
Relativity and electricity

Electromagnetics is usually developed from a sequence
of experimentally based postulates. Here special relativity is
used to formulate a complete electromagnetic theory from the
inverse-square law, thus deepening our understanding
of the unity of electric and magnetic fields

R. S. Elliott University of California, Los Angeles

Several facets of the special theory of relativity are independently of the state of motion of the system of co-
reviewed, commencing with the Lorentz equations ordinates."
and culminating in the force transformation law. In 1912, Leigh Page followed up this observation by
The basic equations of electrostatic theory are then demonstrating that one could start from Coulomb's law
formulated, after which a relativistic transformation and use the results of special relativity to derive the funda-
of Coulomb's law is undertaken, the result being the mental relations of magnetostatics.2 He also exhibited the
Lorentz force law. Time-varying electric and mag- expression for the induced electromotive force in one wire
netic fields are defined as constituent terms of the due to a variation of current in another. This approach
Lorentz force expression and are then shown to was later embodied in a book coauthored with Adams.3
satisfy Maxwell's equations. The development in- In this article a development conceptually akin to that
cludes derivations of the relativistic transformation used by Page, but differing from it substantially in detail,
laws for sources and fields. will be presented. After reviewing the necessary aspects of

special relativity and electrostatics, a direct derivation of
The special theory of relativity is concerned with the the Lorentz force law and Maxwell's equations will be

comparison of physical phenomena as they appear to two offered. This approach has the advantage of demon-
observers who are in motion with respect to each other at strating that the fields contained in the Lorentz force
a constant relative velocity. In his first paper on this sub- expression are synonymous with those contained in
ject in 1905, Einstein' accepted the principle of relativity* Maxwell's equations. This conclusion cannot be reached
and proposed as a second postulate that light always by a conventional development that postulates separate
propagates in empty space with a definite velocity c, which experimental laws for electrostatics, magnetostatics, and
is independent of the state of motion ofthe emitting body. electromagnetics. Further satisfaction results from recog-
Using this second postulate, he introduced a technique nition of the fact that, with the aid of special relativity,
for synchronizing spatially separated stationary clocks all the laws of electricity, including the Biot-Savart law
and then showed that two observers in relative motion and Faraday's EMF law, are derivable from a single ex-
disagree in their measurements of time and distance in- perimental postulate based on Coulomb's law.
tervals. The Lorentz equations were found to provide the The development will be confined to the case of electric
proper connection between the spatial and temporal co- sources in free space, but it is easily extendable to the case
ordinate values each observer would assign to a given in which materials are present.4 Wherever specific units
event. From this point, Einstein proceeded to show that are needed, the rationalized MKS system will be used.
Maxwell's equations were covariant under a Lorentz
transformation if the electric and magnetic fields of the The Lorentz transformation
two observers were related through a certain bilinear Consider two Cartesian-coordinate systems XYZ and
transformation. Interpreting this transformation, he X'Y'Z'. As suggested by Fig. 1, the respective axes of
remarked "that electric and magnetic forces do not exist these two systems are aligned, with the X and X' axes

sliding along each other such that X' is moving in the
*The principle of relativity, even then, was an old idea, which had fX direction at a constant speed a. Let an observer 0,
earlier gained the support of Newton, among others. Simply
stated, it expresses the belief that all the laws of physics are the who is stationary in XYZ, select his time reference so that
same everywhere in the universe. In Einstein's words, ".. ..the t = 0 corresponds to the coincidence of the origins of
same laws of electrodynamics and optics will be valid for all XYZ and X'Y'Z'. Similarly, let an observer 0', who is
frames of reference for which the equations of mechanics hold'
good." stationary in X'Y'Z', select his time reference so that
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z Fig. 1. Two Cartesian-coordinate systems in constant
translative relative motion.

XYZ. It will be assumed that this has been done; this
y will be the conception of time in the frame of reference

z' / ~~~~~~XYZ.
Likewise, it may be assumed conceptually that o' has

an inexhaustible supply of identical clocks, which he has

X/ arrayed at fixed points in X'Y'Z' and which he has
synchronized by the same procedure. It will be further
assumed that if these two sets of clocks were brought to

v y rest relative to each other, they would be found to be
u identical and running at the same rate.

