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 The ray-model of light treats light as a beam of rays and successfully explains 

a few basic phenomena related to the propagation of light inside a dielectric 

waveguide such as an optical fiber. But these explanations are more of a qualitative 

nature and perhaps are not conclusive. To get a better insight into the finer aspects 

of propagation of light inside an optical fiber and also to understand them 

qualitatively as well as quantitatively, we have to refer to a more advanced model of 

light which is known as the “Wave-Model”. 

 Wave-Model of light treats light as a transverse electromagnetic wave. Then 

the propagation of light inside an optical fiber is explained in terms of the propagation 

of an electromagnetic wave inside a bound medium like the optical fiber which is a 

cylindrical dielectric waveguide. The purpose of using this model is to find out the 

relationship between the wavelength of light and its phase constant, so that we can 

then investigate the velocity of different modes inside the optical fiber. But prior to 

this analysis, let us first adopt a particularly suitable co-ordinate system to make the 

analysis simpler.  

 Since the optical fiber is a form of cylindrical dielectric waveguide, it would be 

very wise to choose the cylindrical co-ordinate system for our analysis. The figure 

5.1 below shows the cylindrical co-ordinate system that we shall adopt for our 

analysis. 

 

Figure 5.1: Cylindrical Co-ordinate system 

 From the basics of electromagnetic wave theory we already know that if n1 

and n2 are the refractive indices of core and cladding respectively, then 

                                                
  

                                                    
  

                                 

                                  

 For more simplicity of analysis, the cladding is assumed to be infinitely large 

in comparison to the wavelength of the light under study. The analysis then reduces 

to calculations across only one interface which is the core-cladding interface. The co-

ordinates of any point in the above system is of the form (r, ϕ, z), where ‘r’ is the 

radial distance of the point from the axis of the fiber, ‘ϕ’ is the angle between the 
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meridional plane containing the point and a reference meridional plane and ‘z’ is the 

depth of the point into the fiber core as shown in the above figure. 

 With these assumptions, let us now pop up a problem statement for our 

analysis. Let us investigate the nature of the fields that exists inside an optical fiber 

core when light energy propagates through the fiber. For this we presently ignore the 

source of electromagnetic energy and also assume the core to be a perfectly source 

free dielectric material. Whenever we encounter such a problem statement in 

electromagnetics, we always solve the Maxwell’s equations subject to the given 

constraints of the problem. Maxwell’s equations for electric and magnetic fields in a 

source free medium can be written as: 

(a)  ⃗⃗   ⃗⃗             ⃗⃗                                

(b)  ⃗⃗   ⃗⃗             ⃗⃗                          

(c)  ⃗⃗   ⃗   
  ⃗⃗ 

  
       ⃗⃗     ⃗⃗         ⃗⃗                  

(d)  ⃗⃗   ⃗⃗   
  ⃗⃗ 

  
           ⃗⃗    ⃗⃗         ⃗⃗                  

From the above equations we find that the equations (c) and (d) are coupled 

and so, our first step would be to de-couple these two equations so as to obtain 

independent expressions for electric and magnetic fields and then subject them to 

the given limitations and conditions. The final expressions for the two fields then 

represent the nature of the fields in the medium under investigation. 

If we substitute the relation  ⃗⃗    ⃗⃗  in equation (a), we obtain 

 ⃗⃗  (  ⃗ )    

Since the medium is homogeneous, ϵ is independent of space and so 

 ⃗⃗   ⃗    

Similarly, since the fiber core material can be assumed to be a perfect 

dielectric, we obtain from equation (b): 

 ⃗⃗   ⃗⃗    

For de-coupling equations (c) and (d), we take the curl of each equation 

separately and then substitute one equation into the other. When we take the curl of 

equation (c), we get 

 ⃗⃗   ⃗⃗   ⃗⃗    ⃗⃗  
  ⃗⃗ 
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  ⃗⃗   ⃗⃗   ⃗⃗   
 

  
 ⃗⃗     ⃗⃗    

  ⃗⃗   ⃗⃗   ⃗⃗    
 

  
  ⃗⃗   ⃗⃗    

 Substituting the value of ( ⃗⃗   ⃗⃗   from equation (d) we get  

                                             ⃗   ⃗   ⃗     
  

   
 ⃗                        (5.2) 

From the basic vector identities we know that, for any vector    

                                         ⃗⃗   ⃗⃗      ⃗⃗ ( ⃗⃗    )        

