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Cutoff Wavelengths of Ridged, Circular, and Elliptic Guides

ABI)EL-MONIEM A. EL-SHERBINY

Abstract—Cutoff wavelengths of TE and TM modes in doubly
ridged guides of elliptical cross section have been calculated using
an exact method. Closed-form expressions in terms of Mathieu
functions have been obtained for the cutoff frequencies and eigen-
functions describing the field distribution for different modes. These
solutions are further extended to include the case of doubly and
quadruply ridged guides of circular cross section and to calculate the
slot coupling of two waveguides with semielliptical or circular cross
sections. The dual problem of the coaxial strip guide has also been
treated using the same method.

1. INTRODUCTION

IDGES in guides may be introduced to increase the

R
operating frequency bandwidth through lowering the

cutoff frequencies of certain modes, Examples are the

uses of H and H rectangular guides in which the cutoff fre-

quency of the TEo1 mode is lowered by the capacitive loading

of the ridges. Similarly, ridged circular guides may be used to

stabilize certain field polarizations, as well as to lower the

cutoff frequencies of desired modes. Ferrite devices employing

ridged circular guides may also have larger bandwidths [1].

II. FORMULATION OF THE PROBLEM

We shall consider the elliptical ridged guide structure of

Fig. 1, homogeneous in the direction of propagation z, in which

thin ridges extend from the walls to the focal points of the

elliptical cross section in the plane of the major axis. The con-

figuration of the cross section can be described in terms of an

elliptical cylindrical coordinate system W, o, z, which is related

to the Cartesian coordinate system x, y, z by the relations

The elliptic boundary of the guide coincides with the sur-

face p =po, –m <~ <r, whereas ridge surfaces are defined by

+=0, OS.L<I.LO and ~=+r, O</.L</.Jo.

Ridge tips are located at points x= t a/2 and y= O. The ma-

jor and minor axes of the elliptic boundary are given by

A = a cosh ,UO B = a sinh PO.

Electromagnetic wave propagation in such a cylindrical guide

can be described in terms of a scalar function IJ satisfying the

Helmholtz equation

(V2 + K2)~ = O

in the region bounded by S, where S k the contour of the guide

cross section, K2= kz—~z, kz= (co/c)2, and @ is the propagation

constant in the direction of z. Function $ satisfies one of the

following boundary conditions on S:

f31#/&’z]s = o, for TE modes
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Fig. 1. Cross-section configuration of the elliptic ridged waveguide.

or

4]s = o, for TM modes.

Function ~ must also be continuous with continuous first

derivatives in all points in the region with the exception,

maybe, of some points on the boundary where it may have

quadratically integrable singularities. In terms of I.Land I#J,the

two-dimensional Helmholtz equation can be written:

and boundary conditions can be formulated in terms of p and

@ras follows.

1) For TE modes,

13#

1

8+
— . 0 —?r<rj<?r —=0
r?p.=~o tkp

at@= y7r,0, O</.J</.Jo.

2) For TM modes,

+1,=,0 = o —lr<+<7r +=()

at@= +7r,0, O<p<po.

Function # must be continuous with continuous derivatives in

the internal region:

o<p<po 0<+<. –.<~<o, (C#J# o, 7r).

As (1) separates in elliptic cylinder coordinates, function #

can be represented as the product

# = Nd@(dJ).
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The azimuthal function ~and the radial function may

be determined from the two differential equations

@“+ (&- A2cos2 @)@ =0 (2)

(3)–.-R” + (b! – hz Coshz ~)R = O

where h=aK/2 andb is the separation constant.

Equation (2) is the Mathieu equation, while (3) is the

modified Mathieu equation. The proper azimuthal solutions

are those having periods of ~ and 27r, and therefore @ is the

Mathieu function of either odd or even types denoted by

.SOn(k, O) and Sew(h, ~), respectively. The value of the separa-

tion constant is completely defined by this choice and b will

take the values of bom or hen, where these quantities are the

eigenvalues corresponding to odd or even periodic Mathieu

functions. Two types of radial functions correspond to each

value of h and b. They may be denoted by Jon(h, M) and

iVon(k, p) or Ie. (h, p) and ~e.(lz, p), and they correspond to

Bessel and Neumann functions in circular cylindrical coordi-

nates. For details and properties of these functions, the reader

may be referred to [2].

