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pensator more nearly equal to the ARrnin of the wave-

guide run. The AR compensator is found to be an ex-

tremely broadbanded device.

CONCLUSIONS

The dominant-mode AR in nominally circular wave-

guides can easily be obtained from approximate equa-

tions, when the difference between the major and minor

axes is small and the waveguide is not too long. The

calculated values of AR agree quite well with values

found by measurements.

The effect of ellipticity on the dominant-mode AR,

that is on the amount of crosstalk, is considerable.

When waveguide sections are connected in series, the

AR of the individual sections can be partially cancelled

by properly orienting the sections relative to each other.

The orientation of each waveguide section is independ-

ent of the frequency. The amount of cancellation, how-

ever, depends on what the values of minimum AR for

the various sections are.

The AR performance of a waveguide run can be im-

proved by using an AR compensator. If the minimum

AR of the compensator is made about the same as the

minimum AR of the run itself and is oriented properly,

the total AR will be high for any polarization of the in-

cident dominant-mode signals.
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The Design of Ridged Waveguides
SAMUEL HOPFERt

AS FAR as we are aware, the only published design CUTOFF CURVES AS ~ FUNCTION OF RIDGED GUIDE

information on ridged guide transmission lines GEOMETRY

is found in a paper by S. B. Cohnl and to some
Figs. 1 (a) and 1 (b) show the single- and double-ridged

extent in the Waveguide Handbook. 2 Recent applica-

tions, however, have indicated a need for additional and,
cross sections; their equivalent circuit representation is

shown in Fig. 1 (c). In keeping with common practice,
in some cases, more accurate design information. The

present paper is largely written with this in mind.

The design curves presented here differ in several

respects from those found in the literature. The more

important differences can be stated as follows: m! B3 m

1.

2.

3.

4.

5.

The step discontinuity susceptance is properly

included in all calculations. Omission of this effect

in calculating the cut-off frequencies of the higher

modes, as well as in the calculation of the power

carrying capacity, leads to considerable errors.

The attenuation calculations are based on a more

rigorous expression for ridged guide attenuation.

The power handling curves take proper account

of the breakdown at the edges.

The ridged guide impedance definition is different

and seems more in line with experimental results.

The data are presented in terms of those parame-

Id+l s IA-J LA s lo-/-J
(a) (b) (c)

Fig. 1

the ridged guide modes are given the same designations

as the corresponding modes in the rectangular wave-

guide. The equations which govern the cutoff conditions

of theTEmo type of modes are given by

b
COt K.1 — ~ tan KcS/2 — B/YOl = O (1)

h

ters most likely to be specified in practice. cot KZl + $ cot KsS/2 — B/yoI = O. (2)

~ Polytechnic Res. & Dev. Co., Inc., Brooklyn, N. Y.
1 S. B. Cohn, “Properties of ridge waveguide, ” PROC. IRE, vol. 35, Eq. (1) applies to the odd TEno modes and (2) applies

pp. 783–788; August, 1947.
2 Nathan lMarcuvitz, Waveguide Handbook, MIT Rad. Lab. to the even TEno modes. K% is the propagation constant

Series, vol. 10, pp. 399-402. in the x direction at cutoff and is given by KZ= 27r/A..
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The characteristic admittances YOI and Yoz are defined

as

The value of the normalized susceptance term B/ YOI,

which represents the effect of the step discontinuity,

is taken from published data in the Waveguide Hand-

book.3 [n those cases, where the sidewalls of the guide

are relatively close to the step discontinuity of the ridge,

proximity effects4 are taken into account in the deter-

mination of the normalized susceptance B/ YOI.

In Figs. 2, 3, and 4 the extension factors XC%o/a for

the TE10, TE20, and TE~o modes are plotted as a function

of s/a, with d/b a parameter. The aspect ratio b/a is

fixed at 0.5. These curves are directly applicable to a

single ridged guide cross section of identical s/a and

d/b ratios, but of an aspect ratio b/a which is one half

that of the double ridged guide. Since the electrical

properties depend to various degrees upon the ratio

8 Ibid., p. 309.
4 J. R. j~hinnery, and H. JV. Jamieson, “Equit-aIent circuits for

discontmultles in transmission lines, ” PROC. IRE, VOI. 32, pp. 98–
116; February, 1944.