If we use this identity in equation (5.1), we obtain 

 ⃗⃗ ( ⃗⃗   ⃗ )     ⃗     
  

   
 ⃗   

                                                 ⃗     
  

  
  ⃗⃗            (Since, ⃗⃗   ⃗   ) 

                                                 ⃗⃗             
  

   
 ⃗⃗                         (5.2) 

Similarly, if we perform similar operations to equation (d) above, we would 

obtain a similar expression for magnetic field too. That is, 

                                                ⃗⃗⃗            
  

   
 ⃗⃗⃗                              (5.3) 

The two equations (5.2) and (5.3) are called the basic Wave Equations. Thus 

it shows that when we consider time varying electric and magnetic fields, they 

together constitute a wave phenomenon in the medium under study. In order to 

investigate the behaviour of electric and magnetic fields inside the core of an optical 

fiber, we have to solve the above wave equations to get the expressions for electric 

and magnetic fields by applying the proper boundary conditions. In other words, we 

have to conglomerate all the knowledge and understanding that we have, based on 

the ray model, and then apply it to find out the nature and characteristics of the 

electromagnetic fields that can exist inside the core of the optical fiber.  

Since the two wave equations are similar to each other we may hence write a 

general expression for a wave equation involving any general vector of magnitude V 

in the cylindrical co-ordinate system as: 

                        
 

 

 

  
( 

  

  
)  

 

  

   

   
 

   

   
    

   

   
                  (5.4) 
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We all know that the electric field and the magnetic fields are vector quantities 

which, in general, have three orthogonal components. Thus, in total, there are six 

components to be determined for the fields to get a detailed behaviour of the fields 

inside the optical fiber core. This derivation, though looks cumbersome and 

complicated at the very first glance, is not so tedious. The reason behind this is very 

simple. Since there are four Maxwell’s equations that are satisfied simultaneously by 

all the six components of the fields, so it can be clearly said that all these 

components are not completely independent. There must be some kind of inter-

relation between them. Hence in order to simplify matters we solve the Maxwell’s 

equations for any two components of the fields, which we assume to be 

independent, and then try to express the other components in terms of these 

components. If we choose two transverse field components there is nothing special 

about the transverse components because at a single point there may be an infinite 

number of possible components and as such there may infinite number of possible 

solutions. The best choice of the two components would then be, to choose the 

components in the direction of the net propagation of electromagnetic energy. These 

components are hence called as longitudinal components. Since in our analysis we 

have assumed the ‘z’ direction as the direction of propagation of net electromagnetic 

energy, we find out the electric field component Ez and magnetic field component Hz 

and then try to express the other components in terms of Ez and Hz. Once we 

determine the expressions for these two longitudinal components, we can then 

obtain the remaining four components in terms of these components by simple 

substitution in the following equations: 

   
  

  
{ 

   

  
 

  

 

   

  
} 

   
  

  
{
 

 

   

  
   

   

  
} 

   
  

  
{ 

   

  
 

  

 

   

  
} 

   
  

  
{
 

 

   

  
   

   

  
} 

Here           ; ω=Angular Frequency of the launched light; β= Phase 

constant of the material of the core. 

Few significant notions that can be observed in the expressions for the above 

transverse components are: 

(i) Each of the transverse components are expressed in terms of derivatives 

of the longitudinal components Ez and Hz. 
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(ii) The transverse components of the electric field and the magnetic field 

exist even if any one of the longitudinal components vanishes. 

(iii) But if both the longitudinal components vanish together all the field 

components vanish indicating the absence of any field in the core. In other 

words, if electromagnetic energy has to propagate along a fiber, the fields 

should have atleast one longitudinal component. That is Transverse 

Electromagnetic Modes (TEM) are not possible inside the core of th 

optical fiber. 

The observation (ii) gives three distinct types of field distribution which lead us to 

three different modes in which electromagnetic waves can travel inside an optical 

fiber core. That is, 

(a) If Ez=0, there is no longitudinal component of electric field in the direction of 

net propagation of electromagnetic energy. The electric field, in this case is 

transverse to the direction of the propagation of the wave at every point. 

These types of waves are, hence, called as Transverse Electric waves and 

the mode of propagation of these waves is said to transverse electric mode 

(TE). 

(b) If Hz=0, then there is no longitudinal component of magnetic field in the 

direction of net propagation of electromagnetic energy. The magnetic field, in 

this case is transverse to the direction of the propagation of the wave at every 

point. These types of waves are, hence, called as Transverse Magnetic 

waves and the mode of propagation of these waves is said to transverse 

Magnetic mode (TM). 