III. TRANSVERSE ELECTRIC MODES

Two types of wave functions with different symmetries

about the plane y = O that satisfy homogeneous Neumann’s

conditions on the walls and ridges can be distinguished as fol-

lows.

1) Even modes for which + is symmetrical about the

plane y= O or+ = O may be formed by the combinations

+ = 5’e~(k, @)Je.(k P), }2 = 0,1,2,... (4)

as we have for all H, Je~’(?z, O) = O, i.e.,

d+

-1
= o.

@J ,=0

The cutoff wavelength ~, must be determined from the

boundary condition

.le,L’(lz, I-LO)= O, h = a7r/&.

These modes are characterized by the absence of the K (or the

x) component of the electric field on the plane of the ridges so

they can also exist in hollow elliptic guides (without ridges),

as the presence of ridges does not disturb such fields. These

modes were studied in connection with guides of elliptic cross

section [3], [4] and will not be treated here further.

2) Odd modes for which ~ has zero value on the plane of

symmetry y = O (i.e., on the plane of the ridges). These modes

could have been constructed in the same manner using, in-

stead of Jen, another regular radial function of an even type

having zero value at y = O. However, such a function does not

exist, as any combination of radial functions containing Nen

will have a discontinuity in either the slope or value at the

origin. Nevertheless, such modes can be constructed as fol-

lows:

~e~(lz, d) Re~(h, M), 0 <4<.
+ = {–Se~(h, 4) Re.(Z w), —T<4<0 (5)

where the radial part R% is a linear combination of Yen and

Ne. having the property

A’en(h, O) = O

i.e., it may be taken that

Ren = Jen(h, p) + KIVe~(iz, p), K is a constant.

The value of K is determined from the above condition as

Jew(h, O)
K=–————.

Ne.(k, O)

The eigenfrequency h. may be determined from

l?e~’(h,,, M) = O. (5a)

Now examining (5) we find that it satisfies all the require-

ments of the boundary value problem. Thus even azimuthal

functions satisfy Neumann’s boundary conditions on the

ridges; the type of symmetry chosen in (5) and the choice of

K- guarantee the continuity of function # and its first deriva-

tives on the slot plane (1x) <a/2, y = O), and finally (5a)

satisfies boundary conditions on the elliptic boundary. The

wave function suffers discontinuity at + = O, x- for v>O as

expected, due to currents flowing on the ridge conducting

surfaces.

Second derivatives may be discontinuous, however, across

the slot plane, but this does not violate any physical require-

ments. Such a solution can be looked upon as two regular

solutions in the separate halves of the waveguide section

matched together at the common boundary in value and

slope, a technique frequently used in irregular waveguide

problems. The discontinuity in the second derivative can be

attributed to the irregular shape of the boundary giving rise

to strong singularities in the field at the sharp tips of the

ridges.

For this type of mode the electric field at the plane of the

slot is tangential to the slot, and it acquires infinite values at

the points of the ridges. These modes clearly do not exist in

hollow guides with elliptical cross section and therefore are

specific for ridged guides, hence they will be referred to later

as ridged guide modes.

In the following sections, TE ridged guide modes will be

denoted by Hnn’, where n and m characterize mode type and

order, respectively. Regular modes of type 1) will be denoted

by Hn~’ and are identical with H~n~ modes in the theory of

hollow elliptic guides. In ridged guides, both H~~’ and H~~”

modes are derived necessarily from even Mathieu functions,

and hence the c can be omitted.

IV. TRANSVERSE MAGNETIC MODES

Following the same line we can construct elementary wave

functions for TM modes. Thus the proper azimuthal func-

tions are Mathieu odd functions Son, which are required to

satisfy homogeneous Dirichlet’s conditions on the ridge sur-

faces ~=0, 7r, —r. Odd solutions are constructed using Jon

and elementary wave functions of the form

+ = Son(h, @)Jon(h, 1A), n=l,2,3, . . . (6)

as for all n we have Jon(h, O) = O and ~ = O at y= O. While even

modes have to be constructed in a way similiar to (5) and will

have the form

Son(h, @)Ron(h, W),
4=J

o<@<7r

ko.(h, –cj)Ron(h, y), -7r<+<o (7)
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where

and Lhastobe adjusted to give

Ro.’(h,o) =Jon’(h,o )+mo.’(lz,o) = o.