With these concepts of spatial position and time, let an
event be defined for observer 0 as something that hap-

xi/ pens at a point P(x, y, z) at time t, or more briefly at the
"point" P(x, y, z, t). The same event will occur for ob-
server O' at the "point" P'(x', y', z', t'). The quartet of
numbers x', y', z', t' can be connected to the quartet of
numbers x, y, z, t by a set of equations known as the
Lorentz transformation equations. This transformation
may be determined as follows:

t 0 corresponds to the coincidence of the origins of the Let a pulse of light be emitted from the position jointly
two coordinate systems. It is desired to compare the occupied by the two origins at the instant the two clocks
physical observations of 0 and O'. at this position register t = 0, t' = 0. Imagine that 0 has

Since all physical measurements involve, fundamen- stationed an auxiliary observer 01 at the fixed point
tally, determinations of distance and/or time intervals, it is (x, y, z) and that 01 records the event that the light pulse
necessary to define the concepts of length and time for passes him as having occurred at time t. Then it follows
each observer. To this end, let it be assumed that 0 deter- that, if the region is free space, 0 can characterize this
mines a unique triplet of numbers (x, y, z) for every point event by the equation
in XYZ space by laying out identical scales (e.g., in x2 + y2 + z2 = (Ct)2 (1)
meters) along his three axes, and that similarly O' deter-
mines a unique triplet of numbers (x', y', z') for every The left side of this equation is the square of the distance
point in X'Y'Z' space by laying out identical scales from theorigin ofXYZ to the position ofw 0lThe right
along his three axes. It is further assumed that 0 and side is the square of the distance a light wave will travel
O' lay out these scales using the same standard of length at speed c in empty space in a time interval t. The equa-
(e.g., a meter stick). By this it is meant that if 0 measures tion itself is recognized as depicting a spherical wavefront
lengths in terms of a ruler R marked in meters and at rest of steadily expanding radius.
in XYZ, and ifO' measures lengths in terms of a ruler R' If O' has stationed an auxiliary observer 01' at the
at rest in X'Y'Z', then if the two rulers were brought to fixed point (x', y', z'), then the time of occurrence t1',
rest side by side, markings one meter apart on R would which 01' records for this event, satisfies the equation
coincide with markings one meter apart on R'. (x') 2 + (y 1) 2 + (Z 1) 2 = (Ct ) 2 (2)

Additionally, each observer, 0 and O', needs to meas-
ure time unambiguously at every point in his coordinate 0' uses the same value for the speed of light in (2) that 0
system. To insure this, let it be assumed conceptually that uses in (1) because the region is empty space; at most they
0 has an inexhaustible supply of identical clocks, such disagree about the motion of the source, and c has the
that he has been able to station one clock permanently same value in all directions in X' Y'Z' that it does in all
at each point in XYZ. To ascertain that all of these clocks directions in XYZ (Einstein's second postulate).
are set properly and running at the same rate, 0 can select If 01 and 01' just happen to coincide at the instant the
one clock as the reference and perform the following ex- light pulse passes, the transformation equations that link
periment: 0 places himself at the reference clock and the observations in XYZ to those in X' Y'Z' must be such
stations an auxiliary observer 01 at the clock to be that 0 can derive (2) from (1) and such that O' can derive
synchronized. 0Osends out a pulse of light at time ta on the (1) from (2), since they are describing the same event.
reference clock, directing it toward 01, who reflects it The two observers agree about distance measurements in
back by means of a mirror. The returned pulse of light the Y and Z directions because their relative motion is X-
reaches 0 at time tt. The clock where 01 is stationed was directed. Therefore, part of the transformation is
set properly if it read (ta + t1)/2 at the instant the light y
pulse reached the mirror. It is running at the proper rate if =v z 3
it proves to be set properly every time 0 and 01 choose to Since every motion that is uniform and rectilinear in XYZ
perform this experiment, must aiso appear uniform and rectilinear in K' Y'Z', so

In thismanner, everyclockinXKYZcan besynchronized that the transformation from (x, t) to (x', t') takes
to the reference clock and thus to every other clock in straight lines into straight lines, and is thus linear, then
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the remainder of the transformation must be in the form from which

X = aLx + a2t t = a3X + a4t (4) IR' = X2 - Xl = lR'(l - U2C2)1/2 < I R' (7)

To evaluate the constant &2, note first that if a point in which 1R, is the length of the ruler R', as determined by
P'(x', y', z') is fixed with respect to observer O', this 0, and is seen to be shorter than the rest lengthiR'R. If the
point appears to be moving in the positive X direction at ruler had been oriented parallel to the Y' or Z' axis, a
speed u, when observed by 0. For such a point, taking similar calculation would reveal that 0 and O' agreed
differentials of the first equation of (4) gives about the length of R'. One concludes from this that

dx when a body is in motion relative to an observer 0, its
dx' = 0 = a, dx + a2 dt a2 = -ai-= -alu longitudinal dimension is shortened by the contraction

dt factor, whereas its transverse dimensions are unaltered

and therefore (4) may be rewritten as from their rest values.
Next consider a particular clock in XYZ that remains

xi = a1(x - Ut) t' = 03X + x4t (5) at fixed coordinates (x, y, z) and is therefore being passed

The remaining three constants can be determined by by a sequence of X'Y'Z' clocks. One can define a first

requiring that (1) and (2) transform into each other. If (3) event when the hands of this single XYZ clock indicate
and (5) are substituted into (2), one obtains time t1 and a second event when they indicate time t2.

