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Temperature dependence of the refractive index of optical fibers∗
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Many experimental investigations on the temperature dependence of the refractive index of optical fibers have been
reported previously, however a satisfying theoretical explanation for it is still absent. In this paper, a theoretical model about
the temperature dependence of the refractive index of optical fibers is presented and it is in agreement with the previous
experimental results. This work is a significant reference for the research and development of temperature sensors based on
optical fiber delay lines.
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1. Introduction

Based on the fact that the larger the refractive index of a
medium is, the slower the light travels in the medium, a fiber
optic sensor can be devised by means of the temperature de-
pendence of the refractive index of an optical fiber. Usually, an
optical fiber has a core made of fused silica (a non-crystalline
form of silicon dioxide SiO2). In fact, the refractive indices of
media and optical sensors are two important issues in many re-
search studies,[1–12] while the investigations on the fiber optic
sensors combine the two issues.

As far as the temperature dependence of the refractive in-
dex of fused silica is concerned, many experimental investiga-
tions on it have been presented (see for example, Refs. [13]–
[17]), and they have shown that the refractive indices of fused
silica are directly proportional to the temperature with the tem-
perature coefficients lying in the range of [5×10−6, 3×10−5]
(K−1) when the temperature is in the range from roughly
100 K to 800 K. On the other hand, the corresponding theoreti-
cal interpretation is still insufficient. For example, in Ref. [18],
the author tried to develop the most elementary possible model
for the temperature dependence of the refractive index of fused
silica, and his model was based on a complex dielectric con-
stant whose imaginary part was assumed to satisfy an analyt-
ical model. However, as we know, the fused silica is an insu-
lating medium, its dielectric constant is usually taken as a real
number, not to mention the validity of the analytical model
yielded by the author’s assumption. In fact, just as the author
himself said, his theoretical result was about 3.4 times smaller
than the measured value. In Ref. [19], the authors presented
a theoretical interpretation for the temperature dependence of
the refractive index of an optical fiber in terms of the thermal
effects of the refractive index caused by the electron–phonon
interaction. However, their investigation is independent of the

structure details of solids, so their result should be valid for
any solid, which does not agree with the fact that the refractive
indices of some solids are not directly proportional to the tem-
perature within the same temperature range. In contrast with
those works, in this paper, starting from the first principle and
taking into account as much as possible the structure details of
fused silica, we present a theoretical investigation on the tem-
perature dependence of the refractive index of fused silica. It
should be pointed out that there have been a few theoretical
investigations on the temperature dependences of the refrac-
tive indices of some monatomic crystals and diatomic ionic
crystals.[1–7] However, those theoretical models are not valid
for the fused silica. For example, contrary to the fused silica,
those monatomic crystals or diatomic ionic crystals’ refractive
indices can be inversely (rather than directly) proportional to
the temperature within the same temperature range.

2. Some general considerations
As for the amorphous phase of SiO2, the fused silica con-

sists of a non-repeating network of tetrahedra and differs from
the crystalline phase only by the missing long-range order, but
there remains significant ordering at length scales well beyond
the Si–O bond length. One example of this ordering is found in
the preference of the network to form rings of 6-tetrahedra.[20]

As we know, the building block of the silica is the SiO4 unit,
each individual SiO4 tetrahedron is connected with adjacent
tetrahedra at the corners, forming a three-dimensional struc-
ture. The solid fused silica can equivalently be taken as con-
sisting of nonlinear SiO2 molecules (the length of the Si–O
bond is about 0.16 nm), where the atoms are arranged in an
aperiodic pattern void of long-range order.

Because of the absence of the simplifications associated
with periodicity, up to now, people’s understanding of amor-
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phous materials still remains far from complete. However, the
essential features of the electronic structure, and thereby also
the macroscopic properties, are determined by short-range or-
ders, so these properties are similar for solids in crystalline and
amorphous states. Moreover, the medium made of fused silica
can be divided into many small portions with the same size, all
the portions are identical in the sense of average, and they can
be called equivalent primitive cells.

At any given temperature, atoms in a solid vibrate with
small amplitudes about their equilibrium positions, which im-
plies that there is an attractive potential energy in the solid. On
the other hand, the stability of the lattice requires a repulsive
potential, and hence a repulsive potential energy. The atomic
vibrations are also affected by the vibrations of adjacent atoms
through bonding, and the result is elastic waves (phonons) that
propagate through the solid. It is important to mention that, as
a result of polarization, some of the energy may be converted
into elastic deformations (phonons). In such a way, the phonon
interactions in a medium make a contribution to the refractive
index of the medium.

