair of circles, this last formula is the

shape ratio (radius over separation of centers). It is

recognized as the form related to a pair of round wires.

From (24) and (28),

cosh f
cosh g = — ; g<f.

cosh @

From (22) and (26),

d’ ()tanh $f’ 112
—.
d

< 1!
tanh $~

(29)

(30)

Here we note a group of quantities in the focal region

that are nearly equal (d, d’, ~, g in Fig. 4) as seen by

(21), (29) and (30). Their small differences form the

subject of another section.

If the parameter d is specified, all other parameters

can be determined directly from the above relations

through either explicit or simple implicit formulation.

If the shape (a/b= a/r) is specified, the same is true.

The sequence of computation will be discussed further

on.

IV. INCIDENT~L RELATIONS

There are some relationships that are brought out in

the mapping, but which are not essential to the basic

computations. One of these is the location of the flux

line at the edge of the strip, directly from (3) to (7).

The flux inside or outside of this line terminates respec-

tively on the inner or outer face of the strip conductor.

In the mapping approximation, this line is taken to be

a vertical straight line on the z’ plane, Fig. 5. Referring

to Fig. 2, it is found that the point (7) extends beyond

the edges of the strips by the amount

a
t! —a=2+2/d —.. .>2. (31)

In the limit of a very narrow strip, this flux line ap-

proaches a circle because the field patterns inside and

outside are related by inversion. Therefore, in general,

a“ > 3r; a+2<a’’<a+r; ~>a’’—a>2. (32)

In words, this flux line extends outward from the edge

of the strip to a distance somewhat less than the half

separation.

Associated with this flux line is the “flux fraction”

here defined, relative to the total flux, as the fraction

thereof which terminates on the outer face of the strip

conductor. On the same basis, with reference to Fig. 5,

this fraction is seen to be a’/g’. It is always less than

one half.

For “wide” strips, the limiting value is found to be

a’/g’ = A in 2ra/b. (33)
7ra

This fraction is particularly significant in some cases

(beyond the scope of this paper) where there are dif-

ferent kinds of dielectric adjacent to the respective faces

of the strip conductor.

The flux fraction is related to the classic concept of

the “fringing field” or edge correction but is not the

same. Here the actual half width of the strip is on the

z plane, while the effective half width is g’ on the z’

plane. The excess of the latter over

“edge correction”

Aa=g’–a.

For “wide” strips, the limiting value

relative to the half separation,

Au/b = Au/r = ~ (ln 2g’
r

= ~ (ln 2=a/b + 1)
n-

the former is the

(34)

may be expressed

+ 1)

(35)

In the focal region on the w plane, Fig. 4, there is one

point (5’) corresponding to the reversal of direction on

the z’ plane and a slightly different point (5”) cor-

responding to the reversal on the z plane. It is interest-

ing to note the location of both of these points on both

planes, which will be done to a first approximation.

Point (5’) on the z plane, Fig. 2, is located at

z= —lnl/@+j7r= —(g —ln2g)+j7r. (36)

Point (5”) on the z plane, Fig. 5, is located at

z’=g+lnl/@+j7r=g+(g-in 2g)+j~. (37)

The latter has only mathematical significance. The

former has the physical significance of the junction

between the opposite conductors of the line as they ex-

tend into the space which is to be excluded from the

mapping. The location of this junction forces the flux

boundary into a vertical position on the z plane, by

compensating for the distorting influence of the edge

effect.

V. SMALL DIFFERENCES

While the foregoing relations are mathematically

sufficient for computation of all parameters, they are

not the best suited for evaluation of some small differ-

ences in the focal region, Fig. 4. Several such differences

are defined and evaluated as follows. Each formula is

valid to a first approximation, which is all that is signifi-

cant in the described procedure of conformal mapping.
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In each case, the approximate upper limit is incficated ing value of

for the range of g >m or R/RC <1. by (53).