Fig. 3

SIa

Fig. 4

b/a—and a b/a ratio of 0.25 is not very favorable for

the single ridged guide—it is expedient to have single

ridged data available for b/a = 0.45. These data are

in Figs. 5, 6, and 7 (next page). In case of Fig. 7, no val-

ues of extension factors for .08< (s/a) <.5 are indicated,

because in this range the TEa” mode cannot exist

by itself but couples to the TEOI mode. ‘The extension

factors for the fundamental TEIO mode at aspect ratios

other than 0.45, as in the single ridged guide, may be

determined with the help of Fig. 8 (next page). This de-

termination is essentially a first order correction on the

value of the extension factor at b/a = .45. Expressed in

the form of an equation, we have

Aclo’
——

a- ?’+F1”(: -+

(4)
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Fig. 5
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where &10’/a is the desired extension factor at the actual

b/a and I.IO/a is the extension factor at b/a= .45. The

factor FIO is a function of the parameters s/a and d/b

and is given by

SINGLE RI OGE-TE30 MO OE CUT-OFF WAVELENGTH
I b/o = 0.45

1 I I

—

I I I I I 11! I I I I I I I I

Fig. 7

Fig. 8

BANDWIDTH CONSIDERATIONS

The term “bandwidth,” as used here, is defined as the

ratio of the cutoff wavelengths of the fundamental mode

and the next higher mode. By inspection of the cutoff

4 ~ in csc (~d/2b)
a

Flo =

[

27r(l – s/a)

1

s/a 7rs/a
m(l — s/a) cscz + . — see’ —-+ 1.81ncsc~

A,IO/a d/b AcJa

(5)
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curves, it is seen that for any given geometry of the

ridged guide, the extension factor of the TE20 mode is

always larger than the corresponding one for the TE~o

mode. Thus, the cutoff frequency of the third mode is

always greater than the cutoff frequency of the second

mode. Ori the other hand, cutoff calculations for the

TEOI mode show that the cutoff wavelength for this

mode ;.s very nearly equal to 2b. In order to extend the

upper bandwidth limit of the ridged guide, to the TEZO

mode cutoff, the i5/a ratio should approximately be

made equal to one-half the extension factor of the TEZO

mode. For large bandwidths, this would require the b/a
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I I I 1 I H-H

::}-3BANDwIDTH CtiRVES
~ :0.5

-~k ~

-W1 ILU
_

: - ‘El].

i+ -1---”1H

-LLLLLLu LLi

l\ I I l\ 1 1 1 1 :*

).8 I 0.9 I 10 I

L

&

.> . —

!
2.01 I I I I I I I I ~\ ‘

0.0 0.I I 02 0.3 0.4 0.5 0.6

I SIa

I I I I I I -rkF * $FFHwm
, I

Ililillltl
L--- — --1tt-”lt-i-1-Hhttm

Fi3. 10

width” over which the guide may be operated. The

latter depends mainly upon how close tc} the lower cut-

off frequency one is willing to work. Inexperience has

shown that this may range anywhere from 15 per cent

to 25 per cent above cutoff.

RIDGED GUIDE ATTENUATION

The attenuation a of the ridged guic[e transmission

line is approximately given by

~A./bA~ -t Q
u = 8.686

ti(L/x) 2 – 1p

where

F%’’[tan?+:sec’:l+:’”%l‘an%+%see’?

ratio clf the double ridged guide to be about 0.4 and the and where

db/rn (6)

—> (7)

b/a ratio of the single ridged guide to be about 0.45.

Figs. 9 and 10 show the curves of bandwidth as a
P = skin depth in meters

function of s/a and d/b for the single- and double-ridged
~ = b/a y = s/a k ❑= A/a

guides, respectively. It should be realized that the 1 – s/a

“bandwidth” as defined here. is not the “useful band-
fl = d/a 6=—

2-
p == A./A.
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A derivation of (6) is found in the Appendix. In order