In X'Y'Z', the first event will occur at the spatial
a,2X2- 2a,12UXt + a12u2t2 + y2 + z2 position

= a32c2x2 + 2a3a4C2Xt + a42C2t2 X1 = K(x - ut1) Yi' = y z1' = z

Since this must agree with (1) for all values of x, y, z, and these equations resulting from an application of (6). The
t, it follows that X' Y'Z' clock at this position registers the time of the

a,2- a32c2 = 1 2a,2u -+ 2a3a4c2 = 0 first event as

a42c2 - a,12U2 = C 2 t' = K (t4 - UX/C 2)

Solving these three equations gives Similarly, in X' Y'Z' the second event will occur at the
spatial position

a,2 = a42 = (1 - U2/C2)- a3 = -aiu/c2 x2I =K(X-Ut2) Y2'Y Z2 Z

which yields the result
K(X UUt) t' K(t - UXIC2) and the X' Y'Z' clock at this position registers its time as

in which ~ (6) t2' =

K (t2
- UX/C2)Y =Y z =Z

(1-U2/C2)1/2 iS called the From this it follows that
in which K-1 = (1Iu/7l2i called the contraction
factor. t2' -t' = K(t2 -tl) > t2 - t (8)

Equations (6) were derived by Einstein in his 1905
paper using an argument which has been reproduced in Consider this result first from the viewpoint of 0, who
its essentials. They are commonly called the Lorentz is stationary beside the single XYZ clock. He watches a
transformation equations, so named by Poincare in succession of X'Y'Z' clocks go by and can take only a
honor of H. Lorentz, who had derived them earlier (1903) single reading of each of them. However, he notices that
under a different set of hypotheses.* Their significance lies they seem progressively set further and further ahead,
in the fact that they may be employed to deduce the four thus accounting for the inequality in (8). On the other
numbers either observer uses to characterize an event, hand, observer 0' can take a sequence of readings of the
if thefournumbersusedbytheotheroobserveruare known. XYZ clock as it passes a succession of X'Y'Z' clocks.

Since he knows his own clocks are all synchronized, he
Length and time under the Lorentz transformation concludes that the rate of the XYZ clock is slowed by its

Let a ruler R' be at rest in the X'Y'Z' frame of refer- relative motion.
ence, such that its two ends occupy the points (xi', 0, 0) The results (7) and (8) are known as length contraction
and (x2', 0, 0). Observer O' will say that its length is and time dilatation. They are symmetrical, in the sense

that either 0 or O' will conclude that longitudinal lengths
IR' = x2 -xI in the other system are shortened and that clocks in the

If observer 0 wishes to measure the length of R', since it other system are slowed. Experimental evidence to sup-

is in motion with respect to him, he should measure its port these formulas is abundant.5
end coordinates xi and x2 at a common time t. Using the Velocity
first equation of (6), one may write

The general motion of a point, in which the spatial
X1= K(x - Ut) X2/ = K(x - Ut) variables are continuous functions of the temporal van-

-2'xl = K(x2 - x) able, may be traced in terms of differentials. From (6),

dx' =K(dx-udt) dt'=K (dt - 2dx')
*These equations had actually been used even earlier by Voigtc
(1887). Lorentz assumed the existence of an ether and physical dy' = dy dz' = dz
contraction of bodies due to their motion through the ether, and
required that Maxwell's equations transform properly. His Ratios of these differentials may be formed to yield
ether-related hypotheses were found to be inconsistent with the
Michelson-Morley and Kennedy-Thorndike experiments, velocity components. For example,
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dx' dx-u dt Using (9), one finds that for ball B
vx '=- =. dt dt (uleI)dx

vy/ ~~~~~~~~~~~vy
_ dx/dt - u vx- U -'K(l-v/c2)

