Communication Electronics Lecture 11:

Numerical modulations

Numerical radio link

ASK ≡ Amplitude Shift Keying FSK ≡ Frequency Shift Keying AASK ≡ Audio Amplitude Shift Keying AFSK ≡ Audio Frequency Shift Keying OOK ≡ On-Off Keying PAM ≡ Pulse-Amplitude Modulation PPM ≡ Pulse-Position Modulation Large radio bandwidth B_R >>C Poor spectral efficiency C/B<<1bit Inefficient non-coherent receiver 20dB...50dB worse than Shannon

Modem radio link

Simple transmitter and receiver

Insensitive to carrier-frequency errors

Spread spectrum \rightarrow CDMA=?

~1950 analog multitone modem for ionospheric links ~1990 wavelength-division multiplex (WDM) in optical fibers ~2000 numerical DFT \rightarrow OFDM WLAN (WiFi) 802.11a (FFT) Multipath mitigation with multitone transmission

Orthogonal Frequency Division Multiplex

 $AM | \phi M \rightarrow$ mutual rotation inside constellation $EVM \equiv Error Vector Magnitude$

$$EVM[\%] = \sqrt{\frac{\langle P_N \rangle}{P_{MAX}}}$$
or
$$EVM[\%] = \sqrt{\frac{\langle P_N \rangle}{\langle P_S \rangle}}$$

 $EVM_{dB} = 20 \log_{10} EVM$

EVM & MER include noise, interference & distortion!

$$MER_{dB} = 10 \log_{10} \left(\frac{\langle P_{S} \rangle}{\langle P_{N} \rangle} \right)$$

MER = *Modulation Error Ratio*

$$\begin{array}{c} Decision \quad Q\\ threshold\\ 0\\ \hline \\ 0\\ \hline 0\\ \hline \\ 0\\ \hline 0\\ \hline \\ 0\\ \hline 0\\$$

BPSK: $BER = \frac{1}{2} \operatorname{erfc} \sqrt{\frac{P_s}{P_N}} = \frac{1}{2} \operatorname{erfc} \sqrt{\frac{W_{bit}}{N_0}}$

S/N	BER	S/N	BER
-5dB	23.6%	8dB	1.9•10-4
-4dB	18.6%	9dB	3.4•10 ⁻⁵
-3dB	15.9%	10dB	3.9•10 ⁻⁶
-2dB	13.1%	11dB	2.6•10 ⁻⁷
-1dB	10.4%	12dB	9 •10 ⁻⁹
0dB	7.9%	13dB	1.3•10 ⁻¹⁰
1dB	5.7%	14dB	6.8•10 ⁻¹³
2dB	3.8%	15dB	9.2•10 ⁻¹⁶
3dB	2.3%	16dB	2.3•10 ⁻¹⁹
4dB	1.3%	17dB	6.8•10 ⁻²⁴
5dB	0.6%	18dB	1.4•10 ⁻²⁹
6dB	0.24%	19dB	10 ⁻³⁶
7dB	7.7•10-4	20dB	10 ⁻⁴⁵
S/N	BER	S/N	BER

BER	S/N	
30%	-8.6dB	
10%	-0.8dB	
3%	2.5dB	
1%	4.3dB	
0.3%	5.8dB	
10 ⁻³	6.8dB	
3•10 ⁻⁴	7.7dB	
10 ⁻⁴	8.4dB	
3•10-5	9.1dB	
10 ⁻⁵	9.6dB	
3•10 ⁻⁶	10.1dB	
10-6	10.4dB	
3•10 ⁻⁷	11dB	
BER	S/N	

BER	S/N	
10 ⁻⁷	11.3dB	
3•10 ⁻⁸	11.7dB	
10 ⁻⁸	12dB	
3•10 ⁻⁹	12.3dB	
10 ⁻⁹	12.6dB	
10 ⁻¹⁰	13.1dB	
10-11	13.5dB	
10 ⁻¹²	13.9dB	
10 ⁻¹³	14.3dB	
10 ⁻¹⁴	14.7dB	
10 ⁻¹⁵	15dB	
10 ⁻¹⁶	15.3dB	
10 ⁻¹⁷	15.6dB	
BER	S/N	

BER table for BPSK

LFSR pseudorandom sequences

Sounds as white noise !

