
 
 
 
 
 
 
 

  AN10413 
  µC/OS-II Time Management in LPC2000 
  Rev. 01 — 15 December 2005 Application note    
   

 

 

Document information 

Info Content 

Keywords µC/OS-II, MCU, ARM, LPC2000, Timer, IRQ, VIC 

Abstract This application note demonstrates how to implement µC /OS-II time 
management in LPC2000 microcontroller family from Philips 
Semiconductors. In addition to perform time management of µC/OS-II, a 
simple demo code is given. All together, the note offers users a quick 
start in using µC/OS-II time management in LPC2000. 



 

Philips Semiconductors AN10413
   µC/OS-II Time Management in LPC2000

Revision history 

Rev Date Description 

01 20051215 Initial version 

 

Contact information
For additional information, please visit: http://www.semiconductors.philips.com 

For sales office addresses, please send an email to: sales.addresses@www.semiconductors.philips.com 

 AN10413_1  © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 15 December 2005 2 of 16



 

Philips Semiconductors AN10413
   µC/OS-II Time Management in LPC2000

1. Introduction 
µC/OS-II (Pronounced “Micro C O S 2”), which stands for Micro-Controller Operating 
System Version 2, is a type of real-time operating system. Because of its real-time 
kernel, ease to port, use and reliability, it is widely used in all kinds of applications such 
as cameras, medical instruments, engine controls, ATM machines and many more. 
µC/OS-II can run on most 8/16/32-bit microprocessors or microcontrollers.  

Time management is one important part of µC/OS-II. It provides periodic interrupts to 
keep track of time delay and timeouts. The periodic time is called Clock Tick. This 
interrupt can be viewed as the system's heartbeat.  Usually, a tick should occur between 
10 and 100 times per second, or Hertz. The faster the tick rate, the higher the overhead 
imposed on the system. The actual frequency of the clock tick depends on the desired 
tick resolution of user application. Usually the tick source is obtained from a hardware 
timer.  

The LPC2000 family is based on the 16/32-bit ARM7TDMI-STM microcontroller. All the 
part numbers can support µC/OS-II. In LPC2000 family, two 32-bit timers/counters are 
provided. Both can be used as the source of the tick. Here we use timer0 as an example 
and timer0 will be configured to trigger an IRQ interrupt periodically. The code is 
developed in ADS (ARM Development Suite) v1.2 and most written in ANSI C. The code 
was tested on an evaluation board with LPC2129, which uses a 12 MHz crystal.  

2. Initialization 

2.1 Exception vector table 
LPC2000 family is based on a 16/32-bit ARM7TDMI-STM CPU. The ARM CPU contains an 
exception vector table, which is used to support seven types of exception. When an 
exception occurs, an execution is forced from a fixed memory address corresponding to 
the type of exception. The exception vector table for the ARM is shown in Table 1:  

Table 1: Exception vector table 
Exception Mode Vector Address 

Reset SVC 0x00000000 

Undefined Instruction UND 0x00000004 

Software Interrupt (SWI) SVC 0x00000008 

Prefetch abort Abort 0x0000000C 

Data abort Abort 0x00000010 

- - 0x00000014 

IRQ (Normal Interrupt) IRQ 0x00000018 

FIQ (Fast Interrupt) FIQ 0x0000001C 

 

When on reset, the CPU begins executing from the reset vector entry, then jumps to 
initialization subroutine, starting system setting. The startup code is written in assembly 
code as shown below: 

 AN10413_1 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 15 December 2005 3 of 16



 

Philips Semiconductors AN10413
   µC/OS-II Time Management in LPC2000

Startup code 
;Imported external symbols declaration    
        IMPORT  Reset                                       
        IMPORT  FIQHandler_C                                         
; /*************************************  
; Exception Vectors 
; **************************************/ 
     CODE32 
AREA  StartUp, CODE, READONLY 
     ENTRY 
Vectors 
        LDR     PC, ResetAddr 
        LDR     PC, UndefinedAddr 
        LDR     PC, SWI_Addr 
        LDR     PC, PrefetchAddr 
        LDR     PC, DataAbortAddr 
        DCD     0xb9205f80 
        LDR     PC, [PC, #-0xff0]           ;for vectored and non-vectored IRQ 
        LDR     PC, FIQ_Addr 
 