From (28) and (29), by eliminating ~,

6=t–g=~& =2g’exp-2g <0.036. (38)

From (26),

8’ = f – d’ = 6/j = @/2j = 2g exp -- 2g <0.012. (39)

From (30),

6“ = d – d’ = 28 = ~’ = 4g’ exp -- 2g <0.073. (40)

In these formulas, it is noted that @ = 2g exp –g to the

first approximation.

Another small difference is related to the mapping

approximation, as limited by the departure from a

straight line in one boundary (4 to 6) on the z’ plane,

Fig. 5. The greatest departure is near the center at (5);

it is denoted

The quantity g“ is defined in terms of the point

(z’ = g“ +j7r/2) half way between the lower and upper

boundaries. It is evaluated to correspond to some point

(5) on the boundary on the z plane, Fig. 2, by specifying

only one requirement (x= O). It is fc)und that

fy = 4g(g – 1) exp – 2g

f(. ..)g2(l )2expx4g* g*.. . . (42)

Since the curvature of the approximate boundary is

nearly a sine wave, the average location of the boundary

is near the straight line

%’=g’=g++y. (43)

Therefore, an approximate correction for the curvature

is obtained by taking the boundary to be located at g’,

a little beyond the end points at g. From (42),

1~7=gf — g = (1 – 1/’g)ti = (1 – l/g)*&

= 2g (g – 1) exp – 2g < 0. C125. (44)

Some differences of particular interest are

Since this difference approaches zero relative to the

others, it is seen that g’ and d’ are the same for present

purposes, as indicated in Fig. 4. Then

d–g’=d– d’=8’’=4g’exp–2g

(46)= 4d2 exp – 2d <0.073.

This difference is particularly useful in shifting between

d and g’, which are two of the principal parameters.

Here we may consider the residual error of the map-

ping approximation. On the z’ plane, Fig. 5, the effec-

tive width is some kind of mean between the limits g

and g“, or g’~ ~~. On the basis of g’ or the correspond-
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R, the relative error of the Iilnits is given

-f/2g’ = 2(g’ – 1) exp – 2g’

<0.00004 if g’ > 2n

<0.008 if # > z-. (47)

While these limits of error are small, the residual error

of the mean is much smaller. It has been estimated on

the basis of the field distortion and the Lln certainty of

the kind of mean value that would be valid., As a result,

the relative error of the mean is believed to be less than

*g’(T/2g’)2 = 2g’(g’ — l)Z exp — ,Ig’

<4 x 10–9 if g’ >> 2r

<0.0001 if g’ ;. iT. (48)

The extremely small residual error emphasizes the high

degree of refinement in the mapping approximation.

The range of usefulness extends to somewhat smaller g’

(higher R, narrower strips), but the residual error be-

comes uncertain as (g — 1) approaches zero,

Referring to the w plane in Fig. 4, the excluded region

(5) departs slightly from a circle. Its vertical radius

(~” corresponding to g“ on the Z’ plane) is slightly less

than its horizontal radius (~ corresponding to g) approx-

imately in the following ratio.

4“/4 = 1 – -!(g – 1)2 exp – 2g. (49)

This ratio departs from unity by less than 0.034, and

this is compensated by using, in effect, the average

radius (~’ corresponding to g’).

One application of small differences is in expressing

the residual error in the essential relationship between

shape and wave resistance. Since the latter is the func-

tional quantity- and the former only a means to an end,

the relative error should be expressed for wave resist-

ance, even in formulas for the shape ratio. In this

presentation, it happens that the relative error of the

wave resistance is always less than that cif the shape

ratio; conversely, the tolerance of error of the shape

ratio is greater than that of the wave resistance.

VI. SIMPLE APpLLOXIMATIONS

Some of the basic relations are simple. Others are

complicated enough to justify an attempt at simplifica-

tion. The simple forms to be given here are close enough

for slide-rule computations in the range of “wide” strips

(a/b> 1; g> 27r; R> ~R. = 188 ohms). The only need for

closer approximation is for extending the range to nar-

rower strips or for critical study of the residual errors.

