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In physics,Gauss's law for magnetismis one of the four Maxwell's equations that underlie classical electrodynamics. It states that the magnetic

field B has divergence equal to zero,[1] in other words, that it is a solenoidal vector field. It is equivalent to the statement that magnetic monopoles
do not exist. Rather than "magnetic charges", the basic entity for magnetism is the magnetic dipole. (Of course, if monopoles were ever found, the
law would have to be modified, as elaborated below.)

Gauss's law for magnetism can be written in two forms, adifferential formand anintegral form. These forms are equivalent due to the divergence
theorem.

The name "Gauss's law for magnetism"[1] is not universally used. The law is also called "Absence of free magnetic poles".[2] (or some variant);

one reference even explicitly says the law has "no name".[3] It is also referred to as the "transversality requirement"[4] because for plane waves it
requires that the polarization be transverse to the direction of propagation.
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Differential form

The differential form for Gauss's law for magnetism is:

where∇• denotes divergence, andB is the magnetic field.

Integral form

The integral form of Gauss's law for magnetism states:

whereS is any closed surface (see image right), and dA is a vector, whose magnitude is the area of an infinitesimal
piece of the surfaceS, and whose direction is the outward-pointing surface normal (see surface integral for more
details).

The left-hand side of this equation is called the net flux of the magnetic field out of the surface, and Gauss's law for
magnetism states that it is always zero.

The integral and differential forms of Gauss's law for magnetism are mathematically equivalent, due to the
divergence theorem. That said, one or the other might be moreconvenient to use in a particular computation.
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magnetic flux through
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necessarily zero.

The law in this form states that for each volume element in space, there are exactly the same number of "magnetic
field lines" entering and exiting the volume. No total "magnetic charge" can build up in any point in space. For
example, the south pole of the magnet is exactly as strong as the north pole, and free-floating south poles without
accompanying north poles (magnetic monopoles) are not allowed. In contrast, this is not true for other fields such as
electric fields or gravitational fields, where total electric charge or mass can build up in a volume of space.

In terms of vector potential

Due to the Helmholtz decomposition theorem, Gauss's law formagnetism is equivalent to the following statement:[5]

[6]

There exists a vector fieldA such that

.

The vector fieldA is called the magnetic vector potential.

Notethat there is more than one possibleA which satisfies this equation for a givenB field. In fact, there are infinitely many: any field of the form
∇φ can be added ontoA to get an alternative choice forA , by the identity (see Vector calculus identities):

since the curl of a gradient is the zero vector field:

This arbitrariness inA is called gauge freedom.

In terms of field lines

The magnetic fieldB, like any vector field, can be depicted via field lines (alsocalledflux lines)-- that is, a set of curves whose direction
corresponds to the direction ofB, and whose areal density is proportional to the magnitude ofB. Gauss's law for magnetism is equivalent to the
statement that the field lines have neither a beginning nor an end: Each one either forms a closed loop, winds around forever without ever quite
joining back up to itself exactly, or extends to infinity.

Modification if magnetic monopoles exist

If magnetic monopoles were discovered, then Gauss's law formagnetism would state the divergence ofB would be proportional to themagnetic
charge densityρm, analogous to Gauss's law for electric field. For zero net magnetic charge density (ρm = 0), the original form of Gauss's

magnetism law is the result.

The modified formula in SI units is not standard; in one variation, magnetic charge has units of webers, in another it has units of ampere-meters.

Units Equation

cgs units[7]

SI units (weber convention)[8]

SI units (ampere-meter convention)[9]

whereµ0 is the vacuum permeability.

So far no magnetic monopoles have been found, despite extensive search.

History

The equation was one of Maxwell's original eight equations. However, theinterpretation was somewhat different: Maxwell'sA field

directly corresponded to an important physical quantity which he believed corresponded to Faraday'selectrotonic state,[10] while the modern

interpretation emphasizes gauge freedom, the idea that there are many possibleA fields, all equally valid.[10]
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