to present ridged guide attenuation data in a general

fashion, it is convenient to compare the attenuation of

the ridged guide to that of a rectangular guide of iden-

tical cutoff frequency. We thus define a normalized at-

tenuation un, as the ratio of the ridged guide attenuation

to the rectangular guide attenuation of identical cutoff

and evaluate this ratio at a frequency f= ~~f,. Such

curves are shown in Figs. 11 and 12. It can be shown that

u,, increases monotonically, with frequency reaching

its average value at about f = ~3f,. For bandwidths as

large as 5, crn does not change by more than +25 per

cent from the plotted values. In the calculations of the

attenuation data it is assumed that the aspect ratio

b/a of the rectangular guide is the same as that of the

ridged guide. Thus, in the case of the double ridged

guide, the normalized attenuation is referred to a rect-

angular guide of aspect ratio 0.5, and in the case of the

single ridged guide to one of aspect ratio 0.45. Actually,

most standard waveguides fall within this range. In

order to evaluate the actual attenuation of the ridged

guide atf = ~~fc, ISn must be multiplied by the rectangu-

lar guide attenuation at this frequency. This latter

quantity is plotted in Fig. 13 as a function of the guide

width, a, for values of b/a = 0.5 and b/a= 0.45, respec-

tively. It should be noticed, that the value of the ridged

guide attenuation, as obtained in the described manner,

corresponds very closely to the minimum attenuation

over the frequency range, since the latter always occurs

in the vicinity of f= ~~f,.

Fig. 12
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POWER HANDLING CAPACITY

An approximate expression for the power carried by

the ridged guide is given by
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27ry d COS27ry/k d 1
+: sin

[

47r13
~+— 1}–––sin ~- (8)

b sin~ 27T8/~ k 4

where IL is the electric intensity at the center of the

ridged gap.

m = 1 for the double ridged guide

and

m = 2 for the single ridged guide.

A derivation of the above expression is found in the

Appendix.

In Fig. 14, the quantity Pm/A/ is plotted against s/a,

with the bandwidth ratio a parameter. Pm represents

the power carried by the single ridged guide at infinite

frequency, with the electric intensity Eo at the center

of the guide being equal to 30 kv per cm. Pm is thus seen

to represent the maximum power which could possibly

be handled by the ridged guide, if an air dielectric at

standard conditions is assumed. In order to achieve this

value for the maximum power handling ability, it would

be necessary that the breakdown occurs at the center of

the ric~ged guide. This, however, is generally not the

case, because the electric intensity at the edges of the

ridge is normally higher than at the center. In view of

of the critical dependence of the electric intensity on

the roundness of the edge, it is convenient to relate E,,

-.050d -.025d o +.025d +.o5O d +.075d

Fig. 15

the electric intensity in the vicinity of the edge to Eo

the electric intensity at the center, as a function of the

radius of curvature of the edge. This is shown in Fig.

15 in which the ratio E./Eo is plotted as a function of

the edge coordinate, with the radius c)f curvature a

parameter. The curves of Fig. 15 apply to the static case

of a corner above a grounded plane. This case is treated

in the literature.b Due to the variation of the electric

intensity in the ridged gap, the E~/Eo ratio, as found

from the curves in Fig. 15, is always higher than in the

actual dynamic case. An approximate expression for

E,/Eo dynamic is given by

()TS E,
(EJEO) dyn. = COS. ~ ~ stat. (9)

It should be evident that the curves in Fig. 15 are only

applicable if p is very much smaller than any one of the

physical dimensions of the ridged cross section. In the

calculation of the maximum power handling capacity

of a ridged guide, it is thus necessary to ascertain first

value of E,/Eo dyn. If the latter is Ie:ss than unity-,

then the curves of Fig. 14 may be used directly, how-

ever, if E,/Eo dyn. is larger than unity, then the value

obtained from Fig. 14 must be divided by (E,/Eo) dym.).~

5 R. Rothe, F. Ollendorf, and K. Pohlhausen, “Theory of Func-
tions as .kpplied to Engineering problems, ” Murray Printing4C0.,
pp. 129–136; 1942.

GMarcuvitz, op. cit.
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RIDGED GUIDE IMPEDANCE

In order to design transitions between the ridged

waveguide and a coaxial line or between any two dis-

similar waveguides, one is forced to compare the im-

pedances of the two guides. Although the value of im-

pedance designations in this connection is highly ques-

tionable, it is, nevertheless, very useful in many in-

stances as shown in the section on special applications.

