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circuit was designed with a flat 10-d B gain in the fre-

quency band QO. Then beginning with these initial

parameter values, suppose it is desired to obtain a flat

gain at 12 dB. The Rosenbrock algorithm usually would

not converge. It appeared that a strong local minimum

existed at 10 dB. However, convergence could be ob-

tained by including the reflection loss terms in the per-

formance index, or by starting with new initial parame-

ter values for which the gain curve was not very flat. In

the case of the antenna load, convergence to a reason-

able solution was obtained only by minimizing the re-

flection loss terms. Each design took approximately two

minutes of 360/7.5 time except for the two-stage anlpli-

fier which required approximately five minutes.

Additional problems being studied are the design of

broad-band low-noise receivers and the design of dis-

tributed filters. Also, other minimization algorithms

which use the gradient of E are being studied at the

present time.
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Wave Propagation in Hollow Conducting

Elliptical Waveguides

JAN G. KRETZSCHMAR

Abstract—The propagation of electromagnetic waves in a hollow

perfectly conducting pipe with an elliptical cross section and the re-

sults of numerical calculations of the cutoff wavelength of nineteen

successive modes are presented. Some inaccuracies in the usual

mode classification are proven and corrected. As a large number of

numericaf calculations are required to determine the cutoff wave-

length for a single set of dimensions and a single mode, approximate

formulas for the eight lowest order modes are suggested. These

formulas are of a simple algebraic form and give a relative error

smaller than 0.25 percent. With the exact succession of the different

modes it becomes possible to compare the bandwidth of an elliptical

waveguide to the bandwidth of the rectangular and circular guide.

The measured values of the cutoff wavelength of different modes

agree very well with the theoretical calculated values.
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1. INTRODUCTION

I

N 1938 Chu [2] presented the theory of the trans-

mission of electromagnetic waves in hollow conduct-

ing pipes of elliptic cross section. lHe obtained

numerical results for the cutoff frequency and the at-

tenuation for six different waves. In 1947 Kinzer and

Wilson [3] published the first approximate formulas

to determine the cutoff frequency of the TE,o1, TM.11,

and TM,n modes for a given elliptical cross section, The

authors did not mention the degree of accuracy of their

formulas. The impedance of an elliptic waveguide oper-

ating in the TECII mode was discussed by Valenzuela in

a paper published in 1960 [5 ]. Using new approxima-

tions for the modified Mathieu functions, Piefke [7] ob-

tained attenuation constants for twelve modes. The

optimum design dimensions for minimum attenuation,
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when an elliptical waveguide is used in the fundamental

mode (TE,II) and the practical characteristics of a long

single-piece flexible aluminum waveguide of approxi-

mately elliptical cross section were presented by Maeda

[9], [10] in 1968.

The mean advantages of elliptical waveguides are that

long continuous lines are easily manufactured and trans-

ported. Furthermore, there is no mode splitting or rota-

tion of the polarization plane for slight deformations of

the cross section while simple matched connecting parts

to rectangular and circular waveguides are possible.

Although elliptical waveguides are commercially avail-

able and have already been used in several applications

such as multichannel communication and radar feed

lines, there still remain a lot of unresolved theoretical

and practical problems in this domain.

This paper presents the results of exact numerical

calculations of the cutoff frequency of nineteen modes

in an elliptic waveguide. The calculations were made

on an IBM 360/44 using Bessel function product series

for the modified Mathieu functions of the first kind [1],

[14], [15].

The exact succession of the modes permits a compari-

son of the bandwidth of elliptical waveguides with the

bandwidth of rectangular and circular waveguides. For

eccentricities between 0.05 and 0.95, practical formulas

for the determination of the cutoff wavelength are pre-

sented for the eight lowest order modes. They are quite

simple and give a relative error smaller than 0.25 per-

cent. The theoretical results are compared with mea-

surements on a waveguide operating in the 2–4-GHz

frequency band. The difference between calculated and

measured values is smaller than 0.6 percent.