First, we ignore the differences among g, g’, d’, j, d.

Referring to R, the residual relative error is about

8“/g = 4g exp – 2g <0.0001,, (50)
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The mapping formulas then lead to a

instructive relation between the z plane

plane.

az 8Z a~ ~2—m2c2_w2 ~2 _
—= —— —
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simple and

and the z’

~2
(51)

(32’ h az’ &2 – @ Zd 2d ‘-”’

w = d tanh $z’ (52)

z=j7r+ w-z’ (53)

a’ = antisinh c = anticosh (d – 1) = in 2(d – 1) (54)

in 2(g – 1)
a’/g’ = ———

g

(55)

d=l+cosha’ (56)

c=sinha’=(d —1)—exp —a’. (57)

There is one particularly interesting formula which is

based on the principle that a is the maximum value of x

with respect to u, so it is noncritical to the value of u.

Referring to (3),

d+u
~=t~—-ln-.

d–u
(58)

Let u=c=d-1 (approx,) from (11):

a=maxx=(d —1)—ln(2d —l). (59)

An expansion of (15) in this form gives

1
a=(d–1)–ln(2d– 1)+

8(d–1)2 –”””’
(60)

in which the first two terms leave a relative error less

than 0.001 of d that is attributable to the approximation

leading to (59).

This simple formula (59) can be converted from ex-

plicit synthesis to explicit analysis by a continuation

which converges rapidly. Then this continuation can be

terminated to give the correct value for d = 27r,

(2d–l)= 2a+l+21n(2d–1)

=2a+l+21n [2a+l+21n(2d– 1)]

[
=2a+l+21n 2a+l+21n(4r–1)

2d–1
+21n —

4.–F 1
=2a+l+21n[2a+l

+21n(4r–l)] Y... (61)

g’=d=a+ l+ln[2a+l+21n(4~ –I)]

= a + 1 + in 2~(a/r + 0.94). (62)

(Later, 0.94 is changed to 0.92 to make the formula

nearly exact for g’ = 27r. ) The loss of the residual term

leaves a relative error less than

4
——— = 0.004. (63)
#(&- — 1)2

The edge effect is given by (d –a) in terms of the shape

parameter (a).

\\Thile the present study is directed to thin strips, a

moderate thickness can be compensated by a reduction

of width. While retaining the same separation (2 b),

each strip is taken to have a rectangular cross section of

small thickness (Ab<<b) and a reduced width (2a = 2Aa).

Each edge recedes by a small amount (Aa<<a). In the

limit of wide strips (a,/b>>l), the following equation

gives the relation for retaining the same properties as

thin strips of full width (2a).

‘a=%(ln%+l) (64)

This relation enables an estimate and an approximate

adjustment for the edge effect of thickness.

The present study is intended to cover the range of

‘(wide” strips, and to bridge the transition range be-

tween wide and narrow strips. The range of ‘[narrow”

strips is the subject of another set of equations de-

veloped by the author, which will be stated here in

order to complement the formulas derived herein. A

formula for synthesis and one for analysis are given to a

second approximation obtained by the first two terms

of a converging series.

b/a = $ exp TR/RC – ~ exp – TR/RC + . . . (65)

If b/a> 1, relative error <0.005 of R,

R/R, = ~ln4b/a + ~(a/b)2 –... (66)
T

If b/a> 1, relative error <0.02.

Here, the first term is well known but the second term

is believed to be new. The residual relative error is pro-

portional to (a,/b)4, so it becomes negligible for strips

somewhat narrower than the “square” shape, say

a~b <~.