The impedance definition adopted for the calculation of

the ridged guide impedance is

Zo = vL1’/2P,

where VO is the peak voltage across the center of the

ridge, and where P represents the average power carried

by the guide. For convenience, the admittance rather

than the impedance is plotted in Fig. 16, as a function

of the ridged guide geometry. The admittance values

shown apply to infinite frequency and must therefore

be multiplied by the factor ~/A,, in order to yield the

correct value at any given frequency.
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SPECIAL APPLICATIONS

While the large bandwidths obtainable with ridged

guide favor its use as a system by itself, nevertheless,

ridged guide sections are frequently used in conjunction

with the standard rectangular guides. Invariably, such

applications involve transitions from ridged to rectangu-

lar waveguide. While tapered ridges could be used for

this purpose, it is more efficient and probably less costly

to employ several quarter-wave ridged sections to effect

the transition. The various ridged sections may be ar-

ranged in such a manner that the standing wave ratio

over the frequency band has a nearly Tchebycheff be-

havior. If we refer to the symbols used in Fig. 17, we

see that the basic design formula for the stepped transi-

tion is given by

a~ ln Z,’ = in Z,, (11)

where

‘in w
I I

STEP 2
STEP I

Fig. 17

Eq. (11) is readily solved for 21’ in terms of the

impedance transformation ratio Zin/Zout’ which is nor-

mally specified; thus

Zi~ ~ .()
l/za~

z;= —
(12)

Zoui

Once Z1’ is determined by (12), all successive impe-

dances are given by

TABLE I

N I al la21a3“4 a51a61a7%
l— l—l —1—!—1 —l—

1
1
1
1

1
1

11
1.41 1

~11

2.12 2.12 1!
2,83 3.83 2,83 I 1 ~

3.53 6.03 6.03 .?,53
4.24 8.73 10.94 8.73 4:24 1

3241
6.24

11.49
21,12
38.88

The cw’s in Table 1, above, are computed to cover the

normal bandwidth of the standard rectangular guide;

i.e., the ratio of the AJ’s corresponding to the lowest

and highest frequency at which the rectangular wave-

guide is operated is assumed to be 2.143. They are not

optimum when a smaller bandwidth is to be covered.

Fig. 18 shows a plot of (12) for a varying number of

steps used in each transition. In specifying the input

and output impedance, it was found experimentally

that by using the ZO~ values of the respective guides,
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better over-all results are obtained than by specifying

the characteristic impedance at the center frequency of

the design. The values for a given ridged guide geometry,

including the rectangular guide are directly obtained

from Fig. 16. Having determined the ZO~’s of the various

sections, we again employ Fig. 16 to obtain the neces-

sary ridged guide geometry to yield the desired ZO~.

{5

14

13

.-.

12

II

I 0:
2 3 4 5 6 7 8 9

IMPEDANCE ?ATIO - ZIN/ZouT

Fig. 18

From a standpoint of easy fabrication, it is desirable

to keep the dimension s, the width of the ridge, constant

throu~ghout. The length of each transformer section is

given by
AglAg2

1= (13)
2(kgl + Xgz)

where h~l, and hc~ are the guide wavelengths of the

respective section at the two ends of the frequency

band. The A,’s for each section are determined with

the aid of Fig. 5. In general, therefore, the length of

each section will be different. The theory underlying

the transformer design is based on many simplifying

a.ssurnptions which make difficult<the accurate predic-

tion of the vswr response for a given number of sections.

It has been found experimentally that 4 section trans-

formers designed in accordance with the above design

formulas will cover the entire waveguide band with a

m~ximum vswr between 1. 15–1 .20 for ZO~ transforma-

tion ratios of as high as 4.3.

APPENDIX

ATTENU.ATIO~ CALCULATION

Rather than to attempt to find the approximate

field distribution in the ridged guide and to determine

from it the current distribution in the walls of the guide,

the following derivation is presented in outline and is

entirely based on transmission line calculations. This

method was suggested to the author by Dr. N. Mar-

cuvitz.

We start with the well-known relation between the

variously directed periodicities in a uniform guided

system:

K2 = K,’ + KCZ2+ KCv’

27

(14)

where

~’ = fJJ2/w

u = attenuation constant in nepers permeter.