II. WAVE EQUATION FOR A PERFECT

ELLIPTICAL WAVEGUIDE

We assume an air-filled hollow-piped uniform wave-

guide of elliptical cross section with a perfect conducting

wall [Fig. 1(a) ]. Orthogonal elliptic coordinates ($, q, z)

are used to solve Maxwell’s equations. Such a coordinate

system is shown on Fig. 1 (b). The contour surfaces of

constant & are confocal elliptical cylinders while those of

constant ~ are confocal hyperbolic cylinders. The dis-

tance between the foci F, F’ is 2h. The con focal cylinder

~ =to forms the inner boundary of the waveguide while

the z axis coincides with the longitudinal axis of the

pipe. The eccentricity e of the cross section is given by

I / cosh ~0, while the major axis (AA’) and the minor

axis (BB’) of the ellipse are 2U = 2h cosh $0 and

2b = 2h sinh &O. A harmonic time variation and a propa-

gation in the positive z direction are assumed. In com-

plex representation these assumptions result in a multi-

plication of all wave functions by exp(j(d – @z)). For a

given mode the phase factor ~ is a function of the cross

section and the frequency of the wave and is to be de-

termined from the boundary conditions. As the investi-

gated elliptical waveguide is a homogeneous, simple, and

perfect guide [12 ], all modes will have either H.= O

(TM modes) or IL=O (TE modes).

e’

“e
R

k
(b)

Fig. 1. (a) Elliptical waveguide. (b) Orthogonal elliptical
coordinate system.

From Maxwell’s equations we get the following wave

equation for -E,(T31) or 17z(TE):

[

E.

1[1; +; +4(cosh 2& – COS 2q) ~ =0 (1)
z

where

4q = kC2h2 (2)

k.’ = C02,0P0– ~’ = 47r2/iC2 (3)

la = ae. (4)

Using the method of separation of variables we obtain

the following solution for the wave equation:

In these equations ce~(q, g) and se~(q, q) are ordinary

even and odd Mathieu functions while Ce~({, q) and

Se~(&, q) are the corresponding modified Mathieu func-

tions of the first kind and order m. The other field com-

ponents are easily obtained by applying Maxwell’s

equations. As may be seen from (5) there are four types

of propagation in an elliptical waveguide, namely, even

and odd TE and TM modes. To distinguish between the

different modes the first index of each mode designation

will be c (cos-type) for an even mode and s (sin type)

for an odd mode, while the second index m is related to
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the order of the Mathieu function. Furthermore, the ample. The three possible series for the involved modi-

following equations must hold to satisfy the boundary fied Mathieu function Cel(~, q) are

conditions on the wall:

Th’1 modes: Cefi(~O, q) = O (even)

Se~((o, g) = O (odd)
(6)

TE modes: Cen’(~O, q) = O (even)

Se~’(.$,, q) = O (odd)
(7)

with

cosh & = e–l. (8)

with
As the parameter g is related to the cutoff wave num-

ber k. by (2), we get a different mode for each root of (6)

and (7). To resolve this ambiguity, a third subscript n,

corresponding to the nth parametric root, is required in

the mode designation. With (2) the general formula for

the cutoff wavelength of a TE or TM mode in an ellipti-

cal waveguide becomes

irae
h.==.

dq
(9)

Cel(.$, q) = 5 C2,+1[l,(Vie-g) J,+l(tiFeg)
,=0 (12)

D,j~l = (– l)J+l
eel’ (r/2, q)

—.—–— A @+~
dq .4,

(13)

C’2,+1=

cel(o, q) =

(x?,t(T/2. 0) =

For a TM.~.(TM,J mode q =Q,~.(qJ is the nth par- ‘-’ ‘ “ “

ametric zero of the even (odd) modified Mathieu func-

tion of order m with argument $0. For a TE, ~,, (TE,~,)

mode q = ~C~n(~,~.) is the nth parametric zero of the first

derivative of the same function.

III. THE CtTTOFF WAVELENGTH AS A FUNCTION

OF THE ECCENTRICITY AND MODE

According to (9) the cutoff wavelength of a given

mode is a function of the geometry of the cross section

and the parameter q. This parameter being also a func-

tion of the mode and eccentricity (6) and (7), it follows

from (9) that the cutoff wavelength of any mode is com-

pletely determined by the dimensions of the elliptical

cross section. This relation may be represented in dif-

ferent ways.