In general, there are four types of dielectric behaviors.[21]

1) The polarization of the electronic cloud around the atoms:
when an external electric field is applied, the electronic clouds
are distorted, the resulting polarization is directly related to
the dielectric constant. 2) The motion of the charged ions: this
effect is primarily of interest in ionic crystals in which the pos-
itive and negative ions can move with respect to one another
and thus polarize the crystal. 3) The rotation of molecules with
permanent dipole moments: in an electric field, the dipoles
tend to line up with the electric field, while the thermal effects
tend to oppose this alignment, and so, the phenomenon is tem-
perature dependent (this type of dielectric behavior is mostly
relevant for liquids and gases). 4) The dielectric screening of a
quasi-free electron gas (this phenomena is of interest for met-
als).

As far as the fused silica is concerned, it exhibits both
ionic and covalent bondings. The electronegativity of silicon
is 1.8 and that of oxygen is 3.5,[22] then the fraction of the
covalent bonding is exp[−(3.5−1.8)2/4] = 0.486. Therefore,
the fused silica possesses the aforementioned dielectric behav-
iors 1) and 2). On the other hand, the fused silica under con-
sideration is solid and dielectric, so its dielectric behaviors 3)
and 4) can be ignored. In our case, a time-varying electric
dipole moment can be caused by a fixed ion core with positive
charge and a vibrating electron cloud with negative charge.
Therefore, in the following we will study the temperature de-
pendence of the refractive index of fused silica based on the
dielectric behaviors 1) and 2) together.

3. Temperature dependence of the refractive in-
dex of fused silica
When an optical fiber made of fused silica is placed in

an external electric field (e.g., the electric field component of
an electromagnetic wave propagating along the optical fiber,
it is uniform over an Si–O bond), the intensity of polariza-
tion is proportional to the total macroscopic field 𝐸 in the
medium 𝑃 = ε0χ𝐸, where χ is the electric susceptibility
of the medium, ε0 is the vacuum permittivity, and the rela-
tive permittivity of the material is εr = 1 + χ . Because the
fused silica is a non-magnetic material, its refractive index is
n =
√

εr =
√

1+χ . On the other hand, let N denote the av-
erage number of Si–O bonds along the direction of a local
electric field 𝐸c per unit volume (for example, if the angle
between the direction of 𝐸c and that of an Si–O bond is θ ,
then this Si–O bond contributes cosθ to the number, it fol-
lows that it is not necessary for N to be an integer), we have
𝑃 = Nα𝐸c, where α is the polarizability. For convenience,
let us assume that the space allotted to each Si–O bond is a
sphere, approximately, we can obtain 𝐸 = (1−Nα/3ε0)𝐸c.
Using 𝑃 = ε0χ𝐸 =Nα𝐸c, we can obtain the Lorentz–Lorenz
formula (also named the Clausius–Mossotti relation)

3ε0

N

(
n2−1
n2 +2

)
= α. (1)

As mentioned before, the fused silica can equivalently be
regarded as consisting of nonlinear SiO2 molecules. For a non-
linear molecule consisting of l atoms, there are 3l−6 displace-
ments corresponding to the vibrations of the molecule, which
implies that there are three displacements corresponding to the
vibrations of a nonlinear SiO2 molecule. Moreover, the po-
tential energy of a nonlinear polyatomic molecule depends on
all the displacements of the atoms from their equilibrium posi-
tions, in terms of a Taylor expansion relative to the equilibrium
position of 𝑥= (x1,x2, . . .) = (0,0, . . .)≡ 0, we have

V = V (0)+∑
i
(∂V/∂xi)0xi

+(1/2)∑
i, j
(∂ 2V/∂xi∂x j)0xix j + · · · . (2)

The sum is over all 3l displacements of the l atoms, so some
displacements (those corresponding to the translation and ro-
tation of the molecule as a whole) will turn out to have zero
force constant. Therefore, for small displacements from the
equilibrium positions, we have

V = (1/2)∑
i, j

ki jxix j, ki j = (∂ 2V/∂xi∂x j)0, (3)

where ki j’s are the generalized force constants. In terms of
the mass-weighted coordinates qi =

√
mixi, with mi the mass

of the atom being displaced by xi, the potential energy can be
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rewritten as

V = (1/2)∑
i, j

Ki jqiq j,

Ki j = ki j/
√

mim j = (∂ 2V/∂qi∂q j)0. (4)

The total kinetic energy becomes

T = (1/2)∑
i

miẋ2
i = (1/2)∑

i
q̇2

i , (5)

where the dot represents the differentiation with respect to
time. The classical expression for the total energy is therefore

H = (1/2)∑
i

q̇2
i +(1/2)∑

i, j
Ki jqiq j. (6)