1-(u/c2) dx/dt 1-UVx/C2 whereas for ball A

Proceeding in this manner, one can derive the Lorentz V,' Wy/K
velocity transformation equations: Forming ratios gives

t1yr- K(I
=

UV /C2) =1(10)
Ivzvi' = Kl(0

Z (-uvx/c2) and thus vy < wy. Viewed from XYZ, ball A has a

As an illustration of this result, consider the case of greater y component of velocity than does ball B. (For
two particles moving along the X axis. As seen from the ordinary velocities the difference is exceedingly small.)
XYZ frame of reference, let one particle have a velocity Equation (10) requires the abandonment of one or the
vx = v and let the other particle have a velocity vx- v. other of two principles of classical mechanics. If mass is
What is the relative velocity? an invariant, then the principle of conservation of linear
To answer this question, let XY'Z'ride along with one momentum is violated in the y direction in XYZ. If the

particle by setting u = v. Then from (9), the velocity of momentum principle is valid, then mass cannot be an
the other particle in X' Y'Z' is invariant. The latter assumption is the one consistent with

experiment, and will be the basis for what follows.
vx -/C2 -1 -vv 2v Let mA' = mB' be the two masses in the X' Y'Z' framevx' ===_1 - uvxC2 1+ v2/c2 1 + V2/C2 (they are equal by symmetry), and let mA Z mB be the

For small values of vlc this yields the classic result vx= two masses in the XYZ frame. Then=MAW =fMBV1 thus,
-2v. However, as v -- c, vx -* -c. Therefore, even MB vx'vx
though in XYZ the two particles might be going in /I- 2mnA C
opposite directions, each of which approaches c relative
to XYZ, their recessional velocities relative to each other This result can be rephrased entirely in terms of XYZ
are still less than c. quantities by using (9) to substitute for vx', which gives

The variation of mass -- ( I L) (11)
A hypothetical experiment first suggested by Lewis and mA c

Tolman6 serves to demonstrate the dependence ofmass on This relation is seen not to depend on vy and should hold
relative velocity. Imagine that two exactly similar elastic even when v, = 0. But then wy, = 0 as well, and-as seen
balls suffer a collision, which in the X' Y'Z' frame appears from X' Y'Z'-the two balls approach each other along
as shown in Fig. 2(A). The balls are seen to approach each the X' axis and just barely touch as they pass. As seen
other along parallel lines, collide, and then recede from from XYZ, ball A is at rest and ball B passes by, just
each other along parallel lines. Their approach speeds touching A as it travels parallel to the X axis. With
are equal and, by symmetry, so too are their recessional mothe mass of ball A at rest, (11) may be rewritten as
speeds. A perfectly elastic collision is assumed, with no
loss of energy, thus causing the recessional speed to equal mB = 'n

the speed of approach. This experiment can be assumed (1 - v2/c 2)1/2
to take place either in a region free from gravitational One can now argue that it no longer matters whether
attraction or on a level frictionless table over which ball A is present or not. Moreover, the rest mass of ball B
the balls are sliding.* should also be mo, since in X'Y'Z' one started with a
Now imagine this same collision as viewed from an symmetrical experiment using identical balls. With only

XYZ frame that is moving in the direction of the -XI ball B left, in constant rectilinear motion, the subscripts
axis at a speed u = v.'; see Fig. 2(B). To an observer 0 may be dropped on mB and vZ, giving
stationary in XYZ, ball A is moving parallel to the Y axis
and ball B makes a more grazing incidence to the X axis. m = _MO (12)As seen in X'Y'Z', each ball has its y' velocity com- (1-V2/C2)112
ponent reversed by the collision, but its x' component of
velocity is unchanged. As seen in XYZ, ball B has its y In (12), mo is the rest mass of ball B in XYZ, and m is its
component of velocity reversed by the collision; however, dynamic mass when going at a speed v relative to XYZ.
its x component is unaffeoted. In XYZ, ball A has only It is inferred from this result that the mass of any
a y velocity component, which suffers a reversal, material body depends on its relative motion, increasing

Classical mechanics would yield for this experiment with speed according to (12). A clear confirmation has
the result that v,g - vi, for both balls A and B. In been given by Zahn and Spees.7
terms of a Lorentz transformation, one would be ill-
advised to assume this result without checking. Therefore, The transformation law for mass
let ±w1, represent the velocity of ball A in XYZ before Equation (12) is not, of course, the transformation law
and after the collision, and let TF v0 represent the y com- for mass because it yields the dynamic mass only in one
ponent of velocity of ball B before and after the collision, frame of reference; but it can be used to relate dynamic

mass in two different coordinate systems, as follows:
*A rolling motion would complicate the discussion needlessly. Let a body of rest mass in0 have a velocity v(x, y, z, t) in
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XYZ and a velocity v'(x', y', z', t') in X'Y'Z'. Then dt 1

-mO I mO dt' K( - uvX/c2)
[1-v2/ [1 - (v')2/c2]1/2 so that (14) becomes

are the expressions for the dynamic mass in the two co-
ordinate systems. Thus Fx ' = d-(mvx-m) F.-u dm/dt

