1. If we see suspicious signals on a spectrum analyzer, that may not really exist, but are just a nonlinear product inside the spectrum analyzer, the countermeasure is:

(A)	narrow	(B)	increase	(C) increase the	(D) narrow the
the	resolution	the	sweep time	input attenuation	video filter

2. The 3D spherical coordinate system (r, Θ, Φ) is right-handed with the north pole in the direction of the Cartesian axis z. Converting the spherical coordinates (r, Θ, Φ) into Cartesian coordinates (x, y, z) the Cartesian coordinate x is obtained as:

$(A) 1.5110.511\Psi$ (b) 1.5110.009 (c) 1.000.511 Ψ (b) 1.000.0	(A) r.sinΘ.sinΦ) (B) r.sin0.cosФ	(C) r.cos0.sinΦ	(D) r.cosΘ.cosΦ
--	-----------------	-------------------	-----------------	-----------------

3. A hollow metal pipe of circular cross-section is used as a waveguide on its fundamental mode. The forward wave has the following electric field \overline{E} components:

(A) only	(B) only	(C) both transversal	(D) does not
transversal E	longitudinal Ē	and longitudinal E	have any E

4. The vector potential \overline{A} is computed from the current density \overline{J} by solving the vector wave equation $\Delta \overline{A} + \omega^2 \mu \epsilon \overline{A} = -\mu \overline{J}$. The wave equation for the vector potential (as written here) works with the following units (MKSA):

	(A) Vs	(B) Vs/m	(C) Vs/m ²	(D) Vs/m
--	--------	----------	-----------------------	----------

5. The largest radio-telescope on the world was built in China with the diameter of the primary mirror equal to d=500m. At what distance r=? starts its far field while operating at the hydrogen-line frequency of 1.42GHz? ($c_0 \approx 3 \cdot 10^8 m/s$)

(A) 4733m (B) 211km (C) 2367km (D) 11200km

6. A switching power supply includes a transformer causing radio interference at a frequency of f=50kHz. At what distance r=? are its electric field \overline{E} and magnetic field \overline{H} approximately in the ratio of the free-space wave impedance $Z_0 \approx 377\Omega$? ($c_0 \approx 3 \cdot 10^8 \text{m/s}$)

(A) 9.55cm (B) 9.55m (C) 95.5m (D) 955m

7. The radiation pattern of a ground-plane antenna at f=180MHz is being spoiled by unwanted currents in the supporting mast. The length l=? of the radials (rods forming the skirt of the antenna) is chosen for the lowest mast current: $(c_0 \approx 3 \cdot 10^8 \text{m/s})$

(A) 0.4m (B) 0.5m (C) 0.6m (D) 0.7m

8. A street light contains a P=250W bulb with an efficiency of $\eta=30\%$ on a h=7m high pole above ground. What is power-flux density of light $|\overline{S}|=?$ on the ground at a horizontal distance x=5m from the pole? The atmospheric attenuation can be neglected.

(A) 81mW/m^2 (B) 364mW/m^2 (C) 3.64W/m^2 (D) 81W/m^2

9. GPS navigation satellites are circling the Earth at an altitude of h=20200km above the surface. What directivity D=? is required for the on-board antenna to cover the whole visible hemisphere? The Earth is assumed a sphere with a diameter of R=6378km.

(A) 12.4dBi (B) 15.4dBi (C) 18.4dBi (D) 24.4dBi

10. The gain G is measured in a free-space link between two identical unknown antennas at a distance of r=3m. What is the expected uncertainty ΔG [dBi] of the measurement due to the uncertainty of each antenna phase center amounting to $\Delta r=+/-10$ cm?

(A)	+/-0.1dBi	(B) +/-0.6dBi	(C) +/-1.5dBi	(D) +/-4dBi
~ `				

11. A weather satellite is transmitting on f=137.5MHz with a power of $P_{TX}=5W$ to an omnidirectional antenna $G_{TX}=1$. What is the maximum radio range r=? to a ground station with an omnidirectional antenna $G_{RX}=1$ and receiver sensitivity $P_{RX}=-110$ dBm? ($c_0\approx 3\cdot 10^8$ m/s)

	397 KIII
--	----------

12. A fluorescent light bulb is causing interference to a medium-wave receiver (λ =300m) with its electric field \overline{E}_i . The best countermeasure against this interference is:

(A) a ferrite	(B) an electrical	(C) reorienting the	(D) there is no
receiving antenna	whip antenna	receiving antenna	countermeasure