1. If we see suspicious signals on a spectrum analyzer, that may not really exist, but are just a nonlinear product inside the spectrum analyzer, the countermeasure is:
(A) narrow
(B) increase
(c) increase the
(D) narrow the
the resolution
the sweep time
input attenuation video filter
2. The 3D spherical coordinate system (r, θ, Φ) is right-handed with the north pole in the direction of the Cartesian axis z. Converting the spherical coordinates (r, θ, ϕ) into Cartesian coordinates (x, y, z) the Cartesian coordinate x is obtained as:
(A) r.sine.sin ϕ
(B) r.sine. $\cos \Phi$
(C) r.cose.sin ϕ
(D) r. $\cos \theta \cdot \cos \Phi$
3. A hollow metal pipe of circular cross-section is used as a waveguide on its fundamental mode. The forward wave has the following electric field \bar{E} components:
(A) only
(B) only
(C) both transversal
(D) does not
transversal $\bar{E} \quad$ longitudinal \bar{E}
and longitudinal E
have any \bar{E}
4. The vector potential $\overline{\mathrm{A}}$ is computed from the current density $\overline{\mathrm{J}}$ by solving the vector wave equation $\Delta \overline{\mathrm{A}}+\omega^{2} \mu \in \overline{\mathrm{~A}}=-\mu \overline{\mathrm{J}}$. The wave equation for the vector potential (as written here) works with the following units (MKSA):
(A) Vs
(B) Vs / m
(C) $\mathrm{Vs} / \mathrm{m}^{2}$
(D) $\mathrm{Vs} / \mathrm{m}^{3}$
5. The largest radio-telescope on the world was built in China with the diameter of the primary mirror equal to $d=500 \mathrm{~m}$. At what distance $r=$? starts its far field while operating at the hydrogen-1ine frequency of 1.42 GHz ? ($\mathrm{C}_{0} \approx 3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$)
(A) 4733 m
(B) 211 km
(C) 2367 km
(D) 11200 km
6. A switching power supply includes a transformer causing radio interference at a frequency of $f=50 \mathrm{kHz}$. At what distance $r=$? are its electric field \bar{E} and magnetic field \bar{H} approximately in the ratio of the free-space wave impedance $Z_{0} \approx 377 \Omega$? ($\mathrm{C}_{0} \approx 3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$)
(A) 9.55 cm
(B) 9.55 m
(C) 95.5 m
(D) 955 m
7. The radiation pattern of a ground-plane antenna at $\mathrm{f}=180 \mathrm{MHz}$ is being spoiled by unwanted currents in the supporting mast. The length $1=$? of the radials (rods forming the skirt of the antenna) is chosen for the lowest mast current: ($\mathrm{C}_{0} \approx 3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$)
(A) 0.4 m
(B) 0.5 m
(C) 0.6 m
(D) 0.7 m
8. A street light contains a $\mathrm{P}=250 \mathrm{w}$ bulb with an efficiency of $\eta=30 \%$ on a $\mathrm{h}=7 \mathrm{~m}$ high pole above ground. What is power-flux density of light $|\bar{S}|=$? on the ground at a horizontal distance $\mathrm{x}=5 \mathrm{~m}$ from the pole? The atmospheric attenuation can be neglected.
(A) $81 \mathrm{~mW} / \mathrm{m}^{2}$
(B) $364 \mathrm{~mW} / \mathrm{m}^{2}$
(C) $3.64 \mathrm{w} / \mathrm{m}^{2}$
(D) $81 \mathrm{w} / \mathrm{m}^{2}$
9. GPS navigation satellites are circling the Earth at an altitude of $\mathrm{h}=20200 \mathrm{~km}$ above the surface. What directivity $D=$? is required for the on-board antenna to cover the whole visible hemisphere? The Earth is assumed a sphere with a diameter of $\mathrm{R}=6378 \mathrm{~km}$.
(A) 12.4 dBi
(B) 15.4 dBi
(C) 18.4 dBi
(D) 24.4 dBi
10. The gain G is measured in a free-space link between two identical unknown antennas at a distance of $r=3 \mathrm{~m}$. What is the expected uncertainty ΔG [dBi] of the measurement due to the uncertainty of each antenna phase center amounting to $\Delta \mathrm{r}=+/-10 \mathrm{~cm}$?
(A) $+/-0.1 \mathrm{dBi}$
(B) $+/-0.6 \mathrm{dBi}$
(C) $+/-1.5 \mathrm{dBi}$
(D) $+/-4 \mathrm{dBi}$
11. A weather satellite is transmitting on $f=137.5 \mathrm{MHz}$ with a power of $P_{T X}=5 \mathrm{~W}$ to an omnidirectional antenna $G_{T x}=1$. What is the maximum radio range $r=$? to a ground station with an omnidirectional antenna $G_{\mathrm{Rx}}=1$ and receiver sensitivity $\mathrm{P}_{\mathrm{Rx}}=-110 \mathrm{dBm}$? ($\mathrm{C}_{0} \approx 3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$)
(A) 487 km
(B) 974 km
(C) 1948 km
(D) 3897 km
12. A fluorescent light bulb is causing interference to a medium-wave receiver ($\lambda=300 \mathrm{~m}$) with its electric field E_{i}. The best countermeasure against this interference is:
(A) a ferrite
receiving antenna
(B) an electrical
whip antenna
(C) reorienting the receiving antenna
(D) there is no
countermeasure