V2/C2 112 (C2d= 1-tuvc2
m'-m 1-(V')2/C2 Fy / dtFy

From the velocity transformation equations (9), (I - 2) dt K(I 'IC2)
(v')2 - (1 - v0/C2)-2[(V2 - V02)(1 -U2C2) + (V2 - U)2] 1 d-(mvz) Fz

so that K(F - uv0/c2) dt ) K( - uv/c2)

mn' = K(j -uvx/c2)m (13) From (12), dm/dt = vF/c2, so that finally

Equation (13) is the transformation law for mass. In using 2
it one should remember that in general both m and m' are F0' = F0 _ UVy/C F _vz/c__FxF, F~~~- v0c2F0functions of time. UV/C2 1-UVC2

(15)
The transformation law for force F'' = Fy Fz' = Fz
On the presumption that the Lorentz equations K(- uv/c2) K(1- uv0/c2)

properly transform all the laws of physics (as required by
the relativity principle) one may write Equations (15) constitute the force transformation law.

d (mv) F/ d It is evident that if u and v are small compared to c, then
dt dt-(m v') F' - F, indicating that in such cases the classical expres-

and inquire what the force transformation law must be in sion, which equates these forces, is a valid approximation.and~~inur whttefretasorainlwms*ei It iS significant that the three equations in (15) areorder to derive either of these equations from the other I ssgiiatta h he qain n(5 rthdertou useriveeitherofthesL equations.
from the other

linear in the force components. Recalling that F or F' is
Using (9) and (13) the second of the preceding equa- the total force acting on the body of rest mass mi, if Fsionsmay bexanded13)to ge is composed of partial forces F0, then each of these partial

forces has a counterpart, so that F' is composed of

F
t

=d-[K(V u )m] partial forces F,'. In general, the partial forces F,, are

F dt [dt [ independent, and therefore the components of F,' are

dtd dtd (14) also related to the components of F,, through (15). How-
F,' = t-d [mv,] Fz' = dt - [mvz] ever, it should be recognized that when invoking (15) to

dt' dt dt' dt relate partial forces, the total instantaneous velocity com-

From the differential expressions preceding (9), ponents of the mass must still be used.

Fig. 2. The collision of two balls.

B

, y~~~~~~~~~~~~~~~~~~~~~~~~~v
vx~~~~~~~~~~~~~~~~~~- vx

x -/ x~~~~~~~~~~~~~~~~~~~~~~~J-x
X
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Electrostatics
'The only experimentally based postulate now needed Z qn(xn, Yn, Zd)

to develop a complete electromagnetic theory is Cou-
lomb's inverse-square law, which may be formulated as /1(1' y1, z1)
follows: Referring to Fig. 3, let there be a static assem- (x,y,z)
blage of N charged particles, containing, respectively, r
charges qi, q2, .....,qn arbitrarily arranged in otherwise
empty space. The quantities qn are real numbers, which
may be either positive or negative. The positions of these r
charged particles may be described in a coordinate
system XYZ so that the nth particle is identified by the /
coordinates xn, y,,, z,, or by the position vector r. = q2(x2, y2, z2 y
1 x, + l,yX + lz,p.* These coordinates are not func-
tions of time.

Additionally, let a particle containing a charge q be /*qN(xN YN ZN)
instantaneously at a point (x, y, z), described by the X
position vector r = 1 x + 1 ,y + 1,z. This charge will be
permitted to move, so that the coordinates x, y, and z Fig. 3. Notation for Coulomb's law.
may be general functions of time. The total force exerted
on q by the system of static charges qn is then given by

N N
1 ~'qq't n _q V' r - r

F = E - = 4 E qo n (16) E(x, y, z) may thus be associated with the point (x, y, z)47r,eno tzn2 Xn 47re°o 1 Jr - rn| whether q is there or not. If the vector function E is

in which interpreted in this manner, it may be taken as a funda-
mental subject of investigation. This is the field viewpoint

n = r - = 1 (x -x.) + 1 Cy -Yn) + lz(z - z.) of Faraday and Maxwell, which differs from the action-
so that / is a unit vector drawn from qn toward q. at-a-distance theories of their predecessors. In this view,
(The symbol t is a German lower-case x, chosen because the source charges qn set up an electric field at the point
of its resemblance to r. It may be called "r-cedilla.") (x, y, z); the field in turn will exert a force on any charge
Equation (16) is a mathematical statement of that might be introduced at (x, y, z). With this interpreta-