K,. and K.u are wave numbers due to resonances in

the x and y directions. If the dielectric in the guide is

lossless, then K2 k real and consequently KC. and Kcg

must be complex if K’ is complex. Consider Fig. 1!). The

—.
PROPAGATION DIRECTION

kcx = WAVE NUMBER

Fig. 19

value of KZ for propagation along the guide must be the

same for both regions 1 and 2. Since AZ is also the same

throughout the cross-section if follows that

In order to determine K,,I and K.v2, we assume an E
wave to propagate in the y direction ancl being reflected

by the slightly 10SSY top aud bottom walls, as shown in

Fig. 20. The metallic medium has a complex phase

IPROPAGATION
I2IRECTION

Yom

kcy
= WAVE NUMBER

Fig. 20

constant K~m= (1—j)/p and a comple~ characteristic

admittance Yom = ILJuP, where P is the s~~n deptJL The

characteristic admittance YO1, 170Z of the medium be-

tween the parallel plates is Ue/K,v for an E wave. At

y = b/2 the admittance is infinite, since the nonvan ishing

tangential E at the top and bottom walls must reverse

itself. The input admittance for medium 1 at y = b/2

is thus given by

I’om
j + ~ COt KCy,bj2

Yin = Yol
rom “

COt Kcylb/2 + j j<

(16)
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In view of the smallness of K.UI, the above equation

leads to

KCUI 2 = – (1 – j) K’p/b,

and similarly for medium 2

%22 = — (1 — j) K2p/d.

To determine the wave numbers KCZI

sider the equivalent circuit of Fig. 21.

(17)

(18)

and K.Z2, con-

The step dis-

continuity is now represented by a shunt impedance,

which is composed of two parts; the capacitive reac-

tance, and, in series with it, the impedance of the wall

forming the step. The former is assumed to be unaffected

by the wall losses, and the latter is assumed to be given

by cwp(b– d)/(1 –j). The total shunt admittance is thus

represented by

1
Y, =

L+Lp(b– d)/(1 – j) – j/~

- B’wp(b– d) .—

~+s:;,,

1
YQi I Y02

Yom I‘fins , Yms Yom

I
jB ~ ; I / <jB

\cENTRAL pLANE,

ZERO ADMITTANCE

Fig. 21

The condition of transverse resonance in the X direc-

tion is satisfied if

(Yom) transformed + (Ye) transformed+ Y, = O, (19)

where for convenience all admittances are transformed

to the plane of the step. Y, is the zero admittance exist-

ing at the central plans. Eq. (19) contains both K.xl and

KCZZ, however, one of these quantities can be eliminated

by using (15), (17) and (18). If we take into account the

following conditions for small losses

Re (K..,) >> ~m (Kc.,)

Re (KGz2) >> Irn (KC.2)

Re (K..I) >> Re (KM)

Re (K, .2) >> Re (K,g2)

and ignoring all second order quantities, a complex

solution for IC.z is obtained. Finally, the attenuation

constant is obtained from the relationship

KZ2 = (~ — j“U)2 = K2 — KC.12 — KCV12

‘K 2 — Kc.22 — KW22

to yield the expression in the text, namely

THEORY AND TECHNIQUES

~AJbA2 + Q
g=

{(A./A)2 – 1 ‘“

POWER HANDLING CALCULATIONS

October

Again consider the situation at cutoff. The total field

in the cross-section is a superposition of the fundamental

TEM mode at cutoff and all the higher E modes set up

by the step discontinuity. We shall now treat the funda-

mental mode distribution by assuming that the total

field at the center of the ridge is that of the fundamental

mode. From transmission line theory the voltage dis-

tribution is given by

~(zj = ~(0) co~ KX – jz~@) sin K%

Thus, when V(o) is the voltage at the center of the ridge,

the voltage distribution in the ridged part of the cross

section is given by

t’(x) = ~@) cos KX 05~5~/2

since

I(IJ) = o

and similarly for the unridged part

v{z~) = – ~z~~otj sin KZ’ 0=s%’s1

where we have chosen the origin (O’) at the side wall of

the guide. At x = s/2 corresponding to x’= 1, the two

voltages must be continuous since the effect of the step

is purely shunt. This leads to

2?r
E(x) = E(o) COSfi x o=<x <s/2

d Cos 27r/Acs/2 27r%’
E(x’) = ; E(o) – sin — O’.ZX’L1,

sin 27r/iCL AC

in

Now

Fig.

consider a differential volume element as

22.