Solutions of the form (7) satisfy boundary conditions on the

ridges, continuity conditions for the function ~, and its deriva-

tives on the slot, and are even with respect to the plane y= O

or@ = O. The electric field of modes (6) is perpendicular to the

slot plane, while it is purely tangential for (7). It can be

easily seen that waves of the type (6) can exist in hollow

guides, while (7) are the ridged guide modes of the TM type.

Eigenvalues of h are derived in both cases from the boundary

condition on the guide walls, i.e.,

Ron(h., Po) = O. (7a)

V. NUMERICAL RESULTS

The cutoff wavelengths of the two lowest order modes of

each of the H’ and E’ sets were computed using (5a) and

(7a). Mathieu radial functions were evaluated using their

Bessel function expansions [2]. The ratios of the cutoff wave-

lengths to the major axis At/A were plotted against the ratio

of slot width to major axis u/A (ellipse eccentricity) and are

shown on Fig. 2.

It must be noted that the ratio of the minor to major

axes, which is given by

is very near to unity when PO is sufficiently large; in fact, for

po>2, B/A will lie between 0.95 and 1.0 and a/A s0.3. In

other words, for values of the ratio of slot width to major axis

less than about 0.3, the guide may be considered as being al-

most circular. This property is important, as it allows the

extension of the above results to the case of the circular ridged

guide—a configuration that is much more convenient for use

in practice than the elliptic one.

As a/A ~0, the ratios X,/A for nearly all modes tend to

their values for the corresponding modes in the semicircular

guide. Mode HOI’ is an important exception; it exhibits

anomolous behavior for small values of a/A as its cutoff

wavelength tends to infinity. The behavior of the Holr mode

can be explained in two ways. This mode can be viewed as a

circular HII mode polarized in the plane of the slot, whose field

configuration is modified by the presence of ridges as illus-

trated in Fig. 3. Electric field concentration in the space be-

tween ridge points leads to an equivalent capacitive loading

to the guide, which tends to lower its cutoff frequency—an

effect analogous to the effect of ridges in rectangular guides.

Alternatively, the Holr mode can be looked upon as a TEM

mode between the ridge planes, whose field configuration is

perturbed by the bounding walls. As the radius of the shield-

ing cylinder becomes large relative to the slot width, the field

will tend to be purely TEM and the cutoff frequency reduced

to zero.

Higher Hon’ modes with m =2,3, . . . do not behave simi-

larly, and an investigation of (5a) when n= O shows that they

tend to HO(~_l) circular guide modes as the eccentricity tends

to zero.

For values of eccentricity less than about 0.55, the domi-
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Fig. 2. Cutoff characteristics of HoI’, Hu’, Eu’, and E21’ modes. Charac-
teristics of the conjugate regular modes are shown for comparison.

Fig. 3. Electric field configurations for the HOI’ and HII’ modes. Field
configurations of the conjugate modes are also given for comparison.

nant mode in elliptic ridged guide k the Ho1’ mode. The band-

width of the dominant mode propagation increases with de-

creasing eccentricities and is about an octave for a/A = 0.1.

Viewing the elliptic guide as a perturbed circular guide it is

easily seen that the elongation in the direction of the major

axis reduces the cutoff wavelengths of the circular HU mode

if it is polarized in this direction, while it has no effect on this

mode if it is polarized in the perpendicular direction. The
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presence of ridges leads to the inverse effect. Forsmalleccen-

tricities the effect of ridges is strong while the elongation is

small, thus the cutoff wavelength of the HOI’ mode is larger

than that for the H116, which is dominant in the hollow guide.

Forlarge eccentricities theelongation islarge, while ridges are

less effective because of their smaller relative dimensions;

therefore, the HII’ mode will dominate, For a value of eccen-

tricity of about 0.55, both effects will compensate each other

and these two modes will degenerate. Following the same

reasoning we can conclude that the HOI’ mode will be domi-

nant in the ridged circular guide for all values of slot width to

diameter ratios, as there is no elongation in any direction.

It is also remarkable that the H’ modes, except the zero-

order one, have cutoff wavelengths lower than those for their

conjugate I-I” modes. On the contrary, E’ modes have cutoff

wavelengths that are higher than those for E8 modes.

VI. QUADRUPLE RIDGED CIRCULAR GUIDE

Limiting the discussion to small eccentricities when the

elliptic guide can be considered approximately circular, it can

be noted that H modes of the type (5) with n restricted to the

values O, 2, 4, . . . have no electric field component in the

plane ~ = 7r/2, and therefore are possible modes also for the

quadruply ridged guide of Fig. 4. The dominant mode of such

a guide is the previously discussed HOI’ mode with two possible

polarizations: either in the plane@= O or ~ = T/2, or any linear

combination of them.