Coulomb's law. The factor 4-r is included in (16) so that tion, E as defined by (17) is an electrostatic field, since the
it will not appear in the more often used Maxwell's source points (xn, y., zn) are static, and the field point
equations. The factor eO is called the permittivity of free (x, y, z) has coordinates that are not connected to the
space and is a units-adjusting parameter. When charge is possible motion of any particle.
measured in coulombs, force in newtons, and distance in In many problems it will be appropriate to consider the
meters, Eo has the measured value 8.854 X 10-12 farad total charge p dV in a volume element dV in lieu of the
per meter. These units form part of the MKS rationalized discrete charge qn. In such cases, (17) may be written
system, and will be used hereafter in this article. 1 e
Assuming that the charge q is small enough so that its E(x, y, z) = P(Q, 'q, O) dS d-1 dV (19)

presence or absence does not affect the spatial distribu-
tion of the charges qn, the vector function in which p(Q, i7, t) is the volume charge density function,

N expressed in coulombs per cubic meter, and X is drawn
F 1 (7n from the volume element centered at the source point
q 4=wt q0Z (n, i7, t) to the field point (x, y, z). The volume V is

sufficient to encompass all the sources p dV.
is defined as the force per unit charge at (x, y, z). E may Through the use of the three-dimensional Dirac delta
be expressed in units of newtons per coulomb and is function, an assemblage of discrete charges can be repre-
variously called the electric force, the electric intensity, sented by a volume charge density function in the form
or the electric field strength. N
By implication, if a charge q of any size is placed at PQ, 1 = qn6(r'-r,,) (20)(x, y, z), it experiences a force (

n = 1
F = qE (18) with r' the position vector drawn from the origin to

However, one must be careful in using (18) to ascertain (Q, q, P). This representation can be verified by inserting
that the presence of q has not disturbed the positions of (20) in (19) which yields (17).
the other charges. For example, if the assemblage of Similarly, a surface charge distribution can be repre-
charges q1, iS distributed over the surface of a conductor sented in terms of a volume charge density through the
and a large charge q is placed in the vicinity, the charges use of a one-dimensional delta function along the direc-
qfl, being free to move, will redistribute themselves to new tion of the normal to the surface; a lineal charge dis-
positions of equilibrium. tribution can be represented by a volume charge density
Equation (17) indicates that the electric force depends through the use of a two-dimensional delta function in a

on the charges qn and their positions relative to the point transverse surface. By means of these representations, a
(x, y, z), but that it does not depend on q. An intensity general discussion in terms of p-type distributions has
*Unit vectors will be designated by boldface Arabic numeral wide applicability, and (19) may be taken as the funda-
"one" (1) with a subscript. mental equation for the electrostatic field.
Elliott-Relativity and electricity 149



Use of the del operator fields may be determined through use of the force trans-

a + + a formation law (15), which can be written alternatively as
V lx ay az F = [1 Fx'+ K(lF' +lzFZ')]+ K

X (1-XF'
to form the gradient of inverse distance gives c c

(28)

in which F' is given by (27) and v(t) is the velocity of the
X3 test charge in XYZ. Two cases of (28) will be considered.

from which it follows that (19) can be written Case 1: v = 0

1 r 1i\ Here the test charge is at rest in XYZ and the force F
E(x, y, z) --4 Jp(t, n, t)V do d7 d1 is just the bracketed term in (28). Since the system

charges are moving through XYZ at velocity 1 u, the
Since neither p(f, p,n)nor the limits of integration are force F changes with time. If, for simplicity, charge is
functions of the field point (x, y, z), the order of integra- postulated as an invariant, observer 0 can define a time-
tion and differentiation may be interchanged, yielding varying electric field by the relation

E(x, Y, z) -V fp 4Odi d?1 d1 (21) F = 1IFz' + K(1,F, ' + 1Fz2') = qE(x, y, z, t) (29,

Using (27), this gives the component equations
Therefore the electric field is expressible as the negative of
the gradient of the scalar function Ex(x, y, z, t) = E '(x', y', z')

1.(x,y,z) = (' p(t,7,,)d d)dR (22) E5(x, y, z, t) = KEy'(x', y', z') (30)
X, X, v)J= 4rEo2 E2(x, Y, Z, t) = KEZ'(X', y', z')

c1 is called the electrostatic potential function and is Case 2: v 0 0
measured in volts. Since E = - V4, the units of E are Here the test charge q has an arbitrary motion v(t) in
often given as volts per meter. XYZ and the force F is the entire expression (28). Using
Use of the vector identity V X Vf 0 yields the in- the electric field defined by Case 1, together with (27),

formation that this can be written

V X E- ° (23) l ICU
F=qE+qvX 1

2
X E') (31)

Formation of the divergence of (21) provides the com- c 2

panion expression The additional force, represented by the second term in

V sE = plEo (24) (31), arises because of the motion of the test charge in
XYZ. If an additional field B(x, y, z, t) is defined by