.4. The Function g =f (e)

It is clear that the exact computation of the modified

Mathieu functions forms the main difficulty in the

study of elliptical waveguides. These functions may be

calculated by means of hyperbolic functions series,

Bessel functions series, and Bessel functions product

series. I t is proved that these series and their @th deriva-

tives are absolutely and uniformly convergent in any

finite region of the& plane or in any closed interval of ~

real [1].

The Bessel functions product series are most suitable

for practical computer calculations as they have the

highest rate of convergence. In a recent paper [14], [15]

it was shown that the rate of convergence of the series

with hyperbolic functions is so slow that they are only

useful for the lowest order functions and for a limited

interval of the argument $ and the parameter g.

As the computations for the different modes are simi-

lar we shall only deal with the TM~ll mode as an ex-

and with J,, Jl+l Bessel functions of the first kind.

The function y = C’el($, q) is a solution of the modified

Mathieu equation

y{‘ – (a – 2q cosh 2.&)y = O (17)

if a equals the characteristic number al, which is the first

root of the following infinite continued fraction

where

a — (2j + I)z
v,,+, ==—————— (j > o).

q

Once al has been determined, the coefficients .12,+1 are

obtained using the following relations:

Starting with .4s, we compute the successive coefficients

until we reach one smaller in absolute value than a given

limit t. The infinite series are then truncated and limited

to that last term, say A ~~+1, DZ~+l, and C:,,+I. Defining

we normalize the coefficients by dividing them by the

square root of S or
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Fig. 2. Function q =j(e) for TM.11, TE.u, and TE.zI mode.

The corresponding coefficients D2j+I and Czi+l, which

are functions of A 2j+I and q alone, are easily obtained

with (13) and (14). As it is much easier to determine the

zeros than the parametric zeros, the first root go of

Cel($, q.n) = O is evaluated for a given q.11 value. With

(8) we obtain then the required eccentricity of the cross

section. Figs. 2–4 give the parameter q as a function of

the eccentricity for the eight lowest order waves and

of eccentricities between 0.05 and 0.95.

B. The Function hG/P = h(e)

The perimeter P of an ellipse with eccentricity e and

major axis 2a is given by

P = 4aE(e2) (18)

with E(e2) the complete elliptic integral of the second

kind. With (9) and (18) the ratio of the cutoff wave-

length to the perimeter becomes

A. 7re

F=
(19)

4~~E(e2) “

From (19) we conclude that the ratio of the cutoff wave-

length of a given mode to the perimeter of the cross

section is a function of the eccentricity alone.

The results for the eight lowest order modes are given

in Fig. 5. This method of representation is classic and

~
10

1!
OJ-
091–

.,l~-.. oj & & & . ;,’.

Fig. 3. Function q =~(e) for TM*u, TE.u, and TEm mode.

qA
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Fig. 4. Function g =~(e) for TE.01 and TMOOI mode.



KRETZSCHMAR : PROPAGATION IN ELLIPTICAL WAVEGUIDES 551

t
At/P

odd modes t

0.8

even modes /’

0.6

/ I --- - \

0 ,e
+-~.l 1 I I I +

0.2 0.4 0.6 0.8 1.0

Fig. 5. Function hC/P = h (e) for eight lowest order waves.

was introduced by Chu [2]. Using Bessel functions

series, he obtained exact results for the TE~lI, TE,u,

TM,w, TM,u, TECOI, and TMSII modes and this for eccen-

tricities between 0.0 and approximately 0.8. From Fig. 5

it is clear that these six modes given in most publica-

tions and textbooks are not the lowest order waves, as

the even and odd TE.H modes were forgotten in the clas-

sification. In 1964 Piefke derived new asymptotic for-

mulas for the modified Mathieu functions [8]. By means

of these formulas and the Bessel functions series he ex-

tended the X~/P chart with the TM,02, TE~I.z, TE,n,

TMCIZ, TEC02, and TM81Z modes [6], [7]. It is clear that

the even and odd TE21 modes were omitted again,

Furthermore, there are several other higher order

modes with a cutoff wavelength greater than the cutoff

wavelength of the modes given in [7].