This guide may find many applications in broad-band fer-

rite devices, electron devices with transverse interaction, etc.

As there are two polarizations possible perpendicular to each

other for the HOI’ mode, circularly or elliptically polarized

modes are evidently among the possible modes of this guide.

VII. COUPLING BETWEEN SEMICIRCULAR OR

SEMIELLIPTIC GUIDES

Ridged guide modes discussed in Sections III and IV can

be used to solve the problem of coupling of semielliptic or

semicircular guides through slots. It has been shown that with

each regular guide mode of type (4) or (6), there is an associ-

ated ridged guide mode with opposite symmetry as given by

(5) and (7). For small k we have

~e,,(lz, O)
K=–—— —+ o

IVen(h, O) k + O

and

Jo.’(k, o)
L=– —+ o

No,t’(h, 0; ?’2-+ o

as I ~e~(h, O) I and I Non’(It, O) I tend to infinity as h goes to

zero, while ~e. (k, O) and J’on’(irz, O) remain finite, This means

that ridged guide modes (with the exception of HOI’) smoothly

degenerate into the corresponding regular guide modes as the

slot width reduces to zero. In other words, this means that for

small but finite values of k, fields of both types will coincide in

magnitude almost everywhere in the guide section except in

the vicinity of the slot where the field remains disturbed by

the tips.

We can therefore superimpose two H modes of the type

K = sen(hn”, r$)~en(h.’, K)

Fig. 4. Electric field configuration of the lowest H mode in
quadruply ridged guide (HOlr).

and

or E modes

and

W = * Sen(Jzn’, d)%(h’, K)

*’ = Lso,,(kne, o)~o.(kc, P)

v = sw(hn’, * 4)Ro.(hl’, /.L)

where he, & and h’, ~ refer to the eigenvalues of 1$and the

eigenfunctions for regular and ridged guide modes, respec-

tively. The resulting fields will vanish in almost all points of

one of the semielliptic (or semicircular) regions while having

finite values in the other. This clearly is the case when the

excitation is applied to one of the halves of the ridged guide.

If we suppose that the semielliptic guide defined by

O <O <T is excited, then the proper TE elementary wave func-

tion including the longitudinal phase factor will be

or for TM modes,

1Son(/zn”, +).lor,(lzn”, p,) e–@@z

+ Son(i’znr, q5)Ro. (lz,t”, p) e–ip””, forO<~<~
+=

1

.Sow(Jzne, q5)~on(hw’, p) e–@””

+Son(h.’, – @)Ron(h.’, p)e–$~~”, for – m < @ < ()

where ,&8 and&r are the propagation constants for the regular
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andridged guide modes, respectively. For narrow slots,

The field distribution in the section z = O will be given approxi-

matelyby (for p#O)

2S’en(lzn,q$).len(hn, W)e–~$n”, o<~<7r
#~ {.,

—ir<rj<o

for TE modes, or

2Son(hn, o)lo~(h~, M) e–@”z, o<4<7r
#~ {.,

—3r<d<o

for TM modes., For other sections z # O, as the propagation

constants are not exactly equal; the modes will propagate

with shghtly different phase velocities and the field power will

be transferred from one half to the other periodically as given

by

2Sen(hfi, @)Jen(hn, ~) cos bze–~~’z,

* g {2Se~(h,,

O<l$<r

q5)Jen(lzn, p) sin iize-’~mz, —7r<lp<o

where 2ij =~ne —~nr, B.= (&e+~m’)/2. Similar expressions can

be written for TM fields.

Such an effect is well known from the theory of coupled

modes [5] and is utilized in directional couplers and related

devices. However, in the present analysis, weak coupling is

not assumed and for an elliptic guide the difference 23, which

determines the length of total power exchange, can be calcu-

lated for any slot width, while the slot width should be re-

stricted (for other reasons) to values less than or equal to 0.3

that of the diameter for circular guides.