ResetAddr           DCD     Reset            
UndefinedAddr       DCD     Undefined        
SWI_Addr            DCD     Swi 
PrefetchAddr        DCD     PrefetchAbort 
DataAbortAddr       DCD     DataAbort 
 
FIQ_Addr            DCD     FIQ_Handler 
 
;/*****************************************  
;Undefined instruction exception handler 
;*****************************************/ 
Undefined 
        b       Undefined 
;/*****************************************  
;Swi exception handler 
;*****************************************/ 
Swi 
        b       Swi 
;/***************************************** 
;Prefetch abort exception handler 
;*****************************************/ 
PrefetchAbort 
        b       PrefetchAbort 
;/***************************************** 
;Data abort exception handler 
;*****************************************/ 
DataAbort 
        b       DataAbort 
;/**************************************** 
;FIQ exception handler 
;****************************************/ 

 AN10413_1 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 15 December 2005 4 of 16



 

Philips Semiconductors AN10413
   µC/OS-II Time Management in LPC2000

FIQ_Handler 
        STMFD   SP!, {R0-R3, LR} 
        BL      FIQHandler_C        ;call the FIQ ISR subroutine 
        LDMFD   SP!, {R0-R3, LR} 
        SUBS    PC, LR,  #4 

END 

Actually, the given handlers in the startup code do not do anything useful. They are setup 
here just for completeness. You can implement them according to your application. 

2.2 System config 
System config such as PLL, VPBDIV and MAM is performed in C code. The code is 
tested on an evaluation board, which uses a 12 MHz crystal. To make CPU run at full 
speed of 60 MHz, PLL is set to 5. And VPB is set to a quarter of CPU speed. Using 
Memory Map Register, you can remap interrupt vectors to 0x0000 0000-0x000 0001c 
(on-chip flash), 0x4000 0000-0x4000 001c (on-chip ram) or 0x8000 0000-0x8000 001c 
(external memory, only for LPC22xx). The system initialization code is shown below: 
#define  PLL_PLLE           1          //PLL enable (1)or disable(0) 
#define  PLL_PLLC            1           //PLL connect(1) or disconnect(0) 
#define  PLL_M               5         //PLL Multiplier  value 
#define  PLL_P            1          //PLL divider value: p 
#define  VPB_DIVIDER        0           //the divider of VPB 
 
/* System Initialization           */ 
void InitLPC2000(void) { 
      WDMOD=0;                   //disable WDT 
     
  VICIntEnClr=0xffffffff;  //disable all interrupts 
  VICVectAddr=0; 
  VICIntSelect=0; 
  
      /* PLL configuration  */ 
      if(PLL_PLLE){ 
         PLLCFG=(PLL_M- 1) | (PLL_P << 5); 
         PLLCON=PLL_PLLE; 
    PLLFEED = 0xAA; 
         PLLFEED = 0x55; 
         while((PLLSTAT & (1 << 10)) == 0);     // Wait for PLL lock 
 
         PLLCON=PLL_PLLE|PLL_PLLC<<1;            //connect PLL 
         PLLFEED = 0xaa; 
         PLLFEED = 0x55; 
    } 
         
   VPBDIV=VPB_DIVIDER;             //peripheral clock config 
 
      /* MemRemap Config  */ 
#ifdef __Ram_Mode     
     MEMMAP = 0x2;          //remap to 0x40000000 
#endif 
 

 AN10413_1 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 15 December 2005 5 of 16



 

Philips Semiconductors AN10413
   µC/OS-II Time Management in LPC2000

#ifdef __Flash_Mode     
     MEMMAP = 0x1;          //remap tp 0x0 
#endif 
 
#ifdef __ExtMem_mode     
     MEMMAP = 0x3;          //remap to 0x80000000, only for lpc22xx 
#endif 
} 

2.3 Timer Initialization 
Timer0 is configured to generate clock tick. The tick frequency is defined as 
OS_TICKS_PER_SEC in file os_cfg.h. Timer0 counter is set according to tick frequency 
and peripheral clock.  