shown

1

Fig. 22

The maximum electric energy contained in the funda-

mental mode in the volume element Adz is given by

‘“’= [IJ+’’E2’AI’Z
The above value is also equal to the total energy in the

fundamental mode at any time. The energy contained

in the fringing field is approximated by

dU2 = ~CV2dz,

where V is assumed to be the first mode voltage at the
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step and C is approximately expressed by where dzjdt is the group velocity which is given by

260
(l/~eO,UO)A/A,. Evaluation of the last expression yields

C = ———in csc (7rd/2b) farads/meter. (8) of the text.
T

The tc)tal energy in the volume element becomes
ACKNOWLEDGMENT

[ss
The major part of the work reported in this paper was

1
dlr~ = 1~coE~dA + CV2 dz, sponsored by the Bureau of Ships under Contract No.

A NObsr-39294 and by the Signal Corps under Contract

and the power in the z direction is given by
No. DA36-039-sc-42662. It was carried out by the fol-

lowing people of the Polytechnic Research & Develop-

dUT

– [ss1 1dz ment Co., Inc. staff: W. E. Wailer, M. Sucher, S.

dt=~
~ eoEzdA + CVZ

z’ Rubin, L. Kent, C. ~ossmann, and the author.

Shielded CoupledStrip Transmission Line
S. B. COHN~

Surrvnarg-An analysis is made of the odd and even TEM modes

on a pair of parallel co-planar strips midway between ground planes.

Rigorous formulas are presented for the case of zero-thickness strips,

while approximate formulas are given for strips of finite thickness and

for strips printed on opposite sides of a thin dielectric sheet supported

in air between ground planes (AIL construction). The characteristic

impedances and the phase velocities of the two modes are necessary

and sufficient information for the design of directional couplers,

ccmplec[-line filters, and other components utilizing the coupling be-

tween parallel-strip lines. In order to facilitate design work, nomo-

grams are included in the paper which give the dimensions of the

coupleckstrip cross section in terms of the odd- and even-mode char-

acteristic impedances. The characteristic-impedance scales of these

nomograms may be read to an accuracy of better than one per cent

over a wide range of values that is sufficient for most purposes.

INTRODUCTION

N

r UMEROUS strip-line components utilize the

coupling between parallel strips as a basic param-

eter in their design. Several examples of such

components are shown in Fig. 1 (next page), where cou-

pled lines are used to achieve a particular effect in each

case. In order to design these circuits to meet prescribed

performance specifications, it is necessary to have ac-

curate data on the coupling effects of parallel strips.

Solutions for the most important parameters have been

obtained, and are presented in this paper.

Fig. 2 (next page) shows transverse field distributions

for two fundamental TEM modes that can exist on a

pair of parallel conducting strips between parallel ground

planes. In Fig. 2(a), strips are at same potential and

carry equal currents in the same direction. Because of

the even symmetry of the electric field about the ver-

tical axis, this mode will be called the even coupled-strip

mode. In Fig. 2(b), strips are at equal but opposite po-

tentials and carry equal currents in opposite directions.

~ Stanford Res. Inst., Menlo Park, Calif.

Due to the odd symmetry of the electric field, this mode

will be called the odd coupled-strip mode. In the case

of the odd mode, the vertical plane of symmetry is

at ground potential, and may be replaced by al thin

conducting wall joined electrically to the horizontal

ground plates. It is clear from the fieldl plots that the

capacitance per strip to ground is less for the evetl case

\—j ~ CI==l co~~
DIRECTIONAL COUPLER BAND-PASS FILTER

y
q-ii=

SINGLE STRIP L

LINE=*
BALANCED

STRIP LINE

DELAY LINE
SINGLE-TO- EALANCEO

STRIP-LINE TRANSFORMER

Fig. l—Several applications of coupled-strip 1ine construe{ ion.

and more for the odd case than for a single isolated

strip of the same width. Consequently, the characteristic

impedances of the two modes are unequal, being greater

for the even than for the odd. In this paper, sol~ltions

for the two characteristic impedances will be given. 1

These quantities (plus the mode phase velocities, which

are also treated) provide sufficient information for the

1 (After this paper was prepared, a paper by D. Park appeared
with a solution for ZO of the odd mode. The us,e of elliptic-integral
identities shows Park’s formula to be the same as mine. ) D, Park.
“Planar transmission lines, ” TRANS. IRE, VOI. lVITT-3, pp. 8–12;
April, 1955.