The Hamiltonian can be rewritten in terms of the normal co-
ordinates to remove the cross terms (we just pay attention to
the projections of the normal coordinates onto the direction of
the local electric field 𝐸c so that the triatomic molecule SO2

is equivalent to a linear molecule), namely,
Q1 = (

√
mOq1 +

√
mSq2 +

√
mOq3)/

√
m, κ1 = 0,

Q2 = (q1−q3)/
√

2, κ2 = k/mO,

Q3 = (
√

mSq1−2
√

mOq2 +
√

mSq3)/
√

2m,
κ3 = km/mSmO,

(7)

where m = mS +2mO is the total mass of a SO2 molecule. For
the moment, the total energy can be expressed in the form

H = (1/2)∑
i

Q̇2
i +(1/2)∑

i
κiQ2

i . (8)

As a result, we can study the vibrations in fused silica starting
from the model of harmonic oscillators (or with an anharmonic
term as a correction).

The fused silica exhibits both ionic and covalent bond-
ings, the interaction energy of a Si–O bond can be expressed
as

u(r) =−Mq2

4πε0

(
1
r
−

rs−1
0
srs

)
, (9)

where r0 is the equilibrium distance between two adjacent Si
and O atoms (it is equal to the length of the Si–O bond, i.e.,
r0 = 1.6×10−10 m),[23] M = 1.638 is the Madelung constant,
and s is the repulsive-energy parameter. There are two valence
electrons in the Si–O bond, and the fraction of the ionic bond-
ing is 0.514, then the total electric quantity can be taken as
q = 0.514× 2× 1.602× 10−19 C ≈ 1.647× 10−19 C. As we
know, the repulsive-energy parameter satisfies the formula

s = 1+36πε0β r4
0Bm/Mq2, (10)

where β = 3.34 and Bm = 3.7× 1010 Pa (i.e., the bulk mod-
ulus) for silica. Substituting all the known quantities and
ε0 = 8.854×10−12 F/m into Eq. (10), we have s≈ 2.825. The

wavelength of the electromagnetic wave propagating along the
optical fiber is λ = 633 nm.

When the distance between two adjacent Si and O atoms
becomes r = r0 +∆r with ∆r being very small, by means of
the Taylor expansion, the interaction energy u(r) can be writ-
ten approximately as

u(r) ≈ u(r0)+
Mq2(s−1)

8πε0r3
0

(∆r)2

−Mq2(s−1)(s+4)
24πε0r4

0
(∆r)3. (11)

For the moment, the function U(x) =U(∆r) = u(r)−u(r0) is
the potential energy of an oscillator with the equilibrium posi-
tion of r = r0 and the displacement of x = ∆r, that is,

U(x) =
Mq2(s−1)

8πε0r3
0

x2− Mq2(s−1)(s+4)
24πε0r4

0
x3

≡ 1
2

ax2−bx3, (12)

where

a =
Mq2(s−1)

4πε0r3
0

= 1.779×102 J ·m−2,

b =
Mq2(s−1)(s+4)

24πε0r4
0

= 1.265×1012 J ·m−3. (13)

Because of a > 0 and b > 0, Eq. (12) shows that the anhar-
monic term −b(∆r)3 contributes a repulsive energy, which is
in agreement with the fact that, in a solid, it not only requires
an attractive potential energy for atoms to vibrate about their
equilibrium positions, but also requires a repulsive potential to
keep the stability of the lattice. Under the local electric field
𝐸c, the total energy of an oscillator can be expressed as

H = p2/2µ +U(x)−qEcx, (14)

where p = |𝑝|, 𝑝 is the momentum of the oscillator, and µ

is the mass. Because N denotes the average number of Si–O
bonds along the direction of 𝐸c per unit volume, then there
are N oscillators along the direction of 𝐸c per unit volume
(as mentioned before, it is not necessary for N to be an inte-
ger). According to statistical mechanics, under the conditions
of thermal equilibrium, the probability that an oscillator has
energy H is proportional to exp(−H/kBT ), where kB is Boltz-
mann’s constant and T is the absolute temperature. Then, the
average intensity of polarization is

P =

∫
Nqxexp(−H/kBT )dx∫

exp(−H/kBT )dx

=
Nq
∫

xexp[(−ax2/2+bx3 +qxEc)/kBT ]dx∫
exp[(−ax2/2+bx3 +qxEc)/kBT ]dx

. (15)