LPC2000 family contains VIC (Vectored Interrupt Controller) that supplies a vector (i.e., 
an address) for each interrupt source. VIC can take up to 32 interrupt request inputs and 
programmably assign them into three categories, FIQ, vectored IRQ and non-vectored 
IRQ. FIQ requests have the highest priority. Vectored IRQs have the intermediate 
priority, but only 16 of the 32 requests can be assigned to this category. Non-vectored 
IRQs have the lowest priority.  

Each peripheral device has one interrupt line connected to the VIC, but may have several 
internal interrupt flags. Fig 1 lists the interrupt sources for each peripheral function.  

VICIntEnable register controls which of the 32 interrupt requests contributes to FIQ or 
IRQ and enables it. VICVectCntx and VICVectAddrx registers control one of 16 
vectored IRQ slots together. VICVectCntx Register selects the interrupt source and 
VICVectAddrx register holds the address of ISR of the corresponding vectored IRQ.   

As shown in the exception vector table (Table 1:), when an IRQ occurs, ARM CPU will 
redirect code execution to the address specified at location 0x0000 0018. For vectored 
and non-vectored IRQ’s the following instruction could be placed at 0x18: 

LDR pc, [pc,#-0xFF0]  

This instruction loads PC with the address that is present in VICVectAddr register then 
gets the IRQ service routine from VICVectAddr register and jumps to the value read. 

 

 

 AN10413_1 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 15 December 2005 6 of 16



 

Philips Semiconductors AN10413
   µC/OS-II Time Management in LPC2000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 1. Connection of interrupt sources to VIC 

  

Here Timer0 interrupt is configured as a vectored IRQ interrupt and the priority is set to 
15. The initialization code can be as following: 
 
#define OS_TICKS_PER_SEC          50         //Set the number of ticks in one second 
 
void TIMER0_InitTimer(void) { 
      TIMER0_IR  = 0xff;             //clear interrupts    
      TIMER0_TC  = 0;                                            
      TIMER0_MCR = 0x03;             //reset and interrupt on match  
      TIMER0_MR0 = (FPCLK/ OS_TICKS_PER_SEC);      //set the match value 

 AN10413_1 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 15 December 2005 7 of 16



 

Philips Semiconductors AN10413
   µC/OS-II Time Management in LPC2000

 
     //Initialize timer0 interrupt 
     VICIntEnClr =  (1 << 4);                        //disable timer0 interrupt 

//config timer0 interrupt as the lowest v-IRQ 
     VICVectAddr15 = (LPC_INT32U)IRQASMTimer0;        //set timer0 ISR address           
     VICVectCntl15 = (0x20 | 0x04); 
     VICIntEnable = (1 << 4);                 //enable timer0 interrupt       
      

TIMER0_TCR = 0x01;                               //enable timer0 counter 
} 
 

In µC/OS-II, one thing you have to notice is that you must enable tick interrupts after 
multitasking has started, i.e. after calling OSStart(). In other words, you should initialize 
and enable tick interrupts in the first task that executes following a call to OSStart(). A 
common mistake is to enable ticker interrupts between calling OSInit() and OSStart() as 
shown in the following code. Because at that point, µC/OS-II is in an unknown state and 
it will cause your application to crash.  
void main(void) { 
   …  
   OSInit();                                       // initialize uC/OS II 
   …  
   /* user application initialization code */ 
   /* create application task by calling OSTaskCreate() */ 

… 
Enable Ticker Interrupts;                     //DO NOT DO THIS HERE!!! 

   … 
   OSStart();                                      // start multitasking 
} 

3. Clock Tick ISR 

3.1 ISR in µC/OS-II 
In µC/OS-II, ISRs includes several parts: save CPU registers, call function OSIntEnter(), 
execute user code, call function OSIntExit(), restore CPU registers and return.  

Function OSIntEnter() is used to notify µC/OS-II that you are about to service an interrupt 
(ISR) and function OSIntExit() is used to notify µC/OS-II that you have completed serving 
an ISR. With OSIntEnter() and OSIntExit(), µC/OS-II can keep track of interrupt nesting 
and thus only perform rescheduling at the last nested ISR.  