As to the asymptotic approximations for the modified

Mathieu functions we must remark that they have a

sufficient accuracy only if 2 ~~ cosh & is much greater

than unity. For the’ determination of the cutoff wave-

length of an elliptical waveguide, this condition becomes

or with (9)

AC/a << 2x. (20)

The consequences of this condition are discussed in

Section III-C.

‘l--=zT--.

2 -
‘.

1 I I I ! 1
0.0 0.2 O.L 0.6 o~ 1.0 e

Fig. 6. Function X./a= g(e) for nineteen successive modes.

C. Function hJa = g(e)

The general formula (9) may be written as

(21)

This function was computed for nineteen successive

modes and for eccentricities between 0.0 and 0.95 at

least. The results are represented on Fig. 6. This figure
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3’Icde

m(.ll

TEcoI

TM .,,

TM.,,

T.~BI.E I
.- .- —

Forn]ula

Q,I I == 0.8476e2 –0.f)013eJ+0.0379e~
7,11= – ~.0064e +0.8838ez –0.0696e’’+0.082 Oe’

Z,ZI = 0.0001 e+2.3260e2+0.0655eJ+0.9816e’
~.?l = –0.0060e +2. 1493e2+0.9476es –0.0532eJ

z.01 = –0.0~73e +3.8569ez – 1.3 105e8+4.6802e’
~.oI= –1.2264–l.3936e+ l.5515e’+1.3156/(1 –e}

~,11= —0.0018e+0.8974ez –0.3679e~+l.612eA
@I= –0.1483 – 1.0821 e+l.0829e’+0.3493 /(1 –e)

GM= –0.ofM3e +2.4700e2 –0.9098e1+2.8655e4
~.,1=1.0692 –5.2863e+5.9122 e2+0,$171/(1–e)

g.01 = –0.oolbe+l .488e2–0.314e~ +l.425e’
q.01= –0.222–0.728e+l .308e’+0.341/(1 –e)

~.11==–0.0049e+3.7888e2–0.7228e3+2.2314e’
y.,, = –0.1379– 1.3138e+3.9307e’ +0.4056/(1 –e)

gm = –0.0063e+3.8316e2– 1.1351 @+5.2229e4
q,n= –1.2014– l.6271e+2.1684e2 +l.3089/(1 –e;

illustrates very well the transitic,n from elliptical to cir-

cular cross section and is easier to use than Fig. 5 as the

latter requires the computation of the perimeter of the

elliptical cross section, The classification of the first

nineteen modes clearly shows that there exist several

other modes between the Tli1C02 and T31C12 modes. This

point was not made before. Furthermore, it turns out

that the cutoff wavelength of the TE=02 and the even

and odd TM M modes is not only smaller than the T31C31

mode but also smaller than the even and odd TE51 and

TEx~ modes which are not represented on Fig. 6. 1 t is

also obvious that the succession of the various modes is

a function of the eccentricity and that for e = O this suc-

cession becomes those of a circular waveguide. The cut-

off wavelength of the TECml mode (m= 1, 2, . . ) does

not vary very fast with the eccentricity and reaches a

well-defined nonzero value for e equal to unity. For all

other modes the cutoff wavelength tends to zero as the

eccentricity tends to unity.

Ancther interesti~g phenomenon is the fact that the

difference between an even and odd mode of the same

type and order becomes less pronounced for higher order

waves. As to condition (20) we notice that the asymp-

totic formulas are useful for great values of the eccen-

tricity or for very high-order waves. Nevertheless, we

must remark that condition (2[,) is more severe for even

than for odd modes and also becomes more severe ac-

cordingly as the order of the modified ~Iathieu function

becomes greater.