Since V X E and V * E jointly contain all the first partial
derivatives of all three components of E, if the curl and B-=x-X E' (32)
divergence of E are completely specified, as in (23) and c2
(24), E itself can be uniquely determined. then (31) may be written

Electromagnetics F = q(E + v X B) (33)
The results just obtained, which link static electric

fields to their static sources, may be enlarged to include sequto (3
a isknw as theLCela ni

' ~~~~~~~seento be a relativistic transformation of the Coulomb
time-varying sources and fields, by comparing the obser- force law (27).
vations of two people in relative motion. To see this, The cmonsf()a
imagine that an observer 0' has created in free space a
most general electrostatic field E' (x', y', z') through an B2(x, y, z, t) = 0
arrangement of electric charges in the static distribution
p '(x', y', z'). E' satisfies the equations Bu(x, y, z, t) - Ez'(x', y', z ) (34)

2

V'X E' 0 (25)
1 ~~~~~~~~~~~~~~~KU

V= p'/E (26) Bz(x, y, z, t) = -2 EV'(x, y, z')
Furthermore, observer O' will say that if a small test
charge q ' is instantaneously at some arbitrary point (x', B(x, y, z, t) is known as the magnetic field and is measured
y', z'), it will experience a force, due to the static charge in webers per square meter. (1 Wb/m2 = 104 gauss.)
system, given by Equations (30) and (34) comprise the field transforma-

tion equations. They may be combined to give the inverse
F' = q'E' (27) transformation

If the coordinate system X'Y'Z' has its axes respec- Ez.' = E2 E3' = K(E - uB2) E2' = K (E2 + uBy)
tively aligned to those of an XYZ system, with the X'
axis sliding along the +Xaxis at a speed u, an observer 0, (5
who is stationary in XYZ, will see a moving system of The differential equations satisfied by the field E',
sources and will deduce a force field that differs from the namely (25) and (26), may be transformed with the aid of
field observed by 0'. The connection between these force (35). However, it is convenient, as a preliminary step, to
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determine the transformation of the sources p'. Since ,a(alEz aE\
charge has been taken as an invariant, p dV = p' dV'. VaXE_0l L tay az) +KU fF
But dV' = K dV because of length contraction in the X r /aE aE.\ -2)E
direction. Therefore, 1 d- (1-K)

az ax /ax
p(X, y, Z, t) = Kp'(X', Y', Z') (36) 2 aBn K2u1 AE, K2U2 aBy_

Since all of the source charges are moving through ax C2 at C2 at j
XYZ at a velocity 1 ,u, they give rise to a current as seen alEy aEA aEy_
by observer 0. The distribution of this current may be ax ay / ax
deduced in the following way: At a general point (x, y, z), a2aB K2U dE2 K2u2 aB1(
erect a volume element dV = dx dy dz, with dx = u dt. K

x + 2 dt 2 at
The charge enclosed at any time t is p(x, y, z, t)dV. All of
this charge, and no other charge, will pass out of dV in This result can be simplified considerably. From (30) and
time dt. The current flow is X-directed and given by (34), uE, = -c0B and uEy = c2B,. When these relations

p dV
are coupled with (39) and employed in (40), one finds that

dIx p dV Fl-aE, aEy Bl
0 = IL(ay az / j

The areal density of current flow, in amperes per square ~ai rA a
meter, will therefore be -[ +)

az axi atj
dIx pu dtdy dz Ey adEx aB

x = =- = pu i t_ + _ (41)dy dz dt dy dz ax ay at (

Using (36), this becomes Further simplification is possible through determination

cx(X, y, Z, t) = KUp'(X', yf, z') (37) of V-B. Since
aBx aBy aM. aB2 aBzEquations (36) and (37) constitute the source transforma- + --- + += +

tion equations. A static charge distribution in X'Y'Z' is ax ay az ay' az'
seen to transform into a time-varying charge distribution KU (E,'eE3E'
and a time-varying current density in XYZ. c2 ay' -az J
With these results it is now possible to convert (25) and

(26). The goal will be a set of equations in which the
dependence of E and B on the sources is displayed. V * B - 0 (42)
To see how this is accomplished, consider any func- and therefore that (41) reduces to

tion f of the four coordinate variables. Upon making use
of the Lorentz equations (6), one can establish that V X E =-B (43)

df df dx aj dt ad Ku af When this procedure is repeated for the divergence of
+~ ~ ~ ~~~~~ax' ax dx' at dx' ax c2t E', oneobtains

af afdt dfa dx "f V (8
~fV'E'-= P

at' atdt' axdt' at ax EO KEO

df d,' df'= KVE-KU (- _
KU

+ (44)aj af afaf KV. - Ku - - - (4
a ~~~~~~~~~~ayaz / C2 atay' ay az' az

Once again reduction is possible, since
If f is not a function of t', then the second equation of
(38) yields aE, aEy aEi. aEi.' aE2' aEz.V(E + + azax + K + K

ai, af, ~~~~~ax ay a ay az
af' afE
t (39) K a' + K U' + K ,' = KV'.E'