Sometime when the last nested ISR is completed, the interrupted task will be no longer 
the task that needs to run because a new, higher-priority task is now ready. In this case, 
interrupt level context switch is needed. This is done by function _IntCtxSw(). Then after 
return, the new, higher-priority task is running and the old one is pending.  

These codes should be written in assembly language because you cannot access CPU 
registers directly from C. But user code can be written in C. Here we use macro code to 
implement ISR in file irq_handler.s. The code can be shown as following and should be 
duplicated for each ISR you have in your system.   
        MACRO      

 AN10413_1 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 15 December 2005 8 of 16



 

Philips Semiconductors AN10413
   µC/OS-II Time Management in LPC2000

$IRQ_AsmEntery HANDLER $IRQ_CEntry 
                 
$IRQ_AsmEntery 
        stmfd sp!,{r0-r3,r12,lr}      ; push r0-r12 register file and lr  
 
        bl OSIntEnter                         ; Interrupt Nest++ 
        bl $IRQ_CEntry                        ; User ISR Subroutine  
        bl OSIntExit 
 
        ldr r0,=OSIntCtxSwFlag 
        ldr r1,[r0] 
        cmp r1,#1 
        beq _IntCtxSw                       ; interrupt level context switch 
 
        ldmfd sp!,{r0-r3,r12,lr} 
        subs pc,lr,#4                         ; return  
         
        MEND 
 

3.2 Timer0 ISR 
µC/OS-II clock tick is serviced by calling OSTimeTick() from a timer ISR. Here is timer0 
ISR. Duplicating the macro code easily as following, we can get timer0 ISR. 
;Timer0 interrupt  
 IMPORT IRQC_Timer0 
IRQASMTimer0 HANDLER IRQC_Timer0 

IRQASMTimer0 is time0 ISR entry point. IRQC_Timer0 is user code entry point and 
could be written in C.  

Function OSTimeTick() is called by IRQC_Timer0. Most of the work done by function 
OSTimeTick() basically consist of decrementing OSTCBDly field for each nonzero 
OS_TCB (task control block). Because OSTCBDly contains the number of clock tick that 
the task is allowed to delay. OSTimeTick() follows the chain of OS_TCB starting at 
OSTCBList(list of OS_TCB) until it reaches the idle task. The execution time of 
OSTimeTick() is directly proportional to the number of tasks created in an application. 
OSTimeTick() also accumulates the number of clock ticks since power up in an unsigned 
32-bit variable called OSTime. 
void IRQC_Timer0(void) { 
     OSTimeTick();                            // serve the clock tick                         
 
     TIMER0_IR = 0x01; 
     VICVectAddr = 0;                         // clear the interrupt 
} 

4. Time Functions of µC/OS-II 
µC/OS-II provides five basic functions to implement time management. They are: 

        OSTimeDly() 

 AN10413_1 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 15 December 2005 9 of 16



 

Philips Semiconductors AN10413
   µC/OS-II Time Management in LPC2000

 AN10413_1 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 15 December 2005 10 of 16

        OSTimeDlyHMSM() 

        OSTimeDlyResume() 

        OSTimeGet() 

        OSTimeSet() 

 

OSTimeDly() and OSTimeDlyHMSM() allow the calling task to delay itself for a user 
specified time. OSTimeDly() calculates the number of ticks to delay and the number can 
be a value between 1 and 65535. OSTimeDlyHMSM() allow you to specify time in hours, 
minutes, seconds and milliseconds which is more ‘natural’.  

OSTimeDlyResume() is used to resume a task that delayed itself. Because there will be 
another task to cancel the delay and make the delayed task ready-to-run.  

When a clock tick occurs, µC/OS II increments a 32-bit counter. At a tick rate of 100Hz, 
this 32-bit counter rolls over every 497 days. OSTimeGet() can be used to get the value 
of this counter. You can also change the value of the counter by OSTimeSet().  

Before using these functions, you have to give a config in os_cfg.h as following: 
#define OS_TIME_DLY_HMSM_EN       1      //Include OSTimeDlyHMSM()                          
#define OS_TIME_DLY_RESUME_EN     1        //Include OSTimeDlyResume()                        
#define OS_TIME_GET_SET_EN        1        //Include OSTimeGet()and OSTimeSet()              

Here we give an example on how to implement time management. In the sample 
application, two tasks are created. TaskMain is used to print out a string and TaskGTime 
gets OS time and prints it out. By calling function OSTimeDly(), both tasks are delayed 
50 clock tick and then go on.  