For simplicity, let

exp[(bx3 +qxEc)/kBT ]≈ 1+(bx3 +qxEc)/kBT

for small x. The integral
∫

exp(−ax2/2kBT )dx is con-
vergent for x ∈ (−∞,+∞), and for large x, the integrand
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exp(−ax2/2kBT ) approaches to zero. According to quantum
statistics, the displacement x in exp(−ax2/2kBT ) (related to
the resonant term), as the fluctuation of the equilibrium posi-
tions, is usually taken as x ∈ (−∞,+∞). Then we have

P≈
Nq
∫ +∞

−∞
x[1+(bx3 +qxEc)/kBT ]exp(−ax2/2kBT )dx∫ +∞

−∞
[1+(bx3 +qxEc)/kBT ]exp(−ax2/2kBT )dx

. (16)

Using∫ +∞

−∞

exp(−cx2)dx =
√

π/c,

∫ +∞

−∞

xl exp(−cx2)dx =


(l−1)!!√

(2c)l

√
π

c
, l is even,

0, l is odd,
c > 0, l = 1,2, . . . , (17)

we can obtain

P = N
(

q2

a
+

3qbkB

Ec
T
)

Ec ≡ NαEc, (18)

where the polarizability is

α = q2/a+3bqkBT/a2Ec ≡ A+BT, (19)

with

A = q2/a, B = 3qbkB/a2Ec. (20)

Using Eqs. (1) and (19), we have

3ε0

N

(
n2−1
n2 +2

)
= A+BT. (21)

For BT � A (as shown later), using Eq. (21) we have

n2 = 1+
3N(A+BT )

3ε0−N(A+BT )

≈ 1+
3NA

3ε0−NA
+

3NBT
3ε0−NA

. (22)

Likewise, because of BT � A, the third term on the right-
hand side of Eq. (22) is far smaller than the sum of the first
and the second terms, then we can obtain

n≈
√

3ε0 +2NA
3ε0−NA

+
3NB

2
√
(3ε0 +2NA)(3ε0−NA)

T. (23)

Substituting Eq. (20) into Eq. (23) yields

n ≈

√
3ε0a+2Nq2

3ε0a−Nq2

+
9NqbkB

2aEc
√
(3ε0a+2Nq2)(3ε0a−Nq2)

T. (24)

Equation (24) implies that the refractive index of fused silica
is directly proportional to the temperature T . Obviously, the

temperature-dependent term vanishes for b = 0, and it is re-
lated to the anharmonic term in Eq. (12), which is related to
the phonon–phonon interactions.

Now, let us present a quantitative consideration. As men-
tioned before, N denotes the average number density of the
Si–O bonds along a given direction (e.g., the direction of a lo-
cal electric field 𝐸c), where the length of each Si–O bond is
about r0 = 1.6×10−10 m, then we can express N as N = η/r3

0
with 0 < η < 1/3. An advisable value is η = 0.2 for the mo-
ment N = 4.883×1028 m−3. The amplitude of the local elec-
tric field is about Ec = 1× 1011 V ·m−1. Substituting ε0 =

8.854× 10−12 F·m−1, a = 1.779× 102 J·m−2, b = 1.265×
1012 J·m−3, q = 1.647× 10−19 C, N = 4.883× 1028 m−3,
kB = 1.381× 10−23 J·K−1, and Ec = 1× 1011 V·m−1 into
Eq. (24), we can obtain

n≈ 1.47269+7.09780×10−6T. (25)

Equation (25) is in agreement with the previous experimen-
tal results. For example, the experimental result presented in
Ref. [17] is

n≈ 1.47219±2.2×10−4 +(7.83±0.99)×10−6T. (26)

The theoretical and experimental results are compared in
Fig. 1.
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Fig. 1. Comparison between the theoretical (solid line) and experimen-
tal (dots) results.

Note that the temperature T must be lower than the maxi-
mal service temperature of fused silica (about 1200 K), which
is the precondition of the investigation. In fact, in the previ-
ous experimental investigations, the temperature T is usually
lower than 800 K. Using Eq. (20), we can show that the con-
dition of BT � A is valid for T < 1200 K, then we can safely
apply BT � A to obtain Eqs. (22) and (23).

4. Discussion and conclusion
Because of the absence of the simplifications associated

with periodicity, up to now people’s understanding of amor-
phous materials still remains far from complete. In particular,
though there are many experimental investigations on the tem-
perature dependence of the refractive index of fused silica, an
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appropriate theoretical interpretation for the experimental re-
sults is still absent. In this paper, we present a theoretical in-
terpretation for the experimental result. In high temperatures,
the refractive index of fused silica is directly proportional to
the absolute temperature. There are some differences among
the results from different experimental reports, however most
of them show 5×10−6 K−1 ≤ dn/dT ≤ 3×10−5 K−1. There-
fore, our theoretical result is in good agreement with the pre-
vious experimental results.
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