IV. APPROXIMATE FORMCLAS

FOR THE FUNCTION q =f(e)

The determination of the exact value of the parameter

g for a given mode and eccentricity is rather complicated

as may be seen from the preceding discussion. To avoid

this complexity, we derived an ammoxirnate anal~-tic. . .

& (%)

1%:.,
h

i
02

Inten al of e I.7 !mlX (percent)

10.0,0.4] 0.01
10.4,,1.0] 0,02

[0.0,0.42] 0.07
[0.42,1.0] 0.07

[0.0.5,0.45]
[0.45,0.95]

[0.0.5,0.50] 0.4
[0.513,0.95] 0.5

[0.05,0.60] 0.5
[0.60,0.95] ().5

[0.05,().5()] 0.2
[0.50,0.95] 0.2

[0.05,0.55] 0.3
[0.55,0.95] 0.3

[0.05,0.45] 0.3
[0.45,0.95] 0.3

7

I
.—— u.,.,

Kmlzs.h.n..

Fig. 7. Relative-error curve of approximate
formula for fu netion q.,, =-f(e).

relation between e and q for the eight lowest order

modes, For practical use, it is not only necessary to

ensure a known and sufficient accuracy but also to have

a simple algebraic form.

.Approximate formulas fc,r the TE,OI, TM,ll, and TM.11

modes have been proposecl by Kinzer and Wilson [3].

These formulas are approximations for the function

AC/a = g(e) and have the following general form:

A. E(e’)
. (22)

a aO + alE + a2E2 + a3E3

where E = 1 — <1 —ez and E(e2) is the complete elliptic

integral of the second kincl.

The accuracy of the proposed formulas is very good

for small eccentricities but drops for larger values
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(e greater than 0.6 or 0.75, depending upon the mode).

Dividing the involved interval of eccentricity (O.O5 to

0.95) in two parts and adopting the maximum error

criterion [17 ], it is possible to approximate the function

g =~(e) by q = ale +azez +ase3 +ale4 for small eccentrici-

ties and by g = bo +ble +bzez +bJ(l —e) for larger values.

The coefficients ai, bj are determined by means of a set

of four exact function values with arguments corres-

ponding to the four zeros of the Chebyshev polynomial

TA(e) in the involved interval of e. The optimum inter-

vals are determined experimentally.

The formulas for the different modes are given in

Table I. The range of validity and the absolute value

of the maximum relative error is given for each formula.

The relative-error curve of the approximation for the

TM,u mode is given as an example on Fig. 7. On the

same figure the relative-error curve of the formula

given by Kinzer and Wilson is drawn. The formulas

for the other modes have a similar error curve. When

the formulas of Table I are used to determine the cutoff

wavelength, the maximum relative error is only one

half of the value given in the last column of Table I.

V. BANDWIDTH OF ELLIPTICAL WAVEGUIDES

As to the bandwidth of elliptical waveguides, it is

clearly shown by Fig. 6 that the largest possible band-

width is obtained for eccentricities greater than approxi-

mately 0.86. This corresponds to an axial ratio of 0.5.

The bandwidth of an elliptical waveguide with axes 2a

and 2b is compared with the bandwidth of a rectangu-

lar waveguide with dimensions 2a and 2b and with a

circular waveguide with radius a.

The results for the various types are given in Table 11

for a =2b, i.e., e =0.866.

From Table II it follows that the cutoff wavelength

of the dominant TE~n mode in the elliptical waveguide

is smaller than the cutoff wavelength of the dominant

mode in the circular and rectangular waveguide. The

first higher order mode in the elliptical waveguide ap-

pears at a higher frequency than in the rectangular or

circular waveguide. The bandwidth of an elliptical

guide with a = 2b is 25 percent less than the bandwidth

of the corresponding rectangular waveguide but nearly

the double of the circular waveguide.