VII. COMPUTATION PROCEDCTRE FOR SYNTHESIS

For design of a transmission line, the less usual but

more logical formula is one giving the shape ratio in

terms of the required wave resistance. There are cases,

including the present topic, where this approach from

the viewpoint of synthesis leads to simpler formulas.

(Another example is [8 ].) First there will be given a

procedure for synthesis based on the complete applica-

tion of the mapping approximations here presented.

This procedure (A) retains all the accuracy of the pres-

ent approximations over the intended range of validity

(R< R.). A second procedure (B) will be given, which

is applicable to ‘iwide” strips (R < ~R.) with slide-rule

accuracy.
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.4. C[ose Compututiojt jor Synthesis

Specify

R//RC < ~ .

Fronl (I) and (45),

g’ = d{ = TR,/R,

From (46) and (1),

d=d’+~”

= TRJR + (2 TRC/R)z exp — 2TRC/R > T. (67)

From (13),

a/b = ~ ~d(d – 2) – ~ anticosh (d – 1), (68)
n- T

From (47) and (48), relative error of R.

From (10),

c = dd(d – 2).

From (16),

d’– G
a ‘=ln ——

d’+c”

Flux fraction,

a’/g’.

B. Simple Cowplltat ion for Synthesis

Specify

R/R, < ;; d = TRJR.

From (59) ,

a,b = R, ‘R – ~ [h (2 TRC,/R – 1) -+ 1~ >0.90. (69)
T

Relative error <0.002 of a/b.

Relative error <0.001 of R.

In this formula, the second term represents the edge

effect.

Flux fraction, a’/g’ = ~~ anticosh (.-RJR – 1). (70)

1~1 II. COMPUTATION PRocmcmm FOR A~AI.YsIs

Naturally the foregoing procedures for synthesis can

be applied in reverse as implicit solutions for the wave

resistance (R) from the shape ratio (a/b). I-Iowever,

there are different procedures that involve implicit

solutions only in certain steps, so they are preferable

for analysis. These are summarized below.

A. Close Cow@utation j-or .4 ~Jalysis

Specify

a/b > 0.17; a == ~a/b.

From (15), conlpute c (implicit),

From (12),

d=l+~l+ c’.

From (26), COlllpLl& 8“.

~l-OUl (45),

~~=d–~~f > 7r.

From (l),

R = R,T/g’ < T,

From (47) and (48), relative error.

B. SiInple Computation jor .4 nalysis

The simple procedure for synthesis gives a, simple

implicit solution for analysis. Nearly as close an ap-

proximation in the form of an explicit solution for

analysis is given for whatever interest and utility it may

offer.

Specify

a/b > 0.90.

From (62),

1 1
R/R. = —— ‘/ ___ , (71)

‘2
a/b + ~ in 2~e(a/b + 0.92)

r

in which 0.92 is chosen to give the correct relation for

R/It, = ~; this is a slight departure from (6’2). Relative

error <0.004. This formula has been given previously

by the writer (see [9]) and similar forms of lesser

accuracy have been given by other writels, c.g [7].

IX, COMPUTED EXAMPLES

Table I and Fig. 6 give numerical examples computed

from the formulas given here. The table is based on

careful slide-rule computations, so the residual relative

error may be about 0.002. As much of the complete pro-

cedure was used as was justified for slide-rule conlputa-

tion. Most of the examples are in a binary series of wave

resistance (R, g’).

Fig. 6 is a graph of the relation between the shape

ratio (b/a) as abscissas and the wave resistance (R) or

flux fraction (a’/g’) as ordinates plotted on log-log

coordinates. Two principles appear on the graphs; one

is the increasing eclge effect with increasing separation

and the other is the flLIx fraction approaching ~ with

increasing separation. Both graphs extend into the

region of large shape ratio (b/a) where close approxi-

mate formulas can be derived on the basis of ‘{narrow”

strips.
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R
_——

377.
251.
188.5
125.7

94.2
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TABLE I

COMPUTED EXAMPLES

it a
—. —

T 0.545
*T 1.592
27r 2.840
31r 5.545
41r 8.394
57r 11.26
87r 20.24

167r 44.63

6.65 T

ajb bla a’