To implement string print out, we use a serial communication interface--Uart port to 
output some information with which we can easily understand time management of 
µC/OS-II.   
#define STACKSIZE 128  
 
unsigned int TaskMainStack[STACKSIZE]; 
unsigned int TaskGTimeStack[STACKSIZE]; 
 
/****************************************************************** 
; Function: SystemInit() 
; Parameters: void 
; Return: void 
; Description: Initialize system according to your application 
******************************************************************/ 
void SystemInit(void){      
   LPC_UART_config_t Uart0_Config; 
   
   //system clock initialization 
   TIMER0_InitTimer(); 
     
   //Serial port 0 initialization  
 Uart0_Config.BaudRate = BD9600; 



 

Philips Semiconductors AN10413
   µC/OS-II Time Management in LPC2000

 Uart0_Config.WordLenth = WordLength8; 
 Uart0_Config.Stopbit=OnebitStop; 
 Uart0_Config.ParityEnable = 0; 
 Uart0_Config.BreakEnable = 0; 
 Uart0_Config.FIFOEnable = 1; 
 Uart0_Config.FIFORxTriggerLevel = FIFORXLEV2; 
 Uart0_Config.InterruptEnable= IER_RBR  | IER_THRE;     // | IER_THRE ;//| IER_RLS; 
   Uart_Init(LPC_UART0, &Uart0_Config); 
} 
 
/****************************************************************** 
; Function: TaskMain() 
; Parameters: void * 
; Return: void 
; Description: Task TaskMain main body  
******************************************************************/ 
void TaskMain(void *i){ 

SystemInit();                //initialize timer0 and uart0 port 
   while(1){ 
       CommSendString(COMM1,"TaskMain running.\r\n"); 
         OSTimeDly(50); 
    } 
} 
 
/****************************************************************** 
; Function: TaskGTime() 
; Parameters: void * 
; Return: void 
; Description: Task TaskGTime main body. It will get OS time and display it.  
******************************************************************/ 
void TaskGTime(void *i){   
INT32U tvalue,x; 
   char tnumber,narray[15]; 
  
   while(1){ 
       CommSendString(COMM1,"TaskGTime running.\r\n"); 
         CommSendString(COMM1,"OSTime is:"); 
    tvalue=OSTimeGet(); 
    x=0; 
    for( ; ; ){ 
     tnumber=tvalue%10; 
    narray[x]=0x30+tnumber; 
    tvalue=tvalue/10; 
            if(tvalue==0)  
break; 
    x++; 
    } 
        for( ; ; ){ 
        CommPutChar(COMM1, narray[x],0); 
        if(x<=0)   
break;  

 AN10413_1 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 15 December 2005 11 of 16



 

Philips Semiconductors AN10413
   µC/OS-II Time Management in LPC2000

        x--;   
        } 
   CommSendString(COMM1, "\r\n"); 
    OSTimeDly(50); 
    } 
} 
 
/****************************************************************** 
; Function: main() 
; Parameters: void  
; Return: void 
; Description: OS initialization, tasl creation and OS start.  
******************************************************************/ 
int main(void){ 
   OSInit(); 
 
   OSTaskCreate(TaskMain, (void *)0, (OS_STK *)&TaskMainStack[STACKSIZE - 1], 5); 
   OSTaskCreate(TaskGTime, (void *)0, (OS_STK *)&TaskGTimeStack[STACKSIZE - 1], 7); 
   OSStart(); 
} 

In the above sample code, both tasks are delayed 50 clock ticks by calling OSTimeDly(). 
If you want to specify time in seconds such as one second, you can use function 
OSTimeDlyHMSM() to rewrite it. For example, TaskMain() can be written as following: 
void TaskMain(void *i){ 
   SystemInit();                              //initialize timer0 and uart0 port 
   While(1){ 
           CommSendString(COMM1,"TaskMain running.\r\n"); 
            OSTimeDlyHMSM (0,0,1,0); 
   } 
} 
 

In order to print the message on PC, a hardware connection shown as figure 2 is 
needed.  