(c) If Ez≠0 and Hz≠0, the resultant mode contains all the six components of the 

fields and are called hybrid modes of wave propagation. 

Transverse electric and transverse magnetic modes are related to 

propagation of meridional rays; whereas hybrid modes are related to the propagation 

of skew rays as we had seen earlier. This phenomenon of exhibition of three 

different modes of propagation was also explained by the ray model of light. With this 

backdrop of information, let us proceed to solve the equation to determine the 

expressions for the longitudinal components Ez and Hz.  

For solving the wave equation for Ez and Hz let us assume a scalar quantity 

‘ψ’ which may represent any one of the two components. This assumption of a single 

scalar is made in order to simplify the analysis because the wave equations for both 

the field components are identical and so solution for one will be identical to the 

solution of the other. Thus assuming a single scalar for both the fields and then 

replacing the scalar by the appropriate field in the final solution seems to be easier 

than solving separately for each component. Thus the wave equation in terms of this 

scalar will look like equation (5.4) if we replace V by ‘ψ’. 
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 That is: 

                                                   
  

   
   

                     
 

 

 

  
( 

  

  
)  

 

  

   

   
 

   

   
    

   

   
  

                     
   

   
 

 

 

  

  
 

 

  

   

   
 

   

   
   

   

   
                (5.5)  

If we assume all the field components to be time-harmonic with an angular 

frequency of ‘ω’ then differentiating the quantity ‘ ’ with respect to time we would 

obtain the following: 

                                                    (Since   is time-harmonic) 

Therefore  

                                                  
  

  
      

And  

                                                
   

   
       

This shows that the second derivative of a time harmonic quantity with angular 

frequency ‘ω’ would be equivalent to multiplying that quantity by ‘-ω2’. Substituting 

the above derivative in equation (5.5) we obtain: 

                         
   

   
 

 

 

  

  
 

 

  

   

   
 

   

   
                      (5.6) 

Equation (5.6) is a partial differential equation that can be solved by the 

method of separation of variables. Since the differential equation is made up of three 

independent variables ‘r’, ‘ϕ’ and ‘z’, ‘   has to be a function of the three independent 

variables. Let us assume the solution of the above equation to be of the form: 

                                                                             (5.7) 

Since we are interested in investigating here a travelling mode along the +z 

direction (along the axis of the fiber) the field should have z variation as e-jβz, where β 

is the modal propagation constant, yet to be determined. We, therefore, have: 

                                                                                   (5.8) 

If we differentiate equation (5.7) with respect to ‘z’ we obtain: 

                                      
  

  
      ;   
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Let us now consider a point (r, ϕ, z) in the optical fiber core. Keeping r and z 

fixed, if we vary ϕ, the point moves along a circle in a plane transverse to the axis of 

the fiber core (z-direction). For a change in ϕ by multiples of 2we reach to the same 

point (r, ϕ, z), i.e. (r, ϕ, z) ≡ (r, ϕ+2m, z); m is an integer. Consequently, we should 

have 

                                                 

This can be achieved if we choose 

                                         (  is an integer)                  (5.9) 

 (Note:                           ) 

Hence,  

                                        
  

  
     ;    

   

            

Substituting all these derivatives in equation (5.6) we get the following 

expression: 

                  
   

   
 

 

 

  

  
 

 

  
                      

                  
   

   
 

 

 

  

  
 

 

  
                       

                  
   

   
 

 

 

  

  
 {          
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 {          

  

  }]      

                [
  

   
 

 

 

 

  
 {          

  

  }]         

                
      

   
 

 

 

     

  
 {          

  

  }             (5.10)  

Equation (5.10) is the well-known Bessel’s Equation which cannot be solved 

in the closed form. The series solutions of the equation are called Bessel’s functions. 

Let us define: 

                                                                                (5.11) 

We have a variety of solutions to the Bessel's equation depending upon the 

parameters ’  ‘ and ‘q’. ‘  ‘ is an integer and a positive quantity. Depending upon the 

choice of q i.e., real, imaginary, complex, we get different solutions to the Bessel's 
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equation. So to choose the proper solution we must have the physical understanding 

of the field distribution. 

 

For a travelling field, β is real, and for lossless media µ and ϵ are real. 

Therefore q2 is also real though it could be positive or negative. The quantity q could 

therefore be either purely real (if q2 is positive) or purely imaginary (if q2 is negative). 