VI. EXPERIMENTAL RESULTS

To check the validity of the calculations, some experi-

ments were carried out on an elliptical resonant cavity

with the following dimensions: major axis 2a= 21,55 cm,

eccentricity e =0.66, and length L = 29.865 cm. The

cutoff wavelength of a given mode is calculated from

the resonant frequencies of the cavity. The results for

the TM.u mode are given here as an example. Table 111

gives the measured values of X.11 determined from the

successive resonant frequencies fo of the cavity. The

TABLE II

Dominant First Higher Band-
Type Mode A. Order Mode & width

Rectangular TEIO 4.00a
TEoI
TE20

2.Ooa 2.00a

Circular TEII 3.41a TMoI 2.61 a 0.80a
Elliptical TECII 3.35a ‘1’E021 1.84a 1..5la

TABLE III

Mode fo (MHz) h.~l(cm)

TM.112 2111 16.16

TM,113 2389 16.18

TMC114 2727 16.26

TM,115 3126 16.12

‘PMC116 3534 16.25

TMC117 3978 16.12

exact value of X.11 for the given waveguide is 16.21 cm.

As maybe seen, the relative error on Am is always smaller

than 0.6 percent. The results for the other modes are

similar,

VII. CONCLUSIONS

Using Bessel functions product series for the compu-

tation of the modified Mathieu functions of the first

kind on a high-speed digital computer, the exact cutoff

wavelengths of nineteen successive modes in a hollow

elliptical waveguide with an eccentricity varying from

0.00 to 0.95 are calculated. From these results it becomes

clear that some important modes were forgotten in the

classification until now.

A set of simple approximate formulas for the deter-

mination of the cutoff wavelength of the eight lowest

order waves is proposed. The accuracy of these formulas

is better than 0.25 percent. It is also proven that the

bandwidth of an elliptical waveguide with a major axis

equal to twice the minor axis is 25 percent less than the

corresponding rectangular waveguide but nearly the

double of the circular waveguide.

Some experimental results show that there exists a

good agreement between the measured and calculated

values of the cutoff wavelength.

Work is in progress to resolve some other important

problems of wave propagation in elliptical waveguides.

Among those we mention the study of the field config-

uration and attenuation of the lowest order modes. The

design of a mode chart for elliptical resonant cavities

has already been done and the results will be published

soon.
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On Plane and Quasi-Optical Wave Propagation

in Gyromagnetic Media

NIKOLAI EBERHARDT, VINCENT V. HORVATH, STUDENT MEMBER, IEEE, AND

R. H. KNERR

Abstract—To promote the development and understanding of

microwave magnetic devices, especially in the millimeter and sub-

milliieter range utilizing quasi-optical techniques, a discussion of

propagation and polarization of plane waves and narrow rays in

gyromagnetic media in an arbitrary direction is considered. It is as-

sumed that the medh.un can be described by a permeability tensor of

the Polder type. The approach is structured after classical crystal

optics but yields significantly dtierent results since each of the two

permitted rays is elliptically polarized. The ellipticities are derived.

The phase surfaces are discussed for the lossless case. There are no

optical axes but ranges of forbidden directions exist for one or both

rays. D, R, and the wave vector n form an orthogonal set at all times.

His confined to the B, n plane; it gyrates along an ellipse such that

the Poynting vector traces in time an elliptical cone which contains

the wave vector as one mantle line. Therefore, a narrow ray can be

understood to proceed along a helical path.
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I. INTRODUCTION

M

ANY particular solutions of Maxwell’s equa-

tions in magnetically y biased ferrites are known.

To name only a few, one may recall the work

of Walker [1] on the resonances of ellipsoids or the

theory of the junction circulator as derived by Bosma

[2], [3] and reinterpreted by Fay and Comstock [4].

In addition, several authors have considered the propa-

gation of waves in gyrotropic media [5]- [8 ], [16 ], [1 7 ].

The goal of this paper is to present a more funda-

mental treatment of wave propagation in the magneti-

cally gyrotropic medium. The approach taken here was

inspired in part by the chapter on crystal optics in

Sommerfeld’s Optics [9]. The gyrotropic medium, in-

deed, is closely related to a crystal, and a detailed under-

standing of the general properties of waves can be de-

veloped along similar lines. A self-contained approach

to the topic is attempted rather than an isolated presen-

tation of our new results.

This approach is to some extent paralleled by con-

siderable work describing wave propagation in mag-