Application of (38) and (39) to the curl of E' gives terms Using (44) this gives
such as

aE' aEz' aEx' aEz' Ku aEZ' V*E = - (45)-K --
az' ax'az ax c at ~~~~which reduces the remainder of (44) to the form

which, with the use of (35), can be written an. an2 pu 1 anx
aEX' aE,' an, a2 an2d\ ay -dz C2Eo c2 at (46)_ -- K -4-u _
az' ax' az d x ax /If a new constant ,to, called the permeability of free

K2u /8Ean2 a \ space, is defined by the relation

Upon determining all three components in this manner, 8°= -(47)
one may write then, with the substitution L, = pu, (46) may be written
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OB. aBy _ . 1 dEx In a similar manner, let a general charge-density distri-

E t
y az
'- ,o-1 c2 At bution p(x, y, z, t) be represented by

Equations (42), (43), (45), and (48) comprise the trans- r X rO c cor
formation to XYZ space of the X'Y'Z' field-source p(x, ycz, t) = J JJJ f(kc , k, k., w)
equations (25) and (26). They have been derived for the ei(cwt+kxx+kyY+kzz) dkx dky dkz dc (A.2)
special case that X' Y'Z' is in constant translative motion
along the X axis. If a second frame X" "Z, containing The integrands of (A.1) and (A.2) are connected by the
static sources, were similarly in motion parallel to the Y continuity equation, V* = -p, which gives
axis, the same procedure would yield four equations 1
similar to these, the differences being that B, would be f = _ - (k g) (A.3)
zero and (48) would be replaced by its Y equivalent.
Likewise, if a third frame X" ' Y"'.Z" , containing static where k = 1 k., + 1 ,k, + 1lk,.
sources, were in constant motion parallel to the Z axis, If the fictitious charge and current densities in the
this procedure would produce four equations distin- interval (dk, dw) are treated as an independent entity that
guished by the characteristics that Bz would be zero and satisfies the flow equationt = pv, then the velocity of these
(48) would give way to its Z equivalent. fictitious charges is
A linear superposition of the fields due to static sources g _

g
in all other Lorentzian frames therefore yields total fields v(k, w) = = g (A.4)
E(x, y, z, t) and B(x, y, z, t) in XYZ, which satisfy f k g

* 1 E This velocity is independent of x, y, z, and t, and is there-
VXE = -B VXB =y-+-1+ 2 fore a common velocity shared by all the charges that

p (49) give rise to the (k, w) current and charge waves. In a
V * B= ( g r t e0 coordinate system traveling at the velocity v with respect

°O to XYZ, these charges are at rest. As k and co are per-
These four equations are known as Maxwell's equations, mitted to range over their complete spectTa of values,
and have been derived here only for sources in free space. (A.4) indicates that all values of v will be encountered in
Upon representing materials by equivalent sources, (49) the interval 0 < v < co. One may conclude from this that
is easily extended to apply to general media. arbitrary static charge distributions in all Lorentzian

It is evident that observer 0 need not rely on the static frames may be combined to give the most general time-
sources of 0', 0", etc., to establish his time-varying varying spatial distributions of current and charge
electromagnetic fields, but can do this equally well him- density in a particular Lorentzian frame.
self by direct creation of the time-varying sources p and t. Because the range of v is unrestricted, some of these
That most general sources p, t may be treated as a super- fictitious charge distributions are traveling through XYZ
position of static sources in X'Y'Z', X'Y'"Z', etc., is at speeds greater than light. This requires use of the
demonstrated in the Appendix. Lorentz transformation equations when v > c. Even

Conclusions though the transformation is then nonphysical, this is
mathematically admissible in the sense that Maxwell's

Through use of the relativisitic force transformation equations transform properly under a Lorentz trans-
equations, one is able to show that the Lorentz force law formation, regardless of the value of v/c. It should be
is a transformation of the electrostatic Coulomb force emphasized that the charge densities in the interval
equation. The time-varying electric and magnetic fields, (dk, dc) are fictitious. No intimation is intended that the
which are defined as constituent parts of the Lorentz real time-varying charges, which are the sum of these
force expression, are then found to satisfy Maxwell's fictitious static charge densities, are traveling at speeds
equations. This establishes the identity of the fields in excess of c.
appearing in Maxwell's equations and the Lorentz force
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