Depending upon the sign of q2, the Bessel’s equation has different solution. Equation 

(5.10) being a second order differential equation, has two arbitrary constants. 

For q2>0, the solutions are called the Bessel functions and the Neumann 

functions, and are denoted by Jv(qr) and Nv(qr) respectively. ‘ ’ called the order of 

the function and the quantity in the brackets is called the argument of the function. 

The general solution to equation (5.10) can be written as a linear combination of two 

functions as: 

                                                                         (5.12) 

Here α1 and α2 are the arbitrary constants. Figure (5.2) below shows a 

representation of the Bessel and Newmann functions: 

 

Figure 5.2: Bessel and Newmann functions. 

 For q2<0, the solutions are called the Modified Bessel functions and are 

denoted by Kν(qr/j) and Iv(qr/j) respectively. In this case, q being purely imaginary, 

(qr/j) is a real quantity. The solution to equation (5.10) in this case can be written as 

                                                     (
  

 
)      (

  

 
)                            (5.13)  

 Here η1 and η2 are the arbitrary constants. 

 Figure (5.3) shows the Modified Bessel functions. Since, the propagation 

constant β is yet undetermined, it is not clear this juncture whether q is real or 

imaginary and which solution to be chosen for the wave equation (5.10). In fact, this 
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dilemma cannot be resolved unless we make use of our already gathered knowledge 

and understanding of the fields from the Ray-model of light.  

 

Figure 5.3: Modified Bessel Function 

 From figure 5.2 and 5.3 it is clear that 

(1) The function Jv(x) is always finite for all values of ‘x’. Except J0(x) which is 1 at 

x=0, all other Jv(x) are zero at x=0. 

(2) The functions Nv(x) asymptotically diverge to    as the argument x→0, 

though it is finite at all values of x≠0. 

(3) Both functions Jv(x) and Nv(x) have oscillatory behaviour as a function of ‘x’. 

(4) The functions Kv(x) are monotonically decreasing functions of ‘x’, and they go 

to zero as x→ . 

(5) The functions Iv(x) are monotonically increasing functions of ‘x’, and they 

diverge to   as x→ . 

(6) Both functions Kv(x) and Iv(x) are monotonic functions of ‘x’. 

Let us refer to the problem of guided mode propagation. We say a mode is 

guided when its fields are confined to the guide, and outside the guide the fields 

decay monotonically. Also, as seen in the wave-front investigation of the ray-model, 

the nature of the field pattern generated normal to the core-cladding interface was 

due to the superposition of the wave-fronts of the incident and the reflected rays and 

therefore exhibits an amplitude variation going through maxima and minima in space 

corresponding to constructive and destructive interference. For a guided mode we 

hence expect a spatially oscillatory field inside the dielectric rod, and a decaying field 

outside of it. 

The choice of solution inside and outside the rod is quite obvious now. Inside, 

the rod, we should have a solution given by equation (5.12), and outside the rod 

solution should be given by equation (5.13). One thing to be noted here is that in 

saying so we have inherently put bounds on the value of β, inside and outside the 

core of the optical fiber. 

Inside the core of the optical fiber r < a and q2>0 and therefore          
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In the cladding of the optical fiber, r > a and q2 < 0 and therefore          

 Thus the propagation constant can be written in the bounded form as: 

                                          √          √                            (5.14) 

 Although the solution given by equation (5.12) is appropriate for (r < a) and 

the solution given by equation (5.13) is appropriate for (r > a), we notice here that 

both the terms in these equation do not correctly represent the field behaviour in the 

optical fiber. Since the fields are always finite at every point, so α2 and η2 must be 

zero because Nv(x) and Iv(x) are not finite at every point in space. 

 The solution to the wave equation in the core and cladding regions of the 

optical fiber can thus be written as 

                                                                       For r < a     (5.15) 

                                                                 For r > a     (5.16)  

Where we have defined 

                                        √                          For r < a       (5.17) 

                                               √                           For r > a       (5.18) 

The equations (5.15) and (5.16) give the solution of the wave equation in an 

optical fiber which shows the behaviour of the electromagnetic fields in the core and 

cladding regions of an optical fiber. 

 Thus the expressions for electric and magnetic fields inside the core and 

cladding regions can be written as: 

Inside core (r < a): 

                        

                                                             

Inside Cladding (r > a): 

                                                               

                                                               

 Here A,B,C and D are arbitrary constants and their values can be determined 

by substituting appropriate boundary conditions. 

 