Simple expressions can be derived for the practically im-

portant case of weak coupling when the slot width and there-

fore k are small. Consider for example the HL1 circular guide

mode, which is dominant in semicircular guides; the charac-

teristic equations for symmetric and antisymmetric modes in

a ridged guide of small eccentricity can be written approxi-

mately as

J1’(h’ cosh PO) = O, i.e., h’ cosh PO = 1.84

and

J1’(hr cosh PO) + : h“N1’(lz’ cosh KO) = O

where JI and NI are Bessel and Neumann functions of the first

order, respectively. In writing the above simplified expressions

we are making use of the known asymptotic expansions of

radial Mathieu functions for small k:

—

~el(h, p) M
d

:~,(h cosh p) + O(h’)

—

iVe~(lz, p) - ‘v’;Nl(lz cosh p) + O(h’), l.L#o

‘d2.
Nel(h, O) - – ~ – .

71-

Writing W =(1 +A)h”, expanding Bessel functions in powers of

A, and keeping first-order terms, we obtain the following

asymptotic formula for A:

L“ — A.’
A=–—— c= 1.048 (a/A)2.

A.’
(8)

Comparison with the results obtained numerically from the

exact characteristic equation showed that (8) gives an error

of less than 3 percent for eccentricities up to 0.3.

VII I. THE COAXIAL ELLIPTIC GUIDE WITH

INNER STRIP CONDUCTOR

The complementary problem of the coaxial waveguide

with an elliptic-shielding cylinder and inner strip conductor

having edges at the focal points of the ellipse can be treated

using the same approach of Sections III and IV for the ridged

guide. This problem is a special case of the more general prob-

lem of the coaxial transmission line with elliptic conductors

[6], [7], when the eccentricity of the inner conductor is unity.

Without many details, the results can be summarized as

follows.

In addition to the dominant TEM mode with an infinite

cutoff wavelength, the higher TE and TM modes compose

two sets: 1) regular or hollow guide modes H.~” and E~~6,

whose generating functions are given by (4) and (6), and

2) coaxial strip guide modes Hnfis and En~S, which have wave

functions of the form a) for H~~’ modes:

# = ~%(% P)~on(~’, +)) ? 2=1,2,... (9)

where

Ron(h, M) = Jon(h, p) –

The function satisfies the

inner strip conductor as

Jon’(h, O)
Non(h, ~).

No.’(h, O)

boundary conditions on the

Ron’(h, O) = O

and it is odd as So. is an odd function with respect to the line

@= O. Cutoff wavelengths maybe determined from the charac-

teristic equation

Ron’(h, KO) = O. (9a)

b) For Efiwg modes,

~ = Re.(h, p) Se.(lz, 4), ft=o, 1,2, . . . (lo)

where

Je~(lz, O)
Re~(h, P) = Jen(h, P) – Ne.(h, P).

Ne.(k, O)

Function ~ must have zero values on the elliptic boundary;

therefore,

Re.(h, MO) = O. (lOa)
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Fig, 5. Cutoff characteristics of the H1l’, Hz1’, E018, and Ells modes
in the coaxial elliptic waveguide with strip inner conductor.

Equation (lOa) determines the cutoff wavelengths of these

modes. Modes Hn~’ and Enn’degenerate into their correspond-

ing circular hollow guide modes as the eccentricity (ratio of

strip width to major axis) tends to zero.

The dependence of the cutoff wavelengths on the eccen-

tricity was computed for the lowest two of each of the H’ and

E’ mode sets and is illustrated by the curves of Fig. 5.

For eccentricities less than or equal to 0.3, the guide is

very nearly circular and can be regarded as a coaxial trans-

mission line with strip inner conductor.

IX. CONCLUSIONS AND REMARKS

Needless to say, (5a), (7a), (9a), and (lOa) determine the

allowed values of h, or the cutoff wavelengths are exact for the

case of elliptic guide. Therefore, using a suitable computa-

tional method these quantities can be determined to any

required degree of accuracy. The transition to circuIar ridged

or strip guides, however, introduces a certain amount of error

in the determination of h, which is expected to be of relative

magnitude of the order of (a//l )‘. If more accurate results are

required, corrections have to be made using well-known per-

turbation methods and regarding the circular guide to be an

elliptical one with slightly deformed boundaries,

Ridged and strip guides under study are idealized struc-

tures with infinitely thin ridges and strips. Practical guides

of course use ridges and strips of finite thickness, and there-

fore may have cutoff wavelengths different from those com-

puted. However, it is believed that the simplified theory dis-

cussed will give values that are at least of the correct order of

magnitude and may be helpful in the design. Accurate values

can be obtained either by introducing corrections or by direct

measurement, if necessary.
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