 
Fig 2. Serial Port Connection 
 

 AN10413_1 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 15 December 2005 12 of 16



 

Philips Semiconductors AN10413
   µC/OS-II Time Management in LPC2000

Then we can start HyperTerminal Software on PC. Setting of the software is shown as 
figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3. Setting of HyperTerminal Software 

After these configurations, run the code. Figure 4 shows the printed messages. Because 
TaskMain has higher priority than TaskGTime, TaskMain runs first and print out 
”TaskMain running.”. Calling OSTimeDly() causes TaskMain to delay itself for 50 clock 
ticks. A context switch occurs. TaskMain is pending and TaskGTime, the next highest 
priority ready-to-run task, starts to run. It prints out ”TaskGTime running.” and OS time. 
OSTimeDly()  also delay TaskGTime for 50 clock ticks. So from the printed messages, 
we can see that both tasks run alternately. And the printed OS time is increased by 50 
equal to delay time. 

 

 AN10413_1 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 15 December 2005 13 of 16



 

Philips Semiconductors AN10413
   µC/OS-II Time Management in LPC2000

Fig 4. Printed  Messages 

  

 
 

 

 AN10413_1 © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 15 December 2005 14 of 16



 

Philips Semiconductors AN10413
   µC/OS-II Time Management in LPC2000

5. Disclaimers 
Life support — These products are not designed for use in life support 
appliances, devices, or systems where malfunction of these products can 
reasonably be expected to result in personal injury. Philips Semiconductors 
customers using or selling these products for use in such applications do so 
at their own risk and agree to fully indemnify Philips Semiconductors for any 
damages resulting from such application. 

Right to make changes — Philips Semiconductors reserves the right to 
make changes in the products - including circuits, standard cells, and/or 
software - described or contained herein in order to improve design and/or 
performance. When the product is in full production (status ‘Production’), 
relevant changes will be communicated via a Customer Product/Process 
Change Notification (CPCN). Philips Semiconductors assumes no 
responsibility or liability for the use of any of these products, conveys no 
licence or title under any patent, copyright, or mask work right to these 

products, and makes no representations or warranties that these products 
are free from patent, copyright, or mask work right infringement, unless 
otherwise specified. 

Application information — Applications that are described herein for any of 
these products are for illustrative purposes only. Philips Semiconductors 
make no representation or warranty that such applications will be suitable for 
the specified use without further testing or modification. 

6. Trademarks 
Notice — All referenced brands, product names, service names and 
trademarks are the property of the respective owners. 

 

 

 

 AN10413_1  © Koninklijke Philips Electronics N.V. 2005. All rights reserved.

Application note Rev. 01 — 15 December 2005 15 of 16



 

Philips Semiconductors AN10413
    µC/OS-II Time Management in LPC2000

7. Contents
1. Introduction .........................................................3 
2. Initialization..........................................................3 
2.1 Exception vector table.........................................3 
2.2 System config .....................................................5 
2.3 Timer Initialization ...............................................6 
3. Clock Tick ISR .....................................................8 
3.1 ISR in µC/OS-II ...................................................8 
3.2 Timer0 ISR..........................................................9 
4. Time Functions of µC/OS-II ................................9 
5. Disclaimers ........................................................15 
6. Trademarks ........................................................15 
7. Contents.............................................................16 
 

  

Document number: AN10413_1
Published in The Netherlands 

 © Koninklijke Philips Electronics N.V. 2005 
All rights are reserved. Reproduction in whole or in part is prohibited without the prior 
written consent of the copyright owner. The information presented in this document does 
not form part of any quotation or contract, is believed to be accurate and reliable and may 
be changed without notice. No liability will be accepted by the publisher for any 
consequence of its use. Publication thereof does not convey nor imply any license under 
patent- or other industrial or intellectual property rights. 

Date of release:15 December 2005


	Introduction
	Initialization
	Exception vector table
	System config
	Timer Initialization

	Clock Tick ISR
	ISR in µC/OS-II
	Timer0 ISR

	Time Functions of µC/OS-II
	Contents