0.1735 5,76 1.477
0.506 1.972 1.992
0.904 1.106 2.348
1.765 0.566 2.821
2.672 0.374 3.139
3.58 0.279 3.38
6.45 0.155 3,875

14.2 0.0704 4.59

1. 11. 2.416

a’lg’

0.470
0.423
0.373
0.300
0.250
0.215
0.154
0.091

0.363

504
1/4 1/2 I 2 4 8

bla

Fig. 6—Graph of wave resistance and flux fraction,

XII. S~MBULS

R.= wave resistance of square area of di-

electric medium.

R.= 377 ohms in free space.

R = wave resistance of symmetrical pair of

strips or of one quadrant of its cross

section.

~+~”y’ = z = complex plane of space coordinates,

the cross section of the pair of strips.

xl+jy ’= z’= complex plane of flux-potential co-

ordinates.

z~+~v = w = complex plane of colinear boundary

coordinates.

a = half-width of strip conductor.

b = half-separation of parallel strips.

a/b = shape ratio.

c = 2L corresponding to edge of strip.

a’ = effective half width of outer face of

strip.

g’= mean effective half width of strip, in-

cluding flux on both outer and inner

faces.

g’/~ = ratio of effective width over separation.

a ‘/g’ = fraction of total flux that terminates

on outer face of strip.

@, cj” = maximum and minimum radii of ex-

clusion circle on w plane.

a, a“ (s:e Fig. 2).

c, c“ (see Fig. 3).

d, d’, ~, ~’, j“ (see Figs. 3, 4).

@, @“, 8, ii’, ?i” (see Fig. 4).

g, g’, g“, Y (see Figs. 4, 5).

a’ (see Fig. 5).

6 = 2.718 = base of natural logarithms.

X. CONCLUWON

By utilizing an unusual procedure in conformal map-

ping, there have been developed various relations in the

field of a pair of parallel strips used as a transmission

line for electromagnetic waves. These relations are

based on the assumption of “wide” strips, but the

resulting formulas overlap the region of “narrow”

strips. The relation between wave resistance and shape

ratio is formulated to an extremely close approximation.

Other relations are also formulated, such as the flux

fraction for the outer faces. This versatility results

from the approximation in terms of “slide-rule” func-

tions rather than the exact formulation in terms of

elliptic functions.
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Realizable Limits of Error for Dissipationless

Attenuators in Mismatched !!%tems

D. C. YOULA, SENIOR MEMBER, IEEE, AND P. M. PATERNO, MEMBER, IEER

Summary—A tutorial exposition for the exact physical error lim-

its due to mismatch for dissipationless attenuators is presented. The

results given yield smaller errors than previous existing formulas

due to the inclusion of the physical realizability constraint of passiv-

ity. Graphs are included for rapidly determining the largest error for

a prescribed set of conditions. Thhi work is based on an analysis

prepared by D. C. Youla which had a limited circulation.1

lNTRODUCT1ON

F
ORM ULAS for the errors resulting from mis-

matched generator and detector sections in the

measurement of the attenuation of a single attenu-

ator are well known.2,3 However, with a single exception4

none of these formulas takes into account the phase
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restrictions on the various coefficients due tcl the physi-

cal realizability constraint of passivity. The usual

formulas exhibit limits obtained by choosing the worst

possible phase combinations and, therefore, lead to un-

necessarily large errors. In this paper a complete solu-

tion is presented for the @lzysical error limits due to mis-

match for dissipationless attenuators calibrated under

the standard condition of conjugate termination. This

includes, of course, the class of equal-resistance attenu-

ators but is more general.

GENERAL BACKGROUND

In a previous publication,5 a complete scattering

description for a linear time-invariant 2N terminal